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Nuclear EoS

Crucial for understanding the evolution of
early universe, neutron star and properties
of QGP

Also constrains
and non-perturbative QCD

One of the key physical objectives of heavy-
ion collision experiments

DL for QCD EoS given by Prof. Long-Gang
Pang tomorrow.
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QCD equation of state

o r T

16 [ -
non-int. limit

- « T<200 MeV: QCD equation of state is well
described by HRG.

3p/T4 8
P i « T > 200 MeV: nuclear matter transitions into
g/T4 N
the QGP phase.
3s/4T3 -
) « Can we reconstruct?
T [MeV] * How?

0llIlIlIIlllllIIIllllllIIlI

130 170 210 250 290 330 370

HRG model: the hot and dense QCD matter is
considered as non-interaction hadrons.
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HotQCD, Phys Rev D 90, 094503 (2014)



Quasi-particle method
e —iges
real Par“’icle . ¢ A

real herse quas horse

quasi particles of this panic':ular s'ystem. Many different types of systems of
interacting particles may be described in this manner, and in general we have
‘coat’ or ‘cloud”
of other particles

Sometimes this same equation is stated in a more powerful terminology
coming from quantum field theory:

real particle + quasi particle. ©.1)

‘dressed’ or ‘clothed’

‘bare’ particle + ;‘;‘?:;: :g: ?:e;;;lz:;?zle'do'rpanic]e 0.2)
PZ
* Absorb the interacting potential into the mass. H=T+ Vs = ot Vess
« We construct a weakly interacting quasi-parton-gas model, which is an , real
effective theory for strongly coupled QGP. H = P
2quuasi
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A Guide to Feynman Diagrams in the Many-Body Problem(1992), R.D.Mattuck



Traditionally vs DL

« It will introduce a strong prior bias
e [tis intractable to determine two or more unknown

functions
prior equation e e e fitting
(Parameterization) ) 4872 +«——— experimental data
R feed back

(aT/T.+b)?
1+4ce—d(1g# )=

(11N, — 2Nf)1n[

AH

Input Layer 1 Layer 2 /I Layer L  Output
xl \ —_— yl
x2 %

BN ;

Input Output
Layer Hldden Layers Layer
Universal approximation theorem: Multilayer feedforward networks are universal approximators,1989. 5/21

Automatic Differentiation: PyTorch, Tensorflow,Jax.



The framework of DNN:
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FPL, Hong-Liang L4, Long-Gang Pang & Guang-You Qin, Phys.Lett.B 844 (2023), 138088



The framework of DNN

v' Using 25-point Gaussian quadrature |
to compute the partition function.
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The framework of DNN
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Result

PHYSICAL REVIEW D 90, 094503 (2014)
Equation of state in (2 + 1)-flavor QCD
A. Bazavov,I Tanmoy Bhattacharya,2 C. DeTar,3 H.-T. Ding,4 Steven Gottlieb,5 Rajan Gupta,2 P. Hegde,4

U.M. Heller,6 F. Kalrsch,7'8 E. Laermann,8 L. Levkova,3 Swagato Mukhelrjee,7 P. Petlreczky,7 C. Schmidt,8
C. Schroeder,9 R.A. Soltz,g W. Soeldner,'o R. Sugar,” M. Wagner,5 and P. Vranas’

(HotQCD Collaboration)

Physics Letters B 730 (2014) 99-104

Contents lists available at ScienceDirect

;,;:wmi* Physics Letters B

v )' ¥

ELSEVIER www.elsevier.com/locate/physletb

Full result for the QCD equation of state with 2 + 1 flavors ® R

Szabolcs Borsanyi?, Zoltin Fodor -, Christian Hoelbling?, Sandor D. Katz %9-*,
Stefan Krieg®P, Kalman K. Szabo ¢

Training data : HotQCD and WB Lattice QCD.

F— Neural network
- - Lattice

HotQCD
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Result

» QP is based on the mean field theory of equilibrium
or near-equilibrium systems

2 2
mg + M, 4

N2 -1
%(NC + %Nf) + S(NC

)

» The relaxation time 7; : Assuming that after being
perturbed, QP will return to equilibrium from a non-
equilibrium state in a specific time.
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The framework of DNN: uz > 0

output

~—~
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FPL, Long-Gang Pang & Guang-You Qin, Phys. Lett. B 868 (2025) 139692



The training data&result
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Result
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The framework of DNN: 4D DLQPM

yTH = (  —
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FPL, Long-Gang Pang & Guang-You Qin, in preparation



Result
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2D DLQPM: T and ug-dependent masses.
4D DLQPM: T and ug o s-dependent masses.

The 4D DLQPM calculations demonstrate
consistency with LQCD predictions.
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Result
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Result
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The DLQPM-calculated QCD EoS demonstrates agreement with the T'-expansion results in both
temperature-dependent behavior and numerical values.
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Result
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The outputs of DLQPM can serve as inputs for relativistic hydrodynamic evolution. 20/21



Summary
» ML/DL methods can be used for inverse problems in NP:

the QCD equation of state
 We use three neural networks to represent the quasi-particles masses can
well reproduce the lattice QCD EoS at zero chemical potential.

« We can calculate the entropy density at finite baryon chemical potentials,
which is consisted with Lattice QCD result using Taylor expansions.

 The QCD equation of state at finite chemical potential can be used in
relativistic hydrodynamics simulations to study the QCD matter produced in
the BESII region.

Thank tou for Your attemtion! 21/21



