
Exact CHY Integrand Construction Using
Combinatorial Neural Networks and

Discrete Optimization

arXiv:2508.02248

Simeng Li
lisimeng1@stu.nxu.edu.cn

School of Physics, Ningxia University

Li (School of Physics, Ningxia University) CHY and Combinatorial Neural Networks 1 / 34

mailto:lisimeng1@stu.nxu.edu.cn


Outline

1 Motivation

2 CHY Formalism and Poles

3 Pole Hierarchy as a Network

4 Discrete Algorithm

5 Examples

6 Conclusion

Li (School of Physics, Ningxia University) CHY and Combinatorial Neural Networks 2 / 34



Motivation

In amplitude calculations, the number of Feynman diagrams
grows fast when n becomes large.

In CHY-frame, an amplitude is written using a combinatorial
integrand.

Choose the poles (factorization channels) we want, and build the
CHY integrand.

Key idea

The pole relations form a fixed message-passing graph (CoNN).
We could solve it with integer updates exactly.
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AI+HEP angle: an exact solver from an NN architecture

Common ways to exact results

Large exact linear algebra (big
matrices)

Finite fields + reconstruction

High-precision floating numbers
+ truncation

Our route

Use the CHY pole hierarchy
as an NN-like architecture.

Run integer message passing
(forward + backward
updates)

Output integer exponents
K (sij) ⇒ exact integrand
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CHY Formula

Tree-level n-point amplitude

An =

∫ ∏n
i=1 dzi

vol(SL(2,C))
Ω(E) I(z)

Scattering equations: Ea =
∑

b ̸=a
sab

za−zb
= 0.

Kinematics: sab = 2pa ·pb and sA = (
∑

i∈A pi )
2.

The measure is the same in the CHY formula. The theory choice
is in the integrand I(z).
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Integrand Building Blocks

Parke–Taylor factor

PT(α) =
1

zα1α2zα2α3 · · · zαnα1

BAS: PT(α)PT(β)

YM: PT(α)Pf ′(Ψ)

Gravity: Pf ′(Ψ)Pf ′(Ψ̃)

Graph rule of thumb: each factor (zij )
−1 is a

(solid) edge (i , j).

Figure: Graph view of a BAS integrand.
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Pole Master Formula

Pole order from graph counting

χ(A) = L[A]− 2(|A| − 1)

Here A is a subset of particle labels.

L[A]: number of internal edges in subset A.

χ(A) = 0 gives a simple pole 1/sA (physical factorization).

χ(A) > 0 gives a higher-order pole; χ(A) < 0 gives no pole.
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Generalized Pole Degree K (sA)

Definition

K (sA) := Lsolid[A]− Ldashed[A]

 

Solid edge: factor (zij)
−1 in the

denominator.

Dashed edge: factor (zij)
+1 in the

numerator.
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Generalized Pole Degree K (sA)

Definition

K (sA) := Lsolid[A]− Ldashed[A]

 

Relation to pole order:
χ(A) = K (sA)− 2(|A|− 1).

Converts pole constraints
into integer variables.
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Recursion and Hierarchy

Recursion

For |A| ≥ 3,

K (sA) =
1

|A| − 2

∑
B⊂A

|B|=|A|−1

K (sB)

Example: K (s123) = K (s12) + K (s13) + K (s23).

The inputs are the two-particle values K (sij). All higher K (sij)
are computed from them by recursion.
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Recursion and Hierarchy

Example: K (s123) = K (s12) + K (s13) + K (s23).

Two-particle values K (sij) are the ”bottom-layer” degrees of
freedom.

Figure: Hierarchy from the recursion.
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Simplicial Complex View

Combinatorial NN

The pole hierarchy is a discrete message-passing network (a
combinatorial NN).

Vertices: single particles.

Edges: two-particle channels.

Triangles: three-particle
channels, and so on.

Recursion sends info upward;
constraints send it downward.
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Inverse Problem

Input and Goal

Input: a desired set of poles {sA} ⇒ fixed constraints on K (sA).
Goal: find an integrand whose K values satisfy all recursions and
constraints.

Feasibility is an integer consistency problem.

Output integrand (schematic): I(z) =
∏

i<j(zij)
−K(sij ).
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Discrete Backpropagation

Upward propagation

Modify a lower-level K value.

Propagate changes to
supersets.

Restore all recursion relations.

Backward propagation

If propagation hits a fixed
constraint,

redistribute updates to other
nodes,

keep all constraints satisfied.

K12 K23 K13

K123

K23

∆K = −1

K12 K23 K13

K123
up

fix

K12 K23 K13

K123

back
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Algorithm

Choose a target subset A and set ∆K (sA) = −1.

Propagate upward to keep all recursion relations.

If we hit a fixed node, do a backward update: change other nodes
to compensate.

Stop when all constraints are satisfied.

Key point

Updates are integer-valued and exact.
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6-Point Example: Pick Pole s12

Consider a six-point CHY integrand:

I6 =
1

z212z
2
23z

2
34z

2
56z16z45z46z15

which produces five cubic Feynman diagrams:

1

s12s34s56
+

1

s123s12s56
+

1

s123s23s56
+

1

s156s23s56
+

1

s156s34s56

To pick pole s12, we need to retain poles s12, s34, s56 and s123 while
removing poles s23 and s156.
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6-Point Example: Pick Pole s12 - removing poles s23

Figure: Initial pole hierarchy (two layers). Bottom: two-particle poles; top: single- and
three-particle poles. Gray lines show recursion dependencies. Red nodes are fixed (keep
them).
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6-Point Example: Pick Pole s12 - removing poles s23

Figure: Step 1 (forward update): set ∆K = −1 at s23 (green). Blue arrows show updates
to supersets. We hit fixed nodes (red).
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6-Point Example: Pick Pole s12 - removing poles s23

Figure: Step 1 (backward update): when a fixed node is hit, move the change to other
nodes (red arrows). Here we increase K(s13) and K(s24) by +1.
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6-Point Example: Pick Pole s12 - removing poles s23

Figure: Step 2 (forward update): propagate the changes from s13 and s24 upward (blue
arrows) and update their three-particle supersets. Fixed nodes are hit again.
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6-Point Example: Pick Pole s12 - removing poles s23

Figure: Step 2 (backward update): adjust K(s14) by −1 (red arrows) so all recursion
relations stay true while fixed nodes remain unchanged.
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6-Point Example: Pick Pole s12 - removing poles s23

Figure: Step 3 (forward update): propagate once more. Now the pole s23 is removed and
all constraints are satisfied.
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6-Point Example: Pick Pole s12 - remove pole s156

Figure: State after removing s23. Red nodes are fixed. The next target pole is s156 (green).
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6-Point Example: Pick Pole s12 - remove pole s156

Figure: Remove s156: start with a backward/downward update (red arrow) to the first layer.
Choose s15 and set ∆K = −1 there.
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6-Point Example: Pick Pole s12 - remove pole s156

Figure: Forward update from s15 (blue arrows): update its three-particle supersets. Fixed
nodes s1 and s5 are hit (red).
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6-Point Example: Pick Pole s12 - remove pole s156

Figure: Backward update (red arrows): increase K(s14) and K(s25) by +1 to keep fixed
nodes unchanged.
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6-Point Example: Pick Pole s12 - remove pole s156

Figure: Forward update (blue arrows): propagate changes from s14 and s25 to their
supersets. Fixed nodes s2 and s4 are hit.
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6-Point Example: Pick Pole s12 - remove pole s156

Figure: Backward update (red arrows): decrease K(s24) by −1 to resolve the conflict while
keeping fixed nodes unchanged.
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6-Point Example: Pick Pole s12 - remove pole s156

Figure: Final forward update: propagate from s24. Now all constraints are satisfied, and
both s23 and s156 are removed.
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6-Point Example: Pick Pole s12

The algorithm stops when all constraints are satisfied.
We obtain the modified CHY integrand:

I ∗6 =
1

z212z13z16z23z25z
2
34z45z46z

2
56

It gives:

1

s12s34s56
+

1

s123s12s56

In this example, both terms contain the desired pole s12.
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8-point example (harder case)

Three-Layer Network Structure

8-point amplitudes require:

Layer 1: Two-particle poles

Layer 2: Single- and three-particle poles

Layer 3: Four-particle poles

What changes at 8 points:

More constraints

More forward/backward updates

The method still finds an integer solution in this example
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8-point example (harder case)
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Conclusion

1 CoNN viewpoint: The CHY pole recursion gives a fixed
message-passing graph (simplicial network).

2 Integer message passing: Integer message passing is an exact solver
on this graph. It builds the integrand and can keep/remove chosen
poles.

3 Outlook: Extend to more points, and study higher-order poles and
loops.
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Conclusion

Thank you for your attention!
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