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Introductions Introduction and Motivation

Motivation of our work
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# Phase transition from hadron to QGP (quark-gluon plasma)

# We estimate the location of the critical endpoint (CEP) using the
kurtosis intersection method, for example.

& Hence, we want to obtain cumulants of chiral order parameter,
such as kurtosis, precisely.
% B This needs considerable computational cost.

# Computational cost reduction using the machine learning!
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Introductions Introduction and Motivation

Introduction

& For Lattice QCD calculations

# on observables such as cumulants of the chiral condensate,
@ the trace of operators (Tr O) is often necessary.

« e.9. O = M~! (inverse Dirac operator)

h
1
s Tr O is obtained stochastically as Tr O ~ 7 an O n;, where
i=1
n; is random noise vector (e.g. Gaussian, Zs, Zy4, - - - ).

& M (Dirac operator): a large sparse matrix on the lattice

« mp Trace estimation by linear CG solver for stochastic sources
« B This needs considerable computational cost.

& We present our preliminary results on cumulant estimation
# using the method proposed by Yoon et al., PRD 100 014504 (2019).
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Introduction and Motivation
Cumulants of the chiral order parameter

% The cumulants are calculated with Tr M~ (n = 1,2, 3,4).
% For example, susceptibility (x) is

(=Np T M2 (N Te M) — (N Te M)
X = .
Vv

% Np: the number of quark flavor
# V: the lattice volume

& In this way, we also calculate chiral condensate, skewness and kurtosis.
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ML Estimation

Machine Learning Estimation of Obser_

# For ML estimation of f(X)=Y?" =Y,
Input ® # of data X: N = N + N
X = {:1:1, o, - } % # of data Y: Nip
N
NpB NuL

Train f to get Y from X on labeled set.
Predict Y? from X on unlabeled set:

fX)=YP~Y.

# Do we use all labeled set for training?
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ML Estimation

Machine Learning Estimation of Observables

y % For ML estimation of f(X) =YY" ~ Y,

lnPUt % # of data X: N = N + NyL
X:{xl,xg,---} » # of data Y: Nip

i N

V NLB NUL

P
X, Y} e{LB X € {UL
Machme Il R (oL}
f(X R Labeled set  Unlabeled set
Decision Tree Algorithm
Train f to get Y from X on labeled set.
{7 @ Predict Y* from X on unlabeled set:

f(X)=vr=~v.

#& Do we use all labeled set for training?
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S G AN CRPIS N Bias correction technique
Bias correction in the ML estimation

N N
Npg Ny, Ntr Npc Nuw,
{X, Y} e {LB} X e {UL} » (X, Y} X e {UL}
Labeled set  Unlabeled set Training set  Unlabeled set

Bias Correction set

#& In general and in principle,
& We split labeled set into

- 1 Nuw b, training and bias correction set.
Yn = N, 2 Yi Training with X € S,V € S,
2] Predicting with
is not exact due to the bias. N Npc
& DPrediction bias in the ML YE + Y; - YF
NUL Z NBC Z( =%

Bias) = (Y) = (Y?
(Bias) = (¥) = (¥Y") (Yoon et al., PRD 100 014504)
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Analysis Detail Gradient boosting decision tree regression

Gradient boosting decision tree regression

# We use -+ LightGBM ( B Microsoft ) via JuliaAI/MLJ.j1.
@ boosting stage = 40 mp empirically determined with L2-1.0ss plot.
# Depth of tree = 3, learning rate = 0.1, subsampling = 0.7
m» Same with Yoon et al., PRD 100 014504 (2019)

& Statistical error estimation: Bootstrap resampling

#% Check P1 and P2 as in Yoon et al., PRD 100 014504 (2019)
P1: bias corrected ML prediction

_ 1 1
Yp, = — VP 4+ — Y, - Y?¥ 1
Pl NUL.Z Z+NBC.Z(] ;) )
je{BC}
@ P2: weighted average of P1 and direct measured labeled set
> Nuw Nip o
Ypo = —7 Y1+ 7 Yo (2)
®» To improve the statistical precision
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Analysis Detail 2-dimensional scanning

Scanning along the ratio of labeled /training set

# N = # of total data set (N = Nrg + Nyr)
® Npp = # of labeled set (Npg = N1r + Npc)
& Nr1r = # of training set

N
Observe results for each Rig = %, e.g.:
Rig = 5%, 10%, ..., 50%.
_ Nrr
@ Observe results for each Rtp = ——, e.g
Nip

Rtr = 0%, 10%, ..., 100%.

& mp» We perform scanning and observe results for each (Ryp, RTR).

& We observe
# Rrr = 0% to check the labeled set itself,
% RTr = 100 % to check the result without the bias correction.
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Calculation of the cumulants One of our method to calculate the cumulants

One of our methods to calculate the cumulants

& One of our approaches to calculate the machine-learning-derived
cumulants is as follows.

We use Tr M ~! from the original dataset.

@ We perform ML estimation of Tr M ™" (n = 2,3,4)
from Tr M~ as input.

Then we calculate the cumulants:
chiral condensate, susceptibility, skewness and kurtosis.

& mp We observe results for each (Ryp, RTR).
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Calculation of the cumulants A result on the multi-ensemble reweighting

K with ML results (P1) at the x;: 1% < Rip < 25%

#

#
&
&

& Lattice setup: 123 x 4, Ny = 4 Wilson clover quark, Iwasaki gluon with 3 = 1.60
& Tr M~ baseline, Tr M ™" (n = 2,3,4) trained with Tr M ™" by 7= LightGBM.
& Data from “Ohno et al. PoS LATTICE2018 (2018) 174”
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Calculation of the cumulants A result on the multi-ensemble reweighting

K with ML results (P1) at the x;: 1% < Rip < 25%

# Bhattacharyya coefficient

xQ
CB(:E,T‘) =7 exp |:_4(1—|-'r2):|
2r

e 2

where Z =

 [Yorig — Ypu| _op1
r=——"—""  r=—
O Orig O Orig
# Cp € [0,1] (higher is better)
&
# 0: no overlap

& Lattice setup: 123 x 4, Ny = 4 Wilson clover quark, Iwasaki gluon with 3 = 1.60
& Tr M~ baseline, Tr M ™" (n = 2,3,4) trained with Tr M ™" by 7= LightGBM.
& Data from “Ohno et al. PoS LATTICE2018 (2018) 174”
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A result on the multi-ensemble reweighting

K with ML results (P1) at the s 1% < Rip < 25%

s 25{10 10 10 10 10 10 10 10 10 10 1.0

& Bhattacharyya coefficient 244098 10 10 10 10 10 10 10 10 10 10
23410 10 10 10 10 10 1.0 10 1.0 10 10 1.00

2 22410 10 10 10 10 1.0 1.0 10 1.0 10 10

€T 21410 10 10 10 10 10 10 10 1.0 10 10

— _ 204099 10 10 10 10 1.0 1.0 1.0 1.0 1.0 10

CB (‘/L" T) =7 eXp 4(1 2 194099 1.0 1.0 1.0 10 10 10 10 10 10 10
( +r ) 184097 1.0 1.0 1.0 10 10 10 10 10 10 10 0.75

174099 10 10 1.0 1.0 1.0 1.0 1.0 10 10 10
16409 10 10 1.0 1.0 1.0 1.0 10 10 10 10
15410 10 10 1.0 1.0 1.0 1.0 10 10 10 10

2r

X 144095 10 10 10 10 10 10 10 10 10 10
Where Z = _— and m134099 10 10 10 10 10 10 1.0 1.0 1.0 10 0.50
1 _|_ /,n2 [5 124099 10 10 10 10 10 1.0 1.0 1.0 1.0 10
114098 10 1.0 1.0 10 10 1.0 1.0 10 10 10
‘ Y Y, ‘ .0 10 10 1.0 1.0 10 10 1.0 10
e — fok 10 10 1.0 10 10 1.0 1.0 10 10
r = Orlg Pl r = P1 10 10 1.0 10 10 1.0 1.0 10 10 0.25
. ? . 10 10 1.0 10 10 10 1.0 10 10
Uorlg UOrlg 10 1.0 1.0 10 10 1.0 1.0 10 1.0

10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 0.00

10 10 10 10 10 10 10 10 10

10 1.0 10 10 10 10 10 10 10
T T

# Cp € [0,1] (higher is better)

@ :
20 30 40 50 60 70 80 90 100
# 0: no overlap R (%)

& Lattice setup: 123 x 4, Ny = 4 Wilson clover quark, Iwasaki gluon with 3 = 1.60
& Tr M~ baseline, Tr M ™" (n = 2,3,4) trained with Tr M ™" by 7= LightGBM.
& Data from “Ohno et al. PoS LATTICE2018 (2018) 174”
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K with ML results (P1) at the s

A result on the multi-ensemble reweighting

1% < Rip < 25%

P 1 25{10 10 10 10 10 10 10 10 10 10 10
g Bhattacharyya coefficient 244098 1.0 10 10 1.0 L0 10 L0 L0 L0 LO
23410 L0 L0 L0 L0 L0 L0 L0 L0 10 1O 1.00
9 22410 1.0 1.0 10 L0 L0 10 10 10 10 1O
T 21410 1.0 1.0 10 1.0 10 10 1.0 1.0 10 10
_ _ 204099 10 10 10 10 10 10 L0 1.0 10 10
CB (‘/L" T) =Z eXp 4(1 2 194099 1.0 10 1.0 10 1.0 10 1.0 10 10 10
( +r ) 184097 10 10 1.0 10 1.0 10 1.0 10 10 10 0.75
174099 10 10 1.0 10 1.0 10 1.0 10 10 10
16409 10 10 1.0 10 1.0 10 1.0 10 10 10
15410 1.0 10 10 L0 10 10 L0 L0 L0 LO
2r X 14409 10 10 10 10 10 10 10 10 10 10
where 7 = — and m13409 10 10 10 10 L0 10 10 10 10 10 0.50
1+ 7n2 212409 1.0 1.0 L0 L0 1.0 L0 10 1.0 L0 L0
& 974oos 10 10 10 10 10 10 10 10 10 10
‘Y }7 ‘ 10 0 10 10 10 10 10 10 10 10 10
P — o 9 0 10 10 10 1.0 10 1.0 10 10
xr = Orig Pl r = P1 S 0 10 10 10 10 10 1.0 10 10 0.25
. K 7 0 10 10 10 10 10 1.0 10 10
O Orig O Orig 6 0 10 10 10 10 10 1.0 10 10
5 0 10 10 10 10 10 1.0 10 10
. . 4 0 10 10 10 10 10 1.0 10 10
“ CB e [0, 1] (hlgher 1S better) 3 10 10 10 10 10 10 1.0 10 10 0.00
2 0 10 10 10 10 10 1.0 10 10
* 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
20 30 40 50 60 70 80 90 100
% 0: no overlap Ryg %]
. -1 .
& 100 % original Tr M~ " mp drives &, x, S, K
1 . I
& Tr M~ dominates all cumulant definitions!
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Calculation of the cumulants A result on the multi-ensemble reweighting

K (k) with ML estimation at Rrg = 1 %

Ris = 1% (k¢ with kurt)

EREESEERRRRRL

M Original
<174 RWP1
RWP2
—1.76 1 o

0 20 40 60 80 100
Rrr (training set)

% At Rrr = 0%, no ML used — only 1% R g ®» very poor statistics!
# blue square: kurtosis with original dataset
@ orange triangle: kurtosis with ML estimation (P1)
@ red circle: kurtosis with ML estimation (P2)
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_ A result on the multi-ensemble reweighting
Reweighting curve of K at {Rip, Rrr} = {1%, 10%}

P1
144 P1 Band
= Original
194 Original Band
— P2
P2 Band
101 RWP1 points
B RWBS points
8- ! RWP2 points
P1
< B ORrG
61 [
4 B
2 B
0 B
_2 4

0.13576 0.13578 0.13'580 0.1?;582 0.1?;584
K
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Calculation of the cumulants A result on the multi-ensemble reweighting

Summary (1)

# We calculated cumulants of the chiral order parameters
& Using 100 % of original dataset of Tr M !
# and ML estimation results on Tr M " (n = 2, 3,4) with various
partial ratios (Rip, RTR)-
& In this setup, we found that the cumulants are calculated well even
with Rig =1 %.
» mp If this turns out to work well, then we can determine cumulants

(quark condensate, susceptibility, skewness, kurtosis) with
100+14+1+1

400
ML estimation.

= 25.75% of computing power for the case without

& Apply ML estimation even to Tr M -1
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[SENSTIEII OISRl A result on the multi-ensemble reweighting

Summary (2)

# We are currently exploring the possibility of reducing computing
power even further by applying ML estimation also to Tr M 1.

# This could potentially lower the requirement below 25.75 % of the
computing cost compared to the case without ML.

& Preliminary results are available from this setup.
# These will be lightly introduced here.

& For the method to be viable, similar performance must hold across
different lattice volumes and coupling constants. Testing of such cases
is in progress.

& In this case, Tr M~ (n = 1,2,3,4) are trained using PLAQUETTE and
RECTANGLE observables, and then combined to compute cumulants.
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Calculation of the cumulants (preliminary) reweighting with less computing cost

K with ML results (P1) at the x;: 5% < Rip < 50%

L Bhattacharyya Coefﬁment (note) 504 1.0 099 099 099 1.0 099 099 099 0.99
1.00
2 454 10 099 1.0 099 1.0 099 1.0 1.0 0.99
T
CB (ZE, T) =Z €exp _4 1 2 40098 099 099 10 099 10 099 099 098
( + r ) 0.75
354 1.0 099 099 099 099 1.0 099 097 0.99
2’)” 3301 10 099 099 10 099 099 099 0.99 099
where Z =4/—%5 and = 0.50
1 +r 2251 10 099 099 099 10 099 098 0.99
. ‘Yorlg —_ }77)1‘ r . O-Pl 204099 099 099 099 0.99 0.99 0.99 0.98 0.99 .
- O-Orlg ! - UOI‘]g 154 1.0 097 099 0.99 0.99 0.99 0.97 0.98 0.96
4 1.0 0.99 097 099 0.99 0.99
# Cp € [0,1] (higher is better) 0.00
54098 0.96 0.98 0.98 0.97 0.95
0 10 20 30 40 50 60 70 80 90 100
% 0: no overlap Ryg %]

& Lattice setup: 123 x 4, Ny = 4 Wilson clover quark, Iwasaki gluon with 3 = 1.60
& TrM ™" (n=1,2,3,4) trained with PLAQUETTE and RECTANGLE by /# LightGBM.
& Data from “Ohno et al. PoS LATTICE2018 (2018) 1747
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Calculation of the cumulants (preliminary) reweighting with less computing cost

K (k) with ML estimation at Ryg = 15%

Ris = 15% (k¢ with kurt)

—1.70 1

—1.721 lﬁ @ @ [E @ i i i _EE i i M Original
e —1.741 RWP1

~1.76 1 $| T rwe

—1.78 1

0 20 40 60 80 100
Rrr (training set)

% Rrr = 100%: entire LB set used for training ®» no bias correction!
# blue square: kurtosis with original dataset
@ orange triangle: kurtosis with ML estimation (P1)
@ red circle: kurtosis with ML estimation (P2)
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_ (preliminary) reweighting with less computing cost
Reweighting curve of K at {Rig, Rrr} = {15%, 20%}

P1
15.07 P1 Band
= Original
Original Band
12.54 P2
P2 Band
10.0 RWP1 points
’ B RWBS points
! RWP2 points
754 { P1
e B OoRrG
[ )
5.0 1
2.5 1
0.04
—2.5 - - r T T T
0.13576 0.13578 0.13580 0.13582 0.13584
K
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Summary & To-Do List

Summary and To-Do List

# Case 1: Cumulant estimation using the original Tr M ~! data and
training Tr M~" (n = 2,3,4) from it
# Required computing power reduced to about 25.75% of the full
cost.

% Case 2: Training Tr M ™" (n = 1,2,3,4) simultaneously with
PLAQUETTE and RECTANGLE
# In some preliminary datasets, the required computing power
dropped below , and in certain cases reached as low as ~20%.
# Bias correction seems to play an important role for
derived quantities such as cumulants.

& Expand the analysis with other gauge ensembles.
# Vary the lattice volume V = N§’ x Nt and the lattice spacing a.

& The paper will be submitted soon, along with the public release of
&sDeborah,jl. Please stay tuned!
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Thank you very much!
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m (preliminary) reweighting with less computing cost
K with ML results (P1) at the x;: 5% < Rip < 50%

# Left: = map of Cp(x,r); Right:

50001 0.18 0.4 024 0.04 0.17 012 027 0.04 0.03
454006 0.17 0.03 0.16 0.06 0.17 0.04 0.03 0.02 0.05 3.0
40404 00 013 003 023 002 019 024 032 048
354019 028 0.4 029 0.13 0.06 0.13 0.44 0.19 0.39 [k
2
3 304007 003 007 008 014 019 01 004 011 0.02
m
;25-0,11 0.08 0.03 0.06 0.06 0.9 034 0.02 08 0.11 i
20027 0.01 0.06 0.08 0.17 0.14 0.05 0.33 0.0 029 1
154 0.0 0.04 024 0.14 024 0.23 043 0.28 05 127 05
104002 031 004 04 003 012 068 0.08 1.04 048 0
54024 L13 0.09 0.17 0.18 0.11 0.39 0.27 08 0.13
0 10 20 30 40 50 60 70 80 90 0 10 20 30

& When z =

°) [Yorig — Yp1l/oong # 0, #® When r = op1/00rg ~ 1, the
the Yp; captures Yo, well.

Ryg 4

Cumulant estimation via ML

r map of the same.

114 111

40 50 60 70 80 90 100
Ryg %

op1 captures oorig. Well. (note)

21 January Reiwa 8th
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(preliminary) reweighting with less computing cost

K with ML results (P1) at the x;: 1% < Rip < 25%

# Bhattacharyya coefficient
1.00
Co(z,1) =2 =
B(z,7) = Z exp|—
’ 4(1 4 r2) 0.75
2r S
where Z =4/—%5 and = 0.50
147 &
Yorie — Y
o= Yo = VPl op1
OOrig OO0rig
# Cp € [0,1] (higher is better) 0.00
& (45 : 0.47 0.45 [ 0.69 (l. 0:59
0 10 20 30 40 50 60 70 80 90 100
# 0: no overlap R (%)

& Lattice setup: 123 x 4, Ny = 4 Wilson clover quark, Iwasaki gluon with 3 = 1.60
& TrM ™" (n=1,2,3,4) trained with PLAQUETTE and RECTANGLE by /# LightGBM.
& Data from “Ohno et al. PoS LATTICE2018 (2018) 174”
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_ (preliminary) reweighting with less computing cost
K with ML results (P1) at the s 1% < Rip < 25%

# Left: = map of Cp(x,r); Right: r map of the same.

011 0.08 0.03 0.06 0.06 0.19 034 0.02 08 0.11
039 042 0.23 052 0.16 026 0.9 0.08 0.31 0.05
0.02 0.03 0.25 0.34 0.09 009 046 027 0.05 0.07
0.17 0.07 015 008 0.01 0.11 028 0.25 0.0 [1.13
0.01 017 0.1 02 0.3 011 016 039 0.34 0.66
027 0.01 0.06 0.08 0.17 0.4 005 033 0.0 0.29
034 058 0.33 043 0.21 0.81 0.5 0.77 0.02 095
048 0.04 0.07 0.31 0.08 028 0.5 0.36 0.38 0.68
027 014 0.32 031 024 018 031 045 0.09
059 0.03 001 022 0.09 007 03 0.65 115
0.0 004 024 014 0.24 0.23 043 028 0.5
0.66 0.27 0.39 0.37 027 0.8 044 0.08 0.23 0.06
02 042 014 0.16 0.1 0.11 051 0.02 054 11
028 0.2 0.36 0.61 035 015 045 0.23 0.62 03
042 018 015 0.32 024 041 003 0.2 [1.28 0.73
0.02 0.31 0.04 04 003 012 0.68 0.08 104
H0.04 045 0.14 0.8 014 072 0.23 041 0.07
0.02 0.08 04 025 048 009 026 032
015 0.02 0.31 0.11 0.39 021 [13] 0.54
1.0 0.36 059 062 008 0.69 0.3 1.03
0.09 017 018 0.11 039 027 08
083 0.28 0.33 0.01 0.27 088
1.0 0.35 PG 0.73
0.6 (138 055 0.42
119

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Reg [%] Rg 7]

% When z = [Youg — Yp1|/0omng =0, #® When r = op1/00rig. = 1, the

the Yp1 captures Yo, well. op1 captures oorig. well.
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Deborah.jl

Introduction of fsDeborah.jl (1)

% We developed deDeborah.jl for this work.

&5 Deborah.jl

Phase 1: Machine Learning-Based Estimation of Certain Observables (7 M)

Esther.jl

Phase 2: Cumulant Calculation at Certain Ensemble using ML-Based Results

_ Cumulant estimation via ML 21 January Reiwa 8th 5/18



Deborah.jl
Introduction of feDeborahjl (2)

+ &eDeborah.jl
@ Deborah. jl is an Estimation tool for Bias-cOrrected Regression
Analysis with Heuristics.

# Phase 1: Machine learning-based estimation of certain observables
(In this work, Tr M ™", n =1,2,3,4)

& Esther.jl
@ Esther. jl is a Summary Tool for Higher-order cumulants through
Estimation via Regression.
# Phase 2: Cumulant calculation at certain ensemble using ML-based
results

# Miriam.jl
# MultI-Ensemble Reweighting & Interpolation Analysis with
Miriam.jl
# Phase 3: Multi-ensemble reweighting using ML-based results
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N CLIOGISl  Deborah.jl
What sDeborah.jl can do (1)

& Flexible selection of features

# Let X represent the input observable(s), and Y the output
observable.

¢ In machine learning terminology, X corresponds to the feature(s).

+ dsDeborah.jl supports flexible feature selection, allowing users to
choose the number of input features as desired.

¢ er) You can do {X;, X2, X3, X4, X5, X¢, X7} — Y learning.

Benjamin J. Choi (CCS) Cumulant estimation via ML 21 January Reiwa 8th
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Deborah.jl
What eDeborah.jl can do (2)

& Freely choose among various regression models
Baseline: Assume X =Y = Y, and perform only data splitting
into subsets.
@ Random: Intentionally generate Gaussian noise as 7 X 7 A (u = 0,
o ~ jackknife error of original Y")
LASsO and RIDGE regression via JuliaAI/MLJ. jl
< LightGBM(E™ Microsoft) via JuliaAI/MLJ.jl or PyCall.jl
7 LightGBM(B® Microsoft) via JuliaAI/MLJ.j1 with additional
hyperparameter tuning (I call this the MIDDLEGBM mode.)
¢ num_iterations: Total number of boosting rounds (controls
overall model complexity) — 2 < njier < 100
¢ learning rate: Shrinks the contribution of each tree (lower =
slower but safer learning) — 0.1 < a < 1.0
¢ min data_in leaf: Minimum number of samples in a leaf node
(prevents overfitting) — 2 < ngata < 20
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Deborah.jl
What Esther. j1 and Miriam. jl can do

% Esther.jl collects ML-estimated Tr M~" (n = 1,2,3,4), and
computes cumulants such as the quark condensate, susceptibility,
skewness, and kurtosis for a single ensemble.

@ Miriam.jl aggregates Tr M ™" (n = 1,2,3,4) data across multiple
ensembles, enabling per-ensemble cumulant analysis and
multi-ensemble reweighting by concatenating the results.
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Measurement Information

ID N§ x Np K N
L12T4b1.60k13575 123 x 4 0.13575 20000
L12T4b1.60k13577 123 x 4 0.13577 20000
L12T4b1.60k13580 123 x 4 0.13580 | 20000
L12T4b1.60k13582 123 x 4 0.13582 | 20000
L12T4b1.60k13585 123 x 4 0.13585 20000

# Ohno et al. PoS LATTICE2018 (2018) 174
# HW: Dakforest-PACS system (Boku et al. arXiv:1709.08785)
% SW: BQCD program (Haar et al. EPJWoC 175 14011 (LAT2017))

& N = 4 Wilson clover quark action, Iwasaki gauge action
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Measurement Information
Correlation map between observables (12T4b1.60k13575)

TeM-!

TeM?

TrM 3

TrM—*

Plaquette

Rectangle

Polyakov loop

1.00
0.976 L 783 -0.957 -0.961 -0.916
0.75
0.976 d 0.991 .83 983 -0.985
10.50
0.955 0.991 d .89 -0.971 -0.971 10.25
0.894 d -0.805 L 40.00
-0.971 : ; 0997 0. 1-0-25
. —0.50
-0.961 0.98¢ -0.971 Y 0.997 d 0.929
—0.75
-0.916
—1.00
” » 7 > & N3 R
§ S S
S 0y > 2D $ & §
& & & & & & S
o 3 &
) IS &
&
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Measurement Information
Why N; = 47

& In earlier Ny = 3 studies, the critical pion mass differed between
staggered and Wilson quarks, leaving the CEP location uncertain.

& Np = 4 still expects a first-order chiral transition, with possibly larger
pion mass at the critical endpoint m» lower cost.

& Also avoids the rooted-determinant issue, enabling a clean comparison
between staggered and Wilson types.
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Approximated value of a

Fit result of Wilson flow scale parameter at zero T'

0.6624 T T T T T T
raw data T' =0
0.6620 |- fit functionf(x) .
interpolation T #0 @
% 0.6616 .
k 0.6612 L f(mga) = co + c1 mga 1
co= 0.6927(13)
0.6608 |k ¢1 = —0.2620(110) |
x2/d.o.f. = 1.0530
0'6604 1 1 1 1 1 1
0.116 0.117 0.118 0.119 0.12 0.121 0.122 0.123
mqa
_ 3 —
® a~ 0.22175 fm (k = 0.13575) ® V=16 x32, 5 =160
® a~0.22171 fm (k = 0.13577) % Here, we use
% a~0.22163 fi = 0.13580 1
¢ m (r ) . —1.347(30) GeV
# a~0.22159 fm (k = 0.13582) Vito
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R s YOl Approximated value of mps
Fit result of pseudoscalar meson mass at zero T'

1.87 T T T T T T
156 L f(mga) = dymga + do (mqa)2 i
dy = 21.77(47)

% 1.85 | dy = —53.64(393) y
[9p] 2 —
g 1.84 | x*/d.o.f. =1.13 i
= 183 r raw data 7' =0 i

182 L fit function f(z) ]

’ interpolation 7 #0 @
1-81 1 1 1 1 1 1
0.116 0.117 0.118 0.119 0.12 0.121 0.122 0.123
mya

mps ~ 1.214 GeV (k = 0.13575
mps ~ 1.213 GeV (k = 0.13577

(K ) # V=16%x32 8=1.60

G )
mps ~ 1.211 GeV (k = 0.13580)

G )

(k

& In summary, we have

~ 1.21
mps ~ 1.209 GeV (k = 0.13582 mps GeV

= 0.13585) in these 5 datasets.
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Quark mass

Quark mass

¥ We obtain k. (kappa critical) from

ke(gg) = 0.125 4 0.003681192 g5 + 0.000117 (g3)°
+0.000048 (g2)% — 0.000013 (g2)"

where g2 = = is the coupling constant.

8

& With 8 = 1.60, we have k. ~ 0.14041.

& We obtain quark mass mya with
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Computational gain

Example of computational gain

# To give one concrete example from meas. logs of the BQCD program,

K Total [h] | AL CG [h] | 1 TrM " CG [h]
0.13575 65.91 59.12 3.94
0.13577 65.97 59.15 3.94
0.13580 65.51 58.66 3.91
0.13582 64.44 57.56 3.84
0.13585 63.35 56.58 3.77

® V =163 X 4, Neons = 5500
# For a single gauge conf., CG is called 150 times, where Ng. = 10.
@ For a single determination of Tr M ", it takes about 4 hours.
% For the GBDT regression on ¢sDeborah,jl (on a normal laptop),
# Time for model training: ~ 3 seconds
% Time for Npg = 1000 bootstrap resampling: ~ 2 seconds
« mp negligible compared with CG time on supercomputer.
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R SIXOl  Optimal boosting stage
Optimal boosting stage

3.0F

25

20F

L2 loss [x107"]

1 I 1 —

10 20 30 40 50 60
boosting stages (iteration)

& x-axis: boosting stage (number of iteration)
@ y-axis: L2-loss for machine learning X — Y

Nrr )
(L2 loss) = Z Y; - v")
i=1
& optimal boosting stage ~ 40
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N - YOOl \isualization of decision tree
Visualization of decision tree

Tr M~ < 10530
Yes & & No
TrM~' < 1.0517 TrM~' < 1.0549
Yes & $ No  Yes § ¥ No
Tr M2 =1.0248 TeM~2=1.0266 TrM~" < 1.0543 Tr M~ < 10560
Yes @ § No Yes § Y No
TrM—2=1.0278 TrM~2=10286 TrM~2=1.0204 TrM~2=1.0305

% An example with X = TrM~1, Y = Tr M2 for X — Y learning
& Example for a boost stage.
& Depth of tree = 3

# Number of leaf (green cell, Y = Tr M ~2) = 6
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