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@ In amplitude calculations, the number of Feynman diagrams
grows fast when n becomes large.

@ In CHY-frame, an amplitude is written using a combinatorial
integrand.

@ Choose the poles (factorization channels) we want, and build the
CHY integrand.

Key idea
The pole relations form a fixed message-passing graph (CoNN).
We could solve it with integer updates exactly.
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Al4+HEP angle: an exact solver from an NN architecture

Common ways to exact results

o Large exact linear algebra (big
matrices)

o Finite fields + reconstruction

@ High-precision floating numbers
+ truncation

@ Use the CHY pole hierarchy
as an NN-like architecture.

@ Run integer message passing
(forward + backward
updates)

o Output integer exponents
K(sjj) = exact integrand
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CHY Formula

Tree-level n-point amplitude

[17, dzi
- [ =% g7
A= | st o)) 6 1)
o Scattering equations: &, =}, ;22 = 0.

o Kinematics: s, = 2p,-pp and sa = (3,24 Pi)*-
@ The measure is the same in the CHY formula. The theory choice
is in the integrand Z(z).
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Integrand Building Blocks

Parke—Taylor factor

1 2
1
PT(a) =
ZoqganZanas * ° t Zapon
6 3
e BAS: PT(«a)PT(5)
e YM: PT(«) Pf'(W)
o Gravity: Pf'(V)Pf'() 5 4
Graph rule of thumb: each factor (z;)™1 is a Figure: Graph view of a BAS integrand.

(solid) edge (i, j).
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Pole Master Formula

Pole order from graph counting

X(A) = L[A] - 2(]A] - 1)

Here A is a subset of particle labels.
L[A]: number of internal edges in subset A.
X(A) = 0 gives a simple pole 1/s4 (physical factorization).

X(A) > 0 gives a higher-order pole; x(A) < 0 gives no pole.
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Generalized Pole Degree K(sa)

Definition

K (SA) = Loolid [A] — I ezl [A]

L, _
\ e Solid edge: factor (z;)~! in the
G »3

N ) denominator.
AN i o Dashed edge: factor (z;)™ in the

5 4 numerator.
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Generalized Pole Degree K(sa)

Definition

K(sa) = Lsotid[A] — Ldashed[A]

@ Relation to pole order:
X(A) = K(sa) —2(|A| - 1).

@ Converts pole constraints
into integer variables.

K (8156) = Lyoua[{456}] - L [{456}]=4—1=3
X (816) = K (s156) — 2([{456}| —1) =3 —2x (3 —1)=~-1
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Recursion and Hierarchy

For |A| > 3,

1
R
|BI=IA|-1

) Example: K(5123) = K(Slz) =+ K(513) + K(523).
@ The inputs are the two-particle values K(s;;). All higher K(s;)
are computed from them by recursion.
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Recursion and Hierarchy

o Example: K(5123) = K(Slz) + K(513) + K(523).
@ Two-particle values K(s;j) are the "bottom-layer” degrees of
freedom.

K (51305) =2

K (s1) =14 K (s1)=2 K (s165)=—1 K (s308)=—1 deg(s)) =4

> 2 >~

Ke=2 (K@o=1 Ke9=0 Keod=1 Ke)=0 Ke=—2 Ked=0 K@)=0 Ke=0  K()=1

Figure: Hierarchy from the recursion.
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Simplicial Complex View

Combinatorial NN

The pole hierarchy is a discrete message-passing network (a
combinatorial NN).

@ Vertices: single particles.

o Edges: two-particle channels.

@ Triangles: three-particle
channels, and so on.

@ Recursion sends info upward;
constraints send it downward.
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Inverse Problem

Input and Goal

Input: a desired set of poles {sa} = fixed constraints on K(sa).
Goal: find an integrand whose K values satisfy all recursions and

constraints.

o Feasibility is an integer consistency problem.
e Output integrand (schematic): Z(z) = ]_[,-<J-(z,-j)_K(5"f).
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Discrete Backpropagation

) Backward propagation
Upward propagation i ) )
o If propagation hits a fixed

@ Modify a lower-level K value. .
constraint,

@ Propagate changes to

@ redistribute updates to other
supersets.

nodes,

@ Restore all recursion relations. . .
@ keep all constraints satisfied.

@ fix

4
@ @ O 0 © @, ()
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Algorithm

@ Choose a target subset A and set AK(sa) = —1.
@ Propagate upward to keep all recursion relations.

o If we hit a fixed node, do a backward update: change other nodes
to compensate.

@ Stop when all constraints are satisfied.

Updates are integer-valued and exact.
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6-Point Example: Pick Pole si»

Consider a six-point CHY integrand:
1

2 2 2 2
2122237234 256216 245246215

le =
which produces five cubic Feynman diagrams:
1 1 1 1 1
+ +
512534556 5123512556  S123523556  S156523556 5156534556

To pick pole s12, we need to retain poles s12, s34, Ss56 and s123 while
removing poles sp3 and sis6.
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6-Point Example: Pick Pole s;» - removing poles sy3

51,23 51,2,4 51,25 S1,2,6 S1,3,4 51,35 S1,3,6 S1,4,5 S1,4.6 51,56 51 Sz 53 Sa Ss. Sg
a 2 3 3 2 1 1 2 2 4 4 a 4 a 4 4
S1,2 513 S1,4 51,5 51,6 52,3 52,4 52,5 52,6 53,4 53,5 53,6 54,5 54,6 55,6
2 0 0 1 1 2 0 0 o 2 o 0 1 1 2

Figure: Initial pole hierarchy (two layers). Bottom: two-particle poles; top: single- and
three-particle poles. Gray lines show recursion dependencies. Red nodes are fixed (keep
them).
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6-Point Example: Pick Pole s;» - removing poles sy3

S1,23 | S12.4 S1,2,5 S1.2,6 S1,3.4  S135  SL36 S1.4,5 S1,4,6 S1,5.6 51 S2 S3 Sa S5 Se.
4 2 3 3 2 1 1 2 2 4 : / 4 < 4 4
e
512 513 S1a S5 S16 523 S2.4 Sy5 S2.6 S34 S35 Si6 Sas Sa6 Ss6
2 0 ] 1 1 1 0 0 0 2 0 ] 1 1

Figure: Step 1 (forward update): set AK = —1 at sp3 (green). Blue arrows show updates
to supersets. We hit fixed nodes (red).
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6-Point Example: Pick Pole s;» - removing poles sy3

S1,23 | S12.4 S1,2,5 S1.2,6 S1,3.4  S135  SL36 S1.4,5 S1,4,6 S1,5.6 51 S2 S3 Sa S5 Se.
4 2 3 3 2 1 1 2 2 4 4 4 4 4 4 4

-«
S1.2 51,3 S14 51,5 516 S2,3 S2,4 52,5 52,6 S3,4 53,5 S3.6 Sa,5 Sa,6 55,6
2

Figure: Step 1 (backward update): when a fixed node is hit, move the change to other
nodes (red arrows). Here we increase K(s13) and K(s24) by +1.
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6-Point Example: Pick Pole s;» - removing poles sy3

51,23 51,2,4 51,25 51.2,6 S1,3,4 51,35 51.3,6 S1,4,5 51,46 51,56 51 S2 53 Sa S5 S
4 3 3 3 3 2 2 2 2 4 4 4 4 4 4 4

S12 S13 S1,4 S15 S1,6 S2,3 S2,4 S2,5 S2,6 S3,4 S35 S35 Sa,5 Sa6 Ss,6
2

Figure: Step 2 (forward update): propagate the changes from s13 and sp4 upward (blue
arrows) and update their three-particle supersets. Fixed nodes are hit again.
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6-Point Example: Pick Pole s;» - removing poles sy3

51,23 S12.4 5125 51,26 S13.4 51,3,5 5136 51,4,5 S1,4.6 51,5.6 S1 S2 S3 Sa S5 Se.
a 4 4
Sa.6 S5.6
1 2

Figure: Step 2 (backward update): adjust K(s14) by —1 (red arrows) so all recursion
relations stay true while fixed nodes remain unchanged.
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6-Point Example: Pick Pole s;» - removing poles sy3

$123 ) S124  S125 5125 s34 5135 5135 5145 5145 5156 51 s 53 Sa s5 S6
2 B 2 a 4 4

2,5 52,6 53,4 53,5 53,6 54,5 Sa,6 55,6
2 1 1 1 1 1 1 0 0 2 0 4 1 1 2

Figure: Step 3 (forward update): propagate once more. Now the pole s3 is removed and
all constraints are satisfied.
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6-Point Example: Pick Pole s; - remove pole sis54

S1,23 | S124  Su25  S126 51,34 S135  S136 5145  S1L46 | SL56 S1 S2 S3 Sa Ss S6
4 2 3 3 2 2 2 1 1 3 4 4 4 4 4 4
S12 | Su3 S14 S15 S16 S2.3 S2,4 S2.5 52,6 S3,4 S3,5 S3.6 Sa,5 Sa,6 S5.6
2 1 -1 1 1 1 1 [ 0 2 o 0 1 1

Figure: State after removing sp3. Red nodes are fixed. The next target pole is si56 (green).
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6-Point Example: Pick Pole s; - remove pole sis54

51,23 51,24 S1.2,5 51,26 51,34 5135 51,36 51,45 51,46 51,56 51 S2 S3 S4 S5 S
a 2 3 3 2 2 2 1 1 3 4 a 4 a 4 4
S12 513 S1,4 515 51,6 52,3 S2,4 52,5 52,6 53,4 53,5 53,6 54,5 Sa.6 55,6
2 1 1 [ 1 1 1 0 0 2 0 4 1 1 2

Figure: Remove sis6: start with a backward/downward update (red arrow) to the first layer.
Choose s15 and set AK = —1 there.
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6-Point Example: Pick Pole s; - remove pole sis54

51,23 51,2.4 51,25 51,2.6 51,34 51,35 5136 51,45 S1,4,6 51,56 S1 52 53 Sa S5 Se
4 2 2

Figure: Forward update from si5 (blue arrows): update its three-particle supersets. Fixed
nodes s; and s5 are hit (red).
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6-Point Example: Pick Pole s; - remove pole sis54

5123 | Si24  Su25  Su26  SL3a4  SL3s  SL36  SL4s  SL46  SL56 B s2 S5 Sa S5 S6
4 2

Figure: Backward update (red arrows): increase K(s14) and K(sp5) by +1 to keep fixed
nodes unchanged.
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6-Point Example: Pick Pole s; - remove pole sis54

51,23 S12.4 5125 51,26 S13.4 51,3,5 5136 51,4,5 51,46 51,5.6 51 S2 53 Sa S5 Se.

Figure: Forward update (blue arrows): propagate changes from si4 and sy to their
supersets. Fixed nodes sy and s are hit.
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6-Point Example: Pick Pole s; - remove pole sis54

51,23 | S12.4 W S1.2,6 S1,3.4 S13.5 S1.3,6 S14,5 Ss. 3
4 3 4 4
—
51,2 513 S1.4 515 S16 52,3 S2.4 52,5 52,6 53,4 535 53,6 54,5 Sa,6 Ss5.6
2 1 4 0 1 1 0 1 0 2 0 0 1 1

Figure: Backward update (red arrows): decrease K(sp4) by —1 to resolve the conflict while
keeping fixed nodes unchanged.
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6-Point Example: Pick Pole s; - remove pole sis54

51,23 S1.2.4 51,25 51,26 51,34 5135 51,36 51,45 51,46 51,56 S1 S2 S3 S4 S5 S6
4 2 3 4

\

Figure: Final forward update: propagate from sps. Now all constraints are satisfied, and
both s;3 and si56 are removed.
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6-Point Example: Pick Pole si»

The algorithm stops when all constraints are satisfied.
We obtain the modified CHY integrand:

1

212221321622322523?424524625?6

lg =

It gives:

1 1
+
512534556  S123512556
In this example, both terms contain the desired pole si5.
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8-point example (harder case)

Three-Layer Network Structure

8-point amplitudes require:
@ Layer 1: Two-particle poles
@ Layer 2: Single- and three-particle poles

o Layer 3: Four-particle poles

What changes at 8 points:
@ More constraints
@ More forward /backward updates

@ The method still finds an integer solution in this example
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8-point example (harder

cs, Ningxia University)

CHY and Combinato

| Neural Networks

S123.8
s1238
S123.6
s123.7
s1238
S12.45
S12.46
S12.47
S12.48
s1256
S1257
s1258
s12.67
S1268
s127.8
S13.45
S13.46
s13.47
S13.48
s135.6
S1357
S1358
s13.67
S13.68
51378
Suas6
SL457
S145.8
SL4.67
S1468
S147.8
Sus.67
s15.68
sus8

S167.8



Conclusion

© CoNN viewpoint: The CHY pole recursion gives a fixed
message-passing graph (simplicial network).

@ Integer message passing: Integer message passing is an exact solver
on this graph. It builds the integrand and can keep/remove chosen
poles.

© Outlook: Extend to more points, and study higher-order poles and
loops.
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Conclusion

Thank you for your attention!
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