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Introductions Introduction and Motivation

Motivation of our work

(a) Okayama City Waterworks Bureau (b) CCS, Univ. of Tsukuba

Phase transition from hadron to QGP (quark-gluon plasma)

We estimate the location of the critical endpoint (CEP) using the
kurtosis intersection method, for example.

Hence, we want to obtain cumulants of chiral order parameter,
such as kurtosis, precisely.

This needs considerable computational cost.

Computational cost reduction using the machine learning!
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Introductions Introduction and Motivation

Introduction

For Lattice QCD calculations

on observables such as cumulants of the chiral condensate,
the trace of operators (TrO) is often necessary.

e.g. O = M−1 (inverse Dirac operator)

TrO is obtained stochastically as TrO ≈ 1

h

h∑
i=1

η†i O ηi, where

ηi is random noise vector (e.g. Gaussian, Z2, Z4, · · · ).

M (Dirac operator): a large sparse matrix on the lattice

Trace estimation by linear CG solver for stochastic sources
This needs considerable computational cost.

We present our preliminary results on cumulant estimation

using the method proposed by Yoon et al., PRD 100 014504 (2019).
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Introductions Introduction and Motivation

Cumulants of the chiral order parameter

The cumulants are calculated with TrM−n (n = 1, 2, 3, 4).

For example, susceptibility (χ) is

χ =

〈
−Nf TrM−2 +

{
Nf TrM−1

}2
〉
−
〈
Nf TrM−1

〉2
V

.

Nf: the number of quark flavor
V : the lattice volume

In this way, we also calculate chiral condensate, skewness and kurtosis.
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Analysis Detail ML Estimation

Machine Learning Estimation of Observables

For ML estimation of f(X) = Y P ≈ Y ,

# of data X: N = NLB +NUL

# of data Y : NLB

1 Train f to get Y from X on labeled set.

2 Predict Y P from X on unlabeled set:

f(X) = Y P ≈ Y .

Do we use all labeled set for training?
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Analysis Detail Bias correction technique

Bias correction in the ML estimation

In general and in principle,

Ȳ(UL) =
1

NUL

NUL∑
i=1

Y P
i

is not exact due to the bias.

Prediction bias in the ML

(Bias) = ⟨Y ⟩ − ⟨Y P ⟩

We split labeled set into
training and bias correction set.

1 Training with X ∈ SX
TR, Y ∈ SY

TR

2 Predicting with

1

NUL

NUL∑
i=1

Y P
i +

1

NBC

NBC∑
j=1

(Yj − Y P
j )

(Yoon et al., PRD 100 014504)
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Analysis Detail Gradient boosting decision tree regression

Gradient boosting decision tree regression

We use ( ) via JuliaAI/MLJ.jl.

boosting stage = 40 empirically determined with L2-Loss plot.
Depth of tree = 3, learning rate = 0.1, subsampling = 0.7

Same with Yoon et al., PRD 100 014504 (2019)

Statistical error estimation: Bootstrap resampling

Check P1 and P2 as in Yoon et al., PRD 100 014504 (2019)

1 P1: bias corrected ML prediction

ȲP1 =
1

NUL

∑
i∈{UL}

Y P
i +

1

NBC

∑
j∈{BC}

(
Yj − Y P

j

)
(1)

2 P2: weighted average of P1 and direct measured labeled set

ȲP2 =
NUL

N
ȲP1 +

NLB

N
Ȳ

(LB)
(2)

To improve the statistical precision
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Analysis Detail 2-dimensional scanning

Scanning along the ratio of labeled/training set

N = # of total data set (N = NLB +NUL)

NLB = # of labeled set (NLB = NTR +NBC)

NTR = # of training set

1 Observe results for each RLB ≡ NLB

N
, e.g.:

RLB = 5%, 10%, . . . , 50% .

2 Observe results for each RTR ≡ NTR

NLB
, e.g.:

RTR = 0%, 10%, . . . , 100% .

We perform scanning and observe results for each (RLB,RTR).

We observe

RTR = 0 % to check the labeled set itself,
RTR = 100 % to check the result without the bias correction.
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Calculation of the cumulants One of our method to calculate the cumulants

One of our methods to calculate the cumulants

One of our approaches to calculate the machine-learning-derived
cumulants is as follows.

1 We use TrM−1 from the original dataset.

2 We perform ML estimation of TrM−n (n = 2, 3, 4)
from TrM−1 as input.

3 Then we calculate the cumulants:
chiral condensate, susceptibility, skewness and kurtosis.

We observe results for each (RLB,RTR).
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Calculation of the cumulants A result on the multi-ensemble reweighting

K with ML results (P1) at the κt: 1% ≤ RLB ≤ 25%

Bhattacharyya coefficient

CB(x, r) = Z exp

[
− x2

4(1 + r2)

]

where Z =

√
2r

1 + r2
and

x =
|ȲOrig − ȲP1|

σOrig
, r =

σP1

σOrig

CB ∈ [0,1] (higher is better)

1: best overlap
0: no overlap

0 10 20 30 40 50 60 70 80 90 100
RTR [%]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

R L
B

[%
]

0.39 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.65 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.92 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.98 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.69 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.94 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.84 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.98 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.95 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.96 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.97 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.98 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.00

0.25

0.50

0.75

1.00

Lattice setup: 123 × 4, Nf = 4 Wilson clover quark, Iwasaki gluon with β = 1.60

TrM−1 baseline, TrM−n (n = 2, 3, 4) trained with TrM−1 by .

Data from “Ohno et al. PoS LATTICE2018 (2018) 174”
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|ȲOrig − ȲP1|
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|ȲOrig − ȲP1|
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Calculation of the cumulants A result on the multi-ensemble reweighting
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σOrig
, r =

σP1

σOrig

CB ∈ [0,1] (higher is better)

1: best overlap
0: no overlap

0 10 20 30 40 50 60 70 80 90 100
RTR [%]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

R L
B

[%
]

0.39 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.65 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.92 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.98 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.69 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.94 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.84 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.98 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.95 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.96 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.97 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.98 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.00

0.25

0.50

0.75

1.00

100 % original TrM−1 drives Σ, χ, S, K

TrM−1 dominates all cumulant definitions!

Benjamin J. Choi (CCS) Cumulant estimation via ML 21 January Reiwa 8th 10 / 19



Calculation of the cumulants A result on the multi-ensemble reweighting

K(κt) with ML estimation at RLB = 1 %

0 20 40 60 80 100
RTR (training set)

−1.76

−1.74

−1.72

K

RLB = 1% (κt with kurt)

Original

RWP1

RWP2

At RTR = 0%, no ML used — only 1% RLB very poor statistics!
blue square: kurtosis with original dataset
orange triangle: kurtosis with ML estimation (P1)
red circle: kurtosis with ML estimation (P2)
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Calculation of the cumulants A result on the multi-ensemble reweighting

Reweighting curve of K at {RLB , RTR} = {1% , 10%}

0.13576 0.13578 0.13580 0.13582 0.13584
κ
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14

K

P1
P1 Band
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Original Band
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P2 Band
RWP1 points
RWBS points
RWP2 points
P1
ORG
P2
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Calculation of the cumulants A result on the multi-ensemble reweighting

Summary (1)

We calculated cumulants of the chiral order parameters

Using 100 % of original dataset of TrM−1

and ML estimation results on TrM−n (n = 2, 3, 4) with various
partial ratios (RLB,RTR).

In this setup, we found that the cumulants are calculated well even
with RLB = 1 %.

If this turns out to work well, then we can determine cumulants
(quark condensate, susceptibility, skewness, kurtosis) with
100 + 1 + 1 + 1

400
= 25.75% of computing power for the case without

ML estimation.

Apply ML estimation even to TrM−1!
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Calculation of the cumulants A result on the multi-ensemble reweighting

Summary (2)

We are currently exploring the possibility of reducing computing
power even further by applying ML estimation also to TrM−1.

This could potentially lower the requirement below 25.75 % of the
computing cost compared to the case without ML.

Preliminary results are available from this setup.

These will be lightly introduced here.

For the method to be viable, similar performance must hold across
different lattice volumes and coupling constants. Testing of such cases
is in progress.

In this case, TrM−n (n = 1, 2, 3, 4) are trained using Plaquette and
Rectangle observables, and then combined to compute cumulants.
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Calculation of the cumulants (preliminary) reweighting with less computing cost

K with ML results (P1) at the κt: 5% ≤ RLB ≤ 50%

Bhattacharyya coefficient (note)

CB(x, r) = Z exp

[
− x2

4(1 + r2)

]

where Z =

√
2r

1 + r2
and

x =
|ȲOrig − ȲP1|

σOrig
, r =

σP1

σOrig

CB ∈ [0,1] (higher is better)

1: best overlap
0: no overlap
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RTR [%]

5

10

15

20

25

30
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40

45

50

R L
B

[%
]

0.98 0.81 0.88 0.96 0.98 0.98 0.97 0.95 0.91 0.89 0.0

1.0 0.88 0.99 0.97 0.99 0.99 0.94 0.99 0.89 0.94 0.0

1.0 0.97 0.99 0.99 0.99 0.99 0.97 0.98 0.96 0.85 0.0

0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.97 0.0

1.0 0.99 0.99 0.99 1.0 0.99 0.98 0.99 0.93 0.98 0.0

1.0 0.99 0.99 1.0 0.99 0.99 0.99 0.99 0.99 0.99 0.0

1.0 0.99 0.99 0.99 0.99 1.0 0.99 0.97 0.99 0.97 0.0

0.98 0.99 0.99 1.0 0.99 1.0 0.99 0.99 0.98 0.97 0.0

1.0 0.99 1.0 0.99 1.0 0.99 1.0 1.0 0.99 0.99 0.0

1.0 0.99 0.99 0.99 1.0 0.99 0.99 0.99 0.99 0.99 0.0

0.00

0.25

0.50

0.75

1.00

Lattice setup: 123 × 4, Nf = 4 Wilson clover quark, Iwasaki gluon with β = 1.60

TrM−n (n = 1, 2, 3, 4) trained with Plaquette and Rectangle by .

Data from “Ohno et al. PoS LATTICE2018 (2018) 174”
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Calculation of the cumulants (preliminary) reweighting with less computing cost

K(κt) with ML estimation at RLB = 15%

0 20 40 60 80 100
RTR (training set)

−1.78

−1.76

−1.74

−1.72

−1.70

K

RLB = 15% (κt with kurt)

Original

RWP1

RWP2

RTR = 100%: entire LB set used for training no bias correction!
blue square: kurtosis with original dataset
orange triangle: kurtosis with ML estimation (P1)
red circle: kurtosis with ML estimation (P2)

Benjamin J. Choi (CCS) Cumulant estimation via ML 21 January Reiwa 8th 16 / 19



Calculation of the cumulants (preliminary) reweighting with less computing cost

Reweighting curve of K at {RLB , RTR} = {15% , 20%}

0.13576 0.13578 0.13580 0.13582 0.13584
κ

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

K

P1
P1 Band
Original
Original Band
P2
P2 Band
RWP1 points
RWBS points
RWP2 points
P1
ORG
P2

Benjamin J. Choi (CCS) Cumulant estimation via ML 21 January Reiwa 8th 17 / 19



Summary & To-Do List

Summary and To-Do List

Case 1: Cumulant estimation using the original TrM−1 data and
training TrM−n (n = 2, 3, 4) from it

Required computing power reduced to about 25.75% of the full
cost.

Case 2: Training TrM−n (n = 1, 2, 3, 4) simultaneously with
Plaquette and Rectangle

In some preliminary datasets, the required computing power
dropped below 25%, and in certain cases reached as low as ∼20%.
Bias correction seems to play an important role for
derived quantities such as cumulants.

Expand the analysis with other gauge ensembles.

Vary the lattice volume V = N3
S ×NT and the lattice spacing a.

The paper will be submitted soon, along with the public release of
. Please stay tuned!
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Summary Thank you

Thank you very much!
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Backup

Backup slides
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Backup (preliminary) reweighting with less computing cost

K with ML results (P1) at the κt: 5% ≤ RLB ≤ 50%

Left: x map of CB(x, r); Right: r map of the same.

0 10 20 30 40 50 60 70 80 90 100
RTR [%]

5

10

15

20

25

30

35

40

45

50

R L
B

[%
]

0.24 1.13 0.09 0.17 0.18 0.11 0.39 0.27 0.8 0.13 7.5

0.02 0.31 0.04 0.4 0.03 0.12 0.68 0.08 1.04 0.48 7.36

0.0 0.04 0.24 0.14 0.24 0.23 0.43 0.28 0.5 1.27 7.32

0.27 0.01 0.06 0.08 0.17 0.14 0.05 0.33 0.0 0.29 7.51

0.11 0.08 0.03 0.06 0.06 0.19 0.34 0.02 0.8 0.11 7.51

0.07 0.03 0.07 0.08 0.14 0.19 0.1 0.04 0.11 0.02 7.43

0.19 0.28 0.14 0.29 0.13 0.06 0.13 0.44 0.19 0.39 7.67

0.4 0.0 0.13 0.03 0.23 0.02 0.19 0.24 0.32 0.48 7.48

0.06 0.17 0.03 0.16 0.06 0.17 0.04 0.03 0.02 0.05 7.58

0.01 0.18 0.14 0.24 0.04 0.17 0.12 0.27 0.04 0.03 7.72

0 10 20 30 40 50 60 70 80 90 100
RTR [%]

1.24 2.37 2.12 1.45 1.33 1.35 1.34 1.51 1.54 2.03 0.96

1.12 2.08 1.25 1.21 1.21 1.24 1.22 1.25 1.3 1.49 0.95

1.04 1.46 1.16 1.14 1.18 1.17 1.2 1.2 1.28 1.46 0.96

1.03 1.21 1.18 1.16 1.15 1.16 1.19 1.21 1.23 1.32 0.96

1.0 1.17 1.16 1.15 1.14 1.17 1.16 1.19 1.2 1.3 0.96

1.0 1.15 1.16 1.12 1.15 1.16 1.14 1.17 1.19 1.27 0.96

1.01 1.12 1.13 1.14 1.15 1.14 1.15 1.17 1.19 1.25 0.96

1.0 1.16 1.18 1.15 1.16 1.15 1.17 1.17 1.2 1.24 0.97

0.99 1.13 1.13 1.11 1.14 1.11 1.14 1.14 1.17 1.19 0.95

0.99 1.13 1.12 1.14 1.11 1.12 1.14 1.14 1.15 1.2 0.95

0

0.5

1

2

3.0

1

2

3

4

5

6

7

When x ≡ |ȲOrig − ȲP1|/σOrig ≈ 0,
the ȲP1 captures ȲOrig well.

When r ≡ σP1/σOrig. ≈ 1, the
σP1 captures σOrig. well. (note)
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Backup (preliminary) reweighting with less computing cost

K with ML results (P1) at the κt: 1% ≤ RLB ≤ 25%

Bhattacharyya coefficient

CB(x, r) = Z exp

[
− x2

4(1 + r2)

]

where Z =

√
2r

1 + r2
and

x =
|ȲOrig − ȲP1|

σOrig
, r =

σP1

σOrig

CB ∈ [0,1] (higher is better)

1: best overlap
0: no overlap

0 10 20 30 40 50 60 70 80 90 100
RTR [%]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

R L
B

[%
]

0.39 0.45 0.45 0.36 0.46 0.47 0.45 0.69 0.59 0.59 0.14
0.65 0.51 0.8 0.7 0.8 0.78 0.83 0.87 0.59 0.64 0.0
0.6 0.68 0.8 0.83 0.89 0.79 0.71 0.91 0.77 0.84 0.0
0.92 0.76 0.82 0.89 0.94 0.96 0.97 0.9 0.89 0.73 0.0
0.98 0.81 0.88 0.96 0.98 0.98 0.97 0.95 0.91 0.89 0.0
0.69 0.8 0.91 0.95 0.95 0.98 0.93 0.97 0.88 0.91 0.0
0.94 0.83 0.94 0.98 0.99 0.97 0.98 0.84 0.95 0.6 0.0
0.84 0.86 0.96 0.97 0.98 0.97 0.98 0.97 0.97 0.87 0.0
1.0 0.84 0.99 0.99 0.99 0.94 0.98 0.97 0.97 0.77 0.0
1.0 0.88 0.99 0.97 0.99 0.99 0.94 0.99 0.89 0.94 0.0
0.98 0.9 0.99 0.99 0.99 0.97 0.99 0.98 0.84 0.92 0.0
0.99 0.93 0.98 0.96 0.98 0.99 0.97 0.98 0.95 0.96 0.0
0.99 0.92 0.99 0.99 0.99 0.99 0.97 0.99 0.96 0.88 0.0
0.95 0.94 0.98 0.98 0.99 0.99 0.97 0.99 0.98 0.97 0.0
1.0 0.97 0.99 0.99 0.99 0.99 0.97 0.98 0.96 0.85 0.0
0.96 0.97 0.99 0.99 0.99 0.99 0.98 0.95 0.87 0.77 0.0
0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.97 0.99 0.86 0.0
0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.94 0.0
0.99 0.96 0.98 0.98 0.99 0.93 0.99 0.93 0.99 0.9 0.0
0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.97 0.0
1.0 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.94 0.0
1.0 0.99 0.99 0.99 1.0 0.99 0.99 0.99 0.99 0.87 0.0
1.0 0.99 0.99 0.98 0.99 0.99 0.97 0.99 0.99 0.98 0.0
0.98 0.98 0.99 0.97 0.99 0.99 0.99 0.99 0.98 0.98 0.0
1.0 0.99 0.99 0.99 1.0 0.99 0.98 0.99 0.93 0.98 0.0

0.00

0.25

0.50

0.75

1.00

Lattice setup: 123 × 4, Nf = 4 Wilson clover quark, Iwasaki gluon with β = 1.60

TrM−n (n = 1, 2, 3, 4) trained with Plaquette and Rectangle by .

Data from “Ohno et al. PoS LATTICE2018 (2018) 174”
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Backup (preliminary) reweighting with less computing cost

K with ML results (P1) at the κt: 1% ≤ RLB ≤ 25%

Left: x map of CB(x, r); Right: r map of the same.

0 10 20 30 40 50 60 70 80 90 100
RTR [%]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

R L
B

[%
]

4.15 5.27 5.73 6.45 4.78 4.6 4.84 1.19 2.66 0.37 5.04
2.35 2.82 0.31 2.12 0.6 1.38 0.55 0.42 3.11 2.74 8.85
2.38 1.24 0.32 1.0 0.35 1.6 1.97 0.73 1.73 1.03 8.13
0.88 1.59 0.83 0.28 0.33 0.01 0.27 0.88 0.86 2.0 8.29
0.24 1.13 0.09 0.17 0.18 0.11 0.39 0.27 0.8 0.13 7.5
1.86 1.01 0.36 0.59 0.62 0.08 0.69 0.3 1.03 0.07 7.97
0.73 0.15 0.02 0.31 0.11 0.39 0.21 1.3 0.54 2.63 7.73
1.27 0.02 0.08 0.4 0.25 0.48 0.09 0.26 0.32 1.12 7.82
0.04 0.45 0.14 0.18 0.14 0.72 0.23 0.41 0.07 1.67 7.83
0.02 0.31 0.04 0.4 0.03 0.12 0.68 0.08 1.04 0.48 7.36
0.42 0.18 0.15 0.32 0.24 0.41 0.03 0.2 1.28 0.73 7.88
0.28 0.12 0.36 0.61 0.35 0.15 0.45 0.23 0.62 0.3 7.82
0.2 0.42 0.14 0.16 0.1 0.11 0.51 0.02 0.54 1.1 7.43
0.66 0.27 0.39 0.37 0.27 0.18 0.44 0.08 0.23 0.06 7.42
0.0 0.04 0.24 0.14 0.24 0.23 0.43 0.28 0.5 1.27 7.32
0.59 0.03 0.01 0.22 0.09 0.07 0.3 0.65 1.15 1.68 7.53
0.27 0.14 0.32 0.31 0.24 0.18 0.31 0.45 0.09 1.23 7.73
0.48 0.04 0.07 0.31 0.08 0.28 0.15 0.36 0.38 0.68 7.78
0.34 0.58 0.33 0.43 0.21 0.81 0.15 0.77 0.02 0.95 7.82
0.27 0.01 0.06 0.08 0.17 0.14 0.05 0.33 0.0 0.29 7.51
0.01 0.17 0.11 0.2 0.13 0.11 0.16 0.39 0.34 0.66 7.83
0.17 0.07 0.15 0.08 0.01 0.11 0.28 0.25 0.0 1.13 7.72
0.02 0.03 0.25 0.34 0.09 0.09 0.46 0.27 0.05 0.07 7.58
0.39 0.42 0.23 0.52 0.16 0.26 0.19 0.08 0.31 0.05 7.71
0.11 0.08 0.03 0.06 0.06 0.19 0.34 0.02 0.8 0.11 7.51

0 10 20 30 40 50 60 70 80 90 100
RTR [%]

2.07 7.97 6.79 3.86 3.34 3.24 3.24 3.68 4.81 5.55 1.53
1.62 6.94 2.73 2.72 2.68 2.47 2.4 2.16 2.35 2.83 0.97
1.38 3.87 2.7 2.17 2.0 1.72 1.46 1.58 1.58 2.06 0.95
1.28 2.58 2.37 2.03 1.62 1.47 1.41 1.5 1.66 2.06 0.97
1.24 2.37 2.12 1.45 1.33 1.35 1.34 1.51 1.54 2.03 0.96
1.15 2.57 1.82 1.37 1.22 1.32 1.39 1.37 1.52 1.86 0.96
1.13 2.47 1.65 1.26 1.24 1.25 1.26 1.35 1.41 1.74 0.94
1.16 2.27 1.47 1.21 1.28 1.22 1.28 1.33 1.38 1.57 0.98
1.08 2.37 1.23 1.16 1.21 1.23 1.24 1.28 1.4 1.47 0.94
1.12 2.08 1.25 1.21 1.21 1.24 1.22 1.25 1.3 1.49 0.95
1.06 1.98 1.18 1.13 1.2 1.22 1.23 1.26 1.28 1.55 0.96
1.05 1.72 1.17 1.17 1.2 1.24 1.23 1.23 1.29 1.44 0.96
1.07 1.7 1.2 1.18 1.2 1.16 1.19 1.25 1.31 1.45 0.96
1.03 1.61 1.18 1.2 1.19 1.18 1.2 1.19 1.24 1.43 0.96
1.04 1.46 1.16 1.14 1.18 1.17 1.2 1.2 1.28 1.46 0.96
1.06 1.45 1.19 1.17 1.16 1.21 1.2 1.23 1.27 1.4 0.96
1.02 1.28 1.09 1.13 1.13 1.17 1.18 1.18 1.23 1.35 0.95
1.03 1.2 1.16 1.14 1.17 1.17 1.2 1.2 1.2 1.29 0.96
1.0 1.12 1.14 1.13 1.17 1.15 1.17 1.21 1.23 1.34 0.95
1.03 1.21 1.18 1.16 1.15 1.16 1.19 1.21 1.23 1.32 0.96
1.01 1.21 1.13 1.13 1.12 1.13 1.15 1.15 1.19 1.31 0.93
1.03 1.17 1.16 1.17 1.14 1.16 1.18 1.18 1.24 1.31 0.96
1.0 1.16 1.12 1.14 1.16 1.18 1.14 1.18 1.23 1.32 0.96
1.03 1.14 1.14 1.13 1.15 1.14 1.15 1.19 1.21 1.29 0.95
1.0 1.17 1.16 1.15 1.14 1.17 1.16 1.19 1.2 1.3 0.96

0

0.5

1

2

3.0

1

2

3

4

5

6

7

When x ≡ |ȲOrig − ȲP1|/σOrig ≈ 0,
the ȲP1 captures ȲOrig well.

When r ≡ σP1/σOrig. ≈ 1, the
σP1 captures σOrig. well.
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Backup Deborah.jl

Introduction of (1)

We developed for this work.
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Backup Deborah.jl

Introduction of (2)

Deborah.jl is an Estimation tool for Bias-cOrrected Regression
Analysis with Heuristics.
Phase 1: Machine learning-based estimation of certain observables
(In this work, TrM−n, n = 1, 2, 3, 4)

Esther.jl

Esther.jl is a Summary Tool for Higher-order cumulants through
Estimation via Regression.
Phase 2: Cumulant calculation at certain ensemble using ML-based
results

Miriam.jl

MultI-Ensemble Reweighting & Interpolation Analysis with
Miriam.jl

Phase 3: Multi-ensemble reweighting using ML-based results
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Backup Deborah.jl

What can do (1)

Flexible selection of features

Let X represent the input observable(s), and Y the output
observable.

In machine learning terminology, X corresponds to the feature(s).

supports flexible feature selection, allowing users to
choose the number of input features as desired.

ex) You can do {X1 , X2 , X3 , X4 , X5 , X6 , X7} → Y learning.
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Backup Deborah.jl

What can do (2)

Freely choose among various regression models

1 Baseline: Assume X = Y = Y P , and perform only data splitting
into subsets.

2 Random: Intentionally generate Gaussian noise as デタラメ (µ = 0,
σ ≈ jackknife error of original Y )

3 Lasso and Ridge regression via JuliaAI/MLJ.jl

4 ( ) via JuliaAI/MLJ.jl or PyCall.jl

5 ( ) via JuliaAI/MLJ.jl with additional
hyperparameter tuning (I call this the MiddleGBM mode.)

num iterations: Total number of boosting rounds (controls
overall model complexity) → 2 ≤ niter ≤ 100
learning rate: Shrinks the contribution of each tree (lower =
slower but safer learning) → 0.1 ≤ α ≤ 1.0
min data in leaf: Minimum number of samples in a leaf node
(prevents overfitting) → 2 ≤ ndata ≤ 20
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Backup Deborah.jl

What Esther.jl and Miriam.jl can do

Esther.jl collects ML-estimated TrM−n (n = 1, 2, 3, 4), and
computes cumulants such as the quark condensate, susceptibility,
skewness, and kurtosis for a single ensemble.

Miriam.jl aggregates TrM−n (n = 1, 2, 3, 4) data across multiple
ensembles, enabling per-ensemble cumulant analysis and
multi-ensemble reweighting by concatenating the results.
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Backup Measurement Information

Measurement Information

ID N3
S ×NT κ N

L12T4b1.60k13575 123 × 4 0.13575 20000

L12T4b1.60k13577 123 × 4 0.13577 20000

L12T4b1.60k13580 123 × 4 0.13580 20000

L12T4b1.60k13582 123 × 4 0.13582 20000

L12T4b1.60k13585 123 × 4 0.13585 20000

Ohno et al. PoS LATTICE2018 (2018) 174

HW: Oakforest-PACS system (Boku et al. arXiv:1709.08785)

SW: BQCD program (Haar et al. EPJWoC 175 14011 (LAT2017))

Nf = 4 Wilson clover quark action, Iwasaki gauge action
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Backup Measurement Information

Correlation map between observables (L12T4b1.60k13575)

Tr
M
−1

Tr
M
−2

Tr
M
−3

Tr
M
−4

Pl
aq

ue
tte

Re
ct

an
gle

Po
lya

ko
v

loo
p

TrM−1

TrM−2

TrM−3

TrM−4

Plaquette

Rectangle

Polyakov loop

1.0 0.976 0.955 0.783 -0.957 -0.961 -0.916

0.976 1.0 0.991 0.834 -0.983 -0.985 -0.938

0.955 0.991 1.0 0.894 -0.971 -0.971 -0.923

0.783 0.834 0.894 1.0 -0.805 -0.8 -0.757

-0.957 -0.983 -0.971 -0.805 1.0 0.997 0.925

-0.961 -0.985 -0.971 -0.8 0.997 1.0 0.929

-0.916 -0.938 -0.923 -0.757 0.925 0.929 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
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Backup Measurement Information

Why Nf = 4?

In earlier Nf = 3 studies, the critical pion mass differed between
staggered and Wilson quarks, leaving the CEP location uncertain.

Nf = 4 still expects a first-order chiral transition, with possibly larger
pion mass at the critical endpoint lower cost.

Also avoids the rooted-determinant issue, enabling a clean comparison
between staggered and Wilson types.
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Backup Approximated value of a

Fit result of Wilson flow scale parameter at zero T

0.6604

0.6608

0.6612

0.6616

0.6620

0.6624

0.116 0.117 0.118 0.119 0.12 0.121 0.122 0.123

f(mqa) = c0 + c1mqa

c0 = 0.6927(13)

c1 = −0.2620(110)

χ2/d.o.f. = 1.0530

√
t 0
/a

mqa

raw data T = 0
fit functionf(x)

interpolation T ̸= 0

a ≈ 0.22175 fm (κ = 0.13575)

a ≈ 0.22171 fm (κ = 0.13577)

a ≈ 0.22163 fm (κ = 0.13580)

a ≈ 0.22159 fm (κ = 0.13582)

a ≈ 0.22152 fm (κ = 0.13585)

V = 163 × 32, β = 1.60

Here, we use

1√
t0

= 1.347(30) GeV

BMW, JHEP 09 010 (2012).
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Backup Approximated value of mPS

Fit result of pseudoscalar meson mass at zero T

1.81

1.82

1.83

1.84

1.85

1.86

1.87

0.116 0.117 0.118 0.119 0.12 0.121 0.122 0.123

f(mqa) = d1mqa+ d2 (mqa)
2

d1 = 21.77(47)

d2 = −53.64(393)

χ2/d.o.f. = 1.13

(m
P
S
a
)2

mqa

raw data T = 0
fit function f(x)

interpolation T ̸= 0

mPS ≈ 1.214 GeV (κ = 0.13575)

mPS ≈ 1.213 GeV (κ = 0.13577)

mPS ≈ 1.211 GeV (κ = 0.13580)

mPS ≈ 1.209 GeV (κ = 0.13582)

mPS ≈ 1.207 GeV (κ = 0.13585)

V = 163 × 32, β = 1.60

In summary, we have

mPS ≈ 1.21 GeV

in these 5 datasets.
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Backup Quark mass

Quark mass

We obtain κc (kappa critical) from

κc(g
2
0) = 0.125 + 0.003681192 g20 + 0.000117 (g20)

2

+ 0.000048 (g20)
3 − 0.000013 (g20)

4

where g20 =
2Nc

β
is the coupling constant.

With β = 1.60, we have κc ≈ 0.14041.

We obtain quark mass mqa with

mqa =
1

2

(
1

κ
− 1

κc

)
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Backup Computational gain

Example of computational gain

To give one concrete example from meas. logs of the BQCD program,

κ Total [h] All CG [h] 1 TrM−n CG [h]

0.13575 65.91 59.12 3.94

0.13577 65.97 59.15 3.94

0.13580 65.51 58.66 3.91

0.13582 64.44 57.56 3.84

0.13585 63.35 56.58 3.77

V = 163 × 4, Nconf = 5500
For a single gauge conf., CG is called 150 times, where Nsrc = 10.
For a single determination of TrM−n, it takes about 4 hours.

For the GBDT regression on (on a normal laptop),

Time for model training: ≈ 3 seconds
Time for NBS = 1000 bootstrap resampling: ≈ 2 seconds

negligible compared with CG time on supercomputer.
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Backup Optimal boosting stage

Optimal boosting stage

x-axis: boosting stage (number of iteration)

y-axis: L2-loss for machine learning X → Y

(L2 loss) ≡
NTR∑
i=1

(
Yi − Y P

i

)2
optimal boosting stage ≈ 40
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Backup Visualization of decision tree

Visualization of decision tree

An example with X = TrM−1, Y = TrM−2 for X → Y learning

Example for a boost stage.

Depth of tree = 3

Number of leaf (green cell, Y = TrM−2) = 6
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