

AI for Theoretical Discovery

—starting from Olympiad level

Xiang Li

Peking University

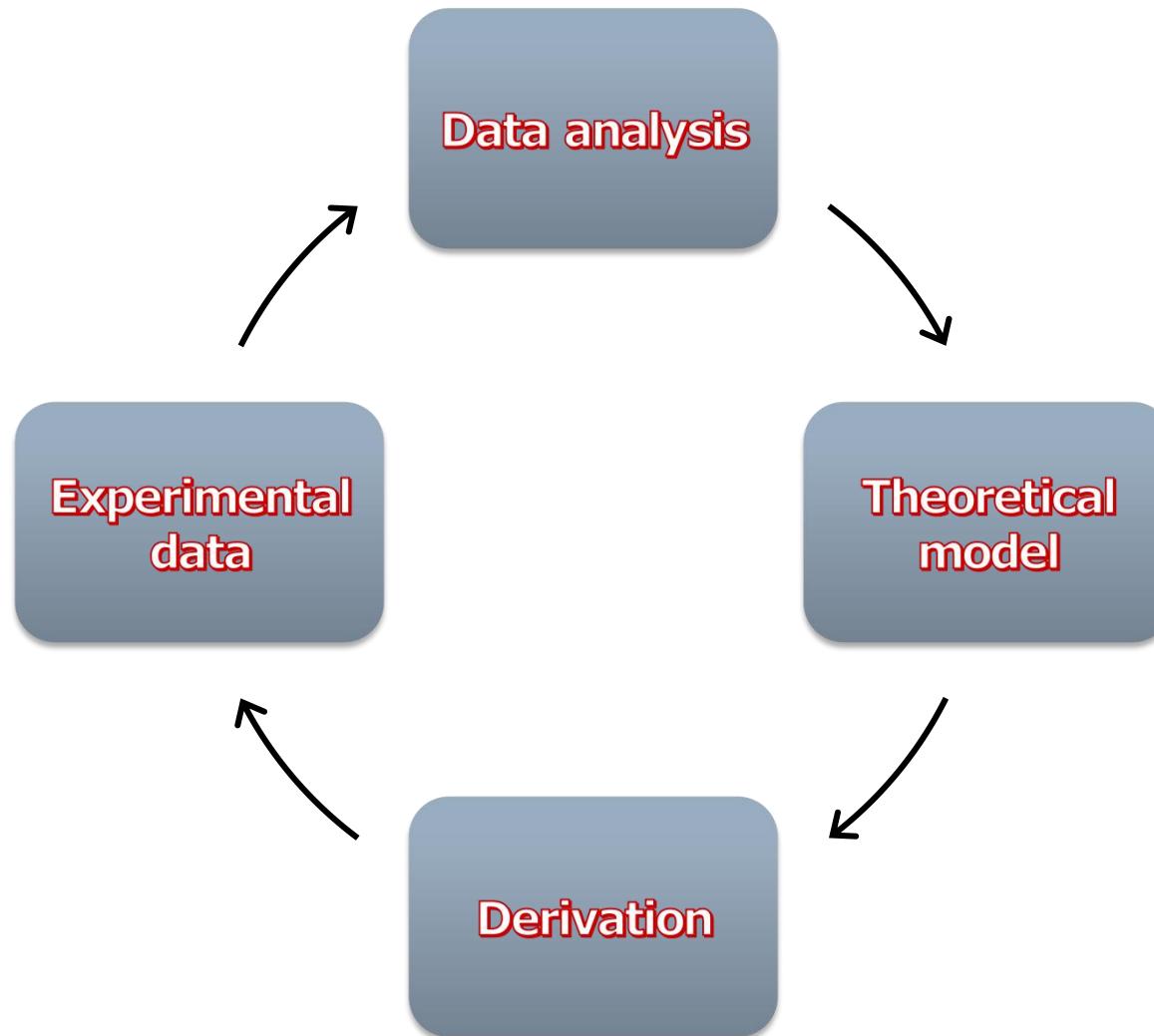
lix-PHY@pku.edu.cn

2026/01/21

北京大学

The circle of scientific discovery

From data to model

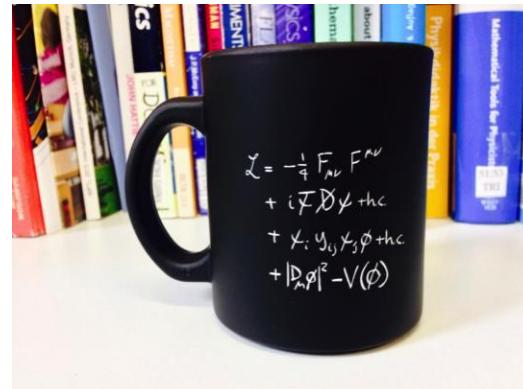


From model to data

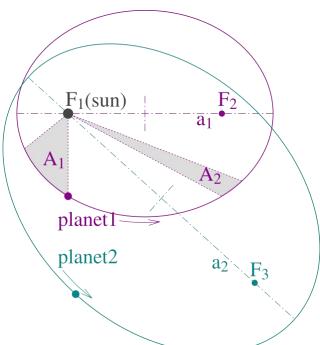
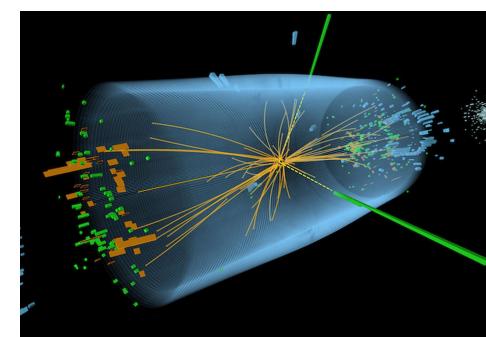
Reflection

➤ Human exploration of natural laws:

- **Advantages:** interpretability, conciseness, **universality**



- **Disadvantages:** long period, preconceived notion, insufficient ability to handle complex problems



From Model to Theory

➤ Specific model for one experiment

- Explore relations for a set of data
- Symbolic regression, Funsearch/AlphaEvolve, ...

Throw an apple

parabolic path

universal
gravitation and
Newton's laws

➤ General model for a large set of experiments

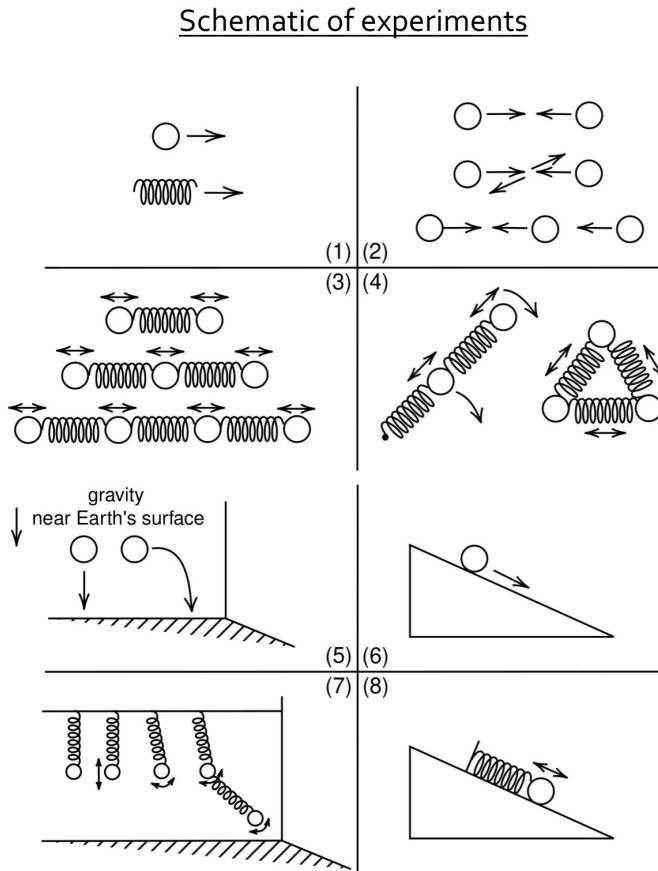
- How to define and explore relations between specific models?

➤ Is it possible for AI to reproduce human's theories?

A Prototype of scientific discovery: AI-Newton

- Based on noisy data, important natural laws are discovered!
- Unsupervised! Without prior physical knowledge!

Fang, et al., 2504.01538



Discovered important general laws

Energy conservation

$$\sum_{\kappa \in \{x, y, z\}} T_\kappa + \sum_{\lambda \in \{k, g, G\}} \delta_\lambda V_\lambda = \text{const.},$$

where T_κ and V_λ are defined as:

Diagrams illustrating the components of the energy conservation law:

- Universal gravitation: A particle in a field with other particles.
- Springs: A spring with particles at its ends.
- Particles: A single particle.

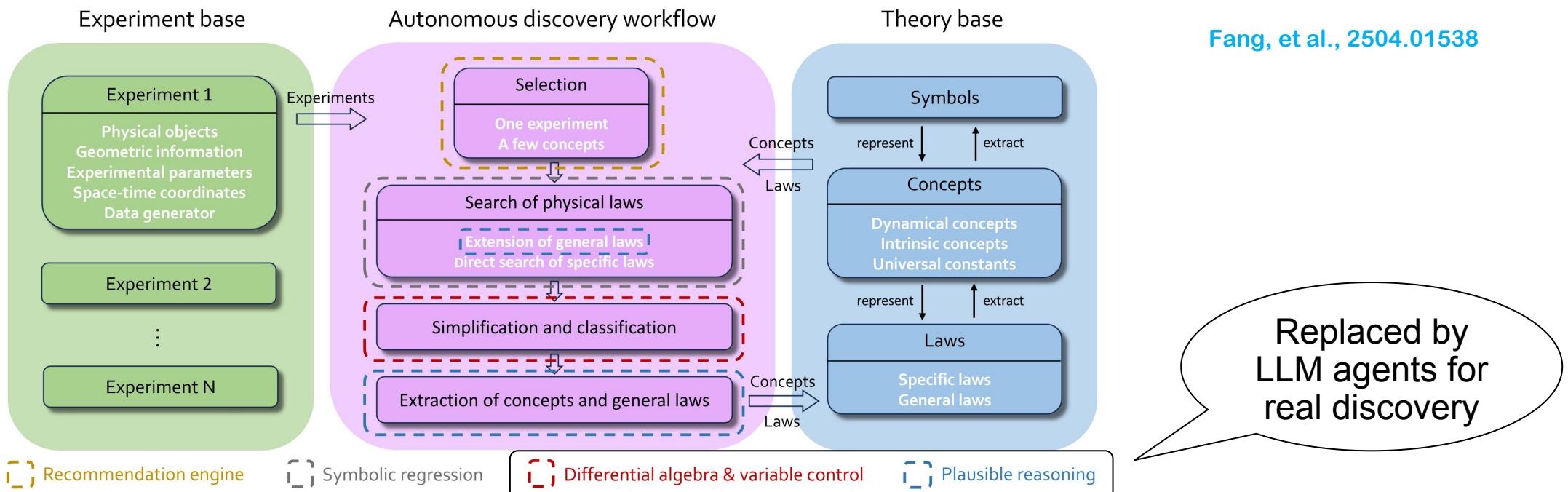
$$T_\kappa = \sum_{i \in \text{Particles}} m_i v_{i,\kappa}^2,$$
$$V_k = \sum_{i \in \text{Springs}} k_i (L_i - L_{0,i})^2,$$
$$V_g = \sum_{i \in \text{Particles}} 2m_i g z_i,$$
$$V_G = \sum_{i,j \in \text{Particles}} 2 \left(-\frac{G m_i m_j}{r_{ij}} \right).$$

Newton's second law

$$2a_\kappa + \sum_{\lambda \in \{k, g, G\}} \delta_\lambda \left(\frac{1}{m} \frac{\partial V_\lambda}{\partial \kappa} \right) = 0, \quad \kappa \in \{x, y, z\}.$$

($\delta_\lambda = 0$ or 1 , determined spontaneously during instantiation as specific laws in experiments)

AI-Newton's bottleneck



- **Mathematically simplification:**
Rosenfield grobner algorithm in Differential algebra
- **Plausible reasoning:**
Pre-established general rules
 1. Traversal
 2. Summary

- **The LLM Promise**
Success for mathematical derivation:
AlphaGeometry, AlphaProof ...
- **Know all tricks people have used in history**

Advancement in LLMs

➤ LLMs and their derivative products excel in general domains

- Chat client

ChatGPT

- Translation

- Paper writing

sakana.ai

- Paper review

- Coding

- Research

Challenges for scientific AI

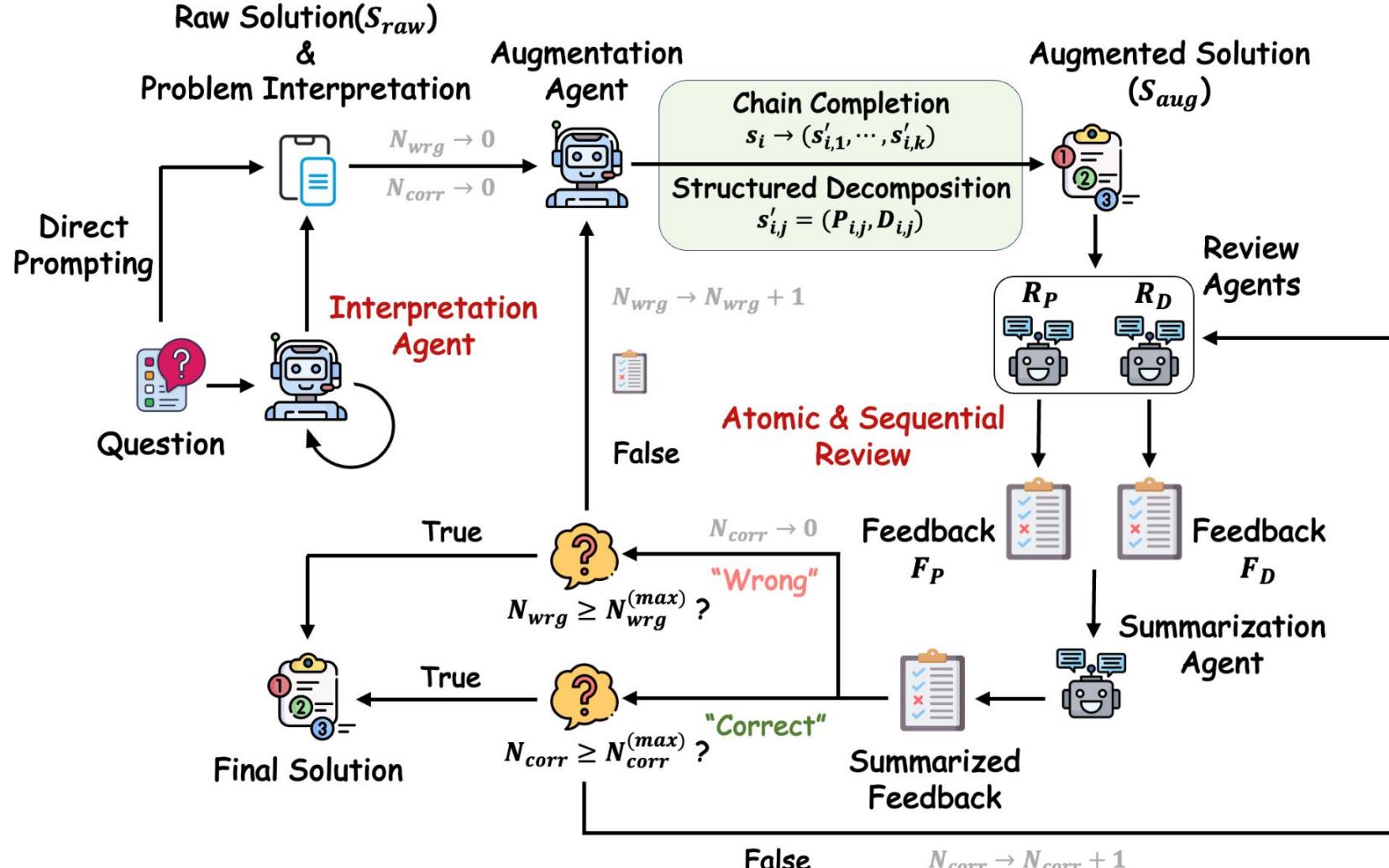
- LLMs' reliability often drops in scientific problem-solving, which prioritize **perfect performance** over **cost control**
- Caused from the inherent complexity of natural sciences
 - Long, multi-step and unstructured reasoning
 - Modeling of real-world scenarios
 - Understanding of fundamental laws
 - Implicit constraints
 - Deterministic & probabilistic, precise & approximate
 - ...
- Hard to detect due to **logical leaps** in the provided answers
 - Both human and AIs alike tend to omit steps they consider "obvious"

Overview of LOCA

➤ Logical Chain Augmentation (LOCA)

Fang et al., 2510.01249

Jian et al., 2511.10515



The CPhO: a challenging testbed

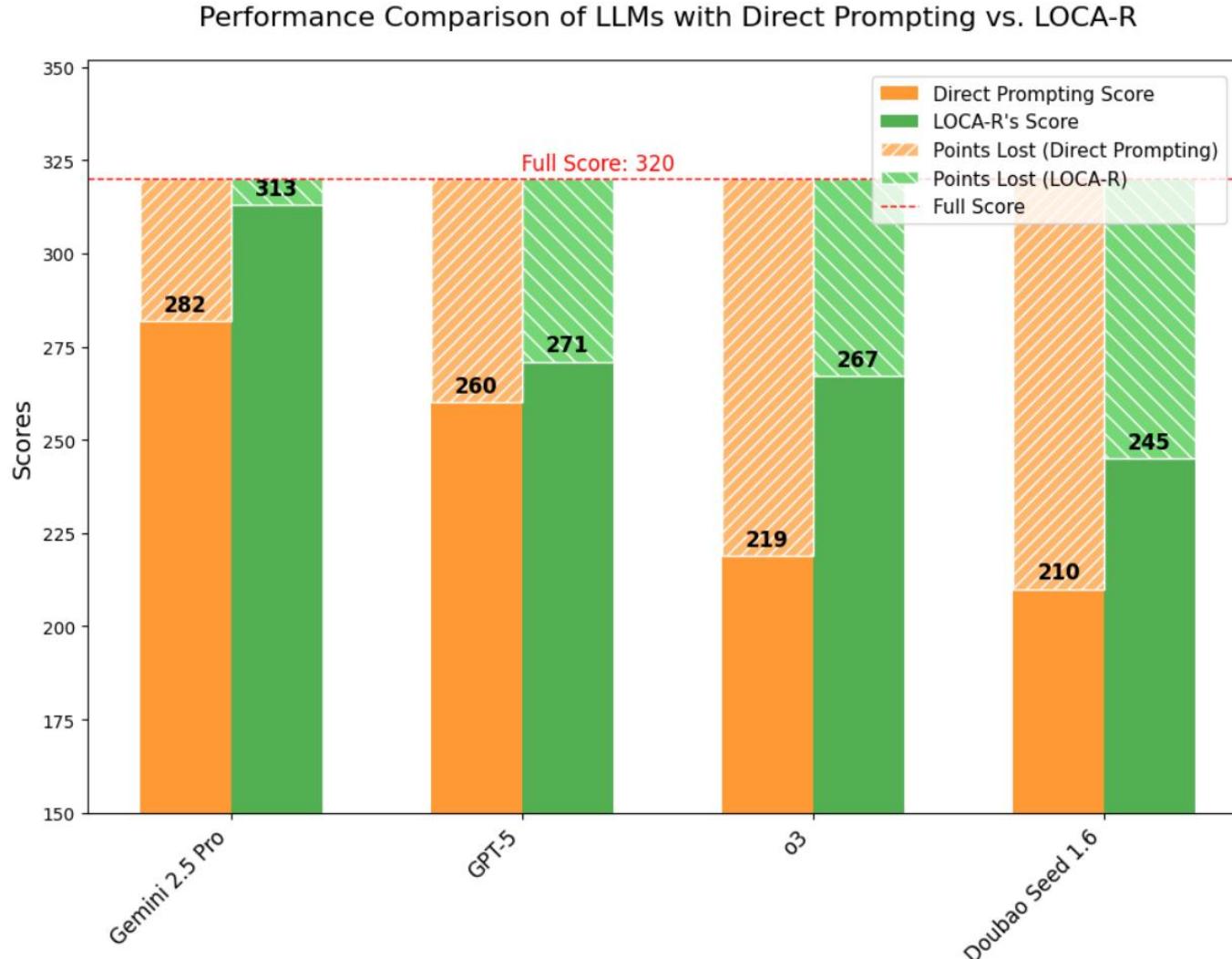
➤ The Chinese Physics Olympiad (CPhO): a premier national physics competition organized annually in China

- Demands of long, multi-step reasoning
- Multimodal problems
- No data contamination issue

Overall performance across various base LLMs

Jian et al., 2511.10515

➤ Overall performance of LOCA-R on four mainstream LLMs



- Total scores for th. Problem: 320
- Highest score of human: 207

Comparison across more baseline methods

Jian et al., 2511.10515

➤ Comparison of LOCA-R and more baselines

Table 1: **Comparison across baseline methods.** Gemini 2.5 Pro is used for all cases, and results are presented as the score of each theory problem, the total score of all 7 theory problems and the error rate defined in Eq. 7. Bold indicates the best performance. LOCA-R consistently achieves the highest score and the lowest error rate.

Method	1	2	3	4	5	6	7	Total Score	Error Rate
Human's highest	-	-	-	-	-	-	-	204	36%
Direct Prompting	45	41	45	33	39	39	40	282	12%
Zero-Shot-CoT	45	37	45	45	45	38	40	295	7.8%
Few-Shot CoT	45	45	45	41	45	42	39	302	5.6%
ToT	45	45	45	41	45	40	39	300	6.3%
GoT	45	34	20	36	45	39	39	258	19%
MAD	45	33	42	43	45	44	40	292	8.8%
Self-refine	45	43	45	35	39	41	40	288	10%
PSN	45	32	39	43	45	43	45	292	8.8%
LOCA-R (ours)	45	45	45	45	45	43	45	313	2.2%

Summary and outlook

- Human scientific discovery necessitates a new research paradigm, AI may help
- From model to theory:
 - Promote specific models as general theories by **plausible reasoning**
 - Verify general theories on specific problems by **logical reasoning**
- LLM for scientific problem-solving:
 - **LOCA: break complex reasoning into smaller steps to enhance the reliability of review**
 - **Near perfect performance on CPhO**
- AI for scientific discovery: remains in its infancy, but very promising

Thank you!