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String Landscape

String theory is unique,
but admit many solutions.




Compatification

149 dimension string theory

)/

6d space X, L
Compactification

flux parameter m € Z°.

143 dimension field theory

Depending on choice of X and 77, a lot of vacua are obtained

though the number is finite [YH, Montero, Vafa, Valenzuela '21].


https://inspirehep.net/literature/1957137

Choice of flux

There are cycles, where we can insert “magnetic flux”.

Freedom to choose flux
Quantization number.

E.g. 10 choice of flux, AL
and #(cycle)=100, —
then we have L> 5
O(10'%) possibilities

[Douglas ‘03].

(Choice of CYs) X (Choice of fluxes) = (Choice of models) .
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https://inspirehep.net/literature/615585

Phenomenologically relevant vacua are extremely rare.
Most vacua have negative cosmological constant, or runaway solution.

So far, we do not find any solution close to our universe.
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Setup

6d space:
“degree 18 hypersurface in C[P’il,l,@g with discrete symmetry Z¢ X Z 3"

From 4d EFT point of view,

we just have potential V for 3 complex scalar fields, (T, /i, Zz),

and flux parameters (ml, My, M3, Ny, Ny, n3) :



Potential V

V=YV (T, 2, 2Ly, my, My, Ms, Ny, Ny, n3).

- Solution of string theory is (local) minimum of V.
- V' is positive semidefinite.

- SUSY solution: V=0, SUSY solution: V > 0.

- Many solution depending on integers m, 5 3, 1y 5 3,

under condition ml2 + m22 + m32 + n12 + n22 + n32 < 276.

Our work [YH, Uematsu, Yamazaki, to appear]-

1: Scan of O(10%) vacua.
2: Test of effectiveness of machine-learning technique for regression tasks.
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1: Scan of O(10°) vacua.

1: We perform minimization by gradient descent method.

#(non-SUSY vacua) #(SUSY vacua)
[Martinez-Pedrera+ ’12] 500, 865(including unphysical ones)
Dubey-+ *23] O(30,000)
Krippendorf+ '23] 33, 619
Chauhan "25] 179,445, 394

This work 12, 636, 619 32,273



https://inspirehep.net/literature/1208043
https://inspirehep.net/literature/2668029
https://inspirehep.net/literature/2691935
https://inspirehep.net/literature/2865868

count

Potential Value

Histogram of V (Im(Z_i) > 1.0, bin width = 1.0e+01)

Histogram of V (Im(Z i) > 1.0, bin width = 1.0e+00)
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Starting from these, dS vacua could be realized

100

based on KKLT[Kachru+ ‘03]/ LVS[BaIasubramanian+ ‘05] (V =0 case)

based on [Saltman, Silverstein ‘04] (0 < V << 1 case)
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https://inspirehep.net/literature/612481
https://inspirehep.net/literature/676185
https://inspirehep.net/literature/644701
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2. Machine-learning regression task

Input features:
X = {V, T, Zl’ Zz, mi, ni}.

ye{V,Rer,Imr,ReZ,ImZ, ReZ,, Im Z,, m;, n;}
We remove y from X and train a regression model to predict y

from the remaining features in X.

A non-linear map f : X\{y} — yis a target for learning.
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Test of effectiveness

Data set is randomly split into training set (80%) + test set (20%).

We compute coefficient of determination R? to assess quality of fit.

true target values {y;}_, v.s. model predictions {y;}'_;.

R2 —1 2?21 (yl _ j}i)z
. p )

Zizl i —y)*
Target Rgrain R%est
V 0.77  0.77
m1 0.88  0.88
Mo 0.00  0.95
ms 0.61 0.61
N1 0.80  0.85
N2 0.50  0.55
n3 0.62 0.62

1 n
mean value y = — 2 V;
ot

R? = 1: Perfect fit.

R? < 0: Worse than baseline (§; = ¥ for all i).
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Summary

Search of flux vacua in string theory.

- 0(10°) solutions are generated by gradient descent.
- Statistics of solutions are analyzed, and candidates for

dS universe are identified.
- Machine-learning for regression tasks.
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