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The circle of scientific discovery

From data to model

Datalanalysis
Experimental iHheoretical
data model

From model to data
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Reflection

» Human exploration of natural laws:

« Advantages: mterpretablllty, conciseness, universality
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* Disadvantages: long period, preconceived notion, paradigm?

insufficient ability to handle complex problems
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From Model to Theory

Throw an apple

» Specific model for one experiment

« Explore relations for a set of data

« Symbolic regression, Funsearch/AlphaEvolve, ... parabolic path

» General model for a large set of experiments Universal

gravitation and
* How to define and explore relations between specific models? Newton’s laws

» Is it possible for Al to reproduce human’s theories?
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A Prototype of scientific discovery: AI-Newton

» Based on noisy data, important natural laws are discovered!

» Unsupervised! Without prior physical knowledge!

Physical objects

Schematic of experiments

Fang, et al., 2504.01538

Discovered important general laws

Energy conservation

gravity
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Newton's second law

(62=0o0r1, determined spontaneously during
instantiation as specific laws in experiments)
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Al-Newton’s bottleneck

Experiment base Autonomous discovery workflow Theory base

Fang, et al., 2504.01538

( Experiment 1 ) Experiments [ Symbols ]
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- real discovery
7/
I:: Recommendation engine |F_] Symbolic regression [ r_] Differential algebra & variable control I—_-: Plausible reasoning ]
> Mathematically simplification: » The LLM Promise
Rosenfield grobner algorithm in Differential algebra Success for mathematical derivation:
> Plausible reasoning: AlphaGeometry, AlphaProof ...
Pre-established general rules
1. Traversal Know all tricks people have used in history

2. Summary
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Advancement in LLLMs

» LLMs and their derivative products excel in general domains

* Paper writng

* Chat client * Translation
& Q =
@ e DeeplL QR
& sakana.ai
ChatGPT
« Coding * Research

 Paper review

paperreview.ai m Cline
By Stanford ML Group
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Challenges for scientific Al

> LLMs’ reliability often drops in scientific problem-solving,
which prioritize perfect performance over cost control

» Caused from the inherent complexity of natural sciences

* Long, multi-step and unstructured reasoning
 Modeling of real-world scenarios

* Understanding of fundamental laws

* Implicit constraints

 Deterministic & probabilistic, precise & approximate

» Hard to detect due to logical leaps in the provided answers

 Both human and Als alike tend to omit steps they consider "obvious" 2/40



Overview of LOCA

» Logical Chain Augmentation (LOCA)
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Problem Interpretation

Augmentation
Agent
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Fang et al., 2510.01249
Jian et al., 2511.10515
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The CPhO: a challenging testbed

» The Chinese Physics Olympiad (CPhO): a premier national
physics competition organized annually in China

 Demands of long, multi-step reasoning
* Multimodal problems

« No data contamination issue
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Overall performance across various base LLMs

Jianetal., 2511.10515

» Overall performance of LOCA-R on four mainstream LLMs
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Performance Comparison of LLMs with Direct Prompting vs. LOCA-R

% Direct Prompting Score
B L OCA-R's Score
“ Points Lost (Direct Prompting)
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Full Score: 320 .
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Total scores for th. Problem: 320

Highest score of human: 207

11/40



Comparison across more baseline methods

» Comparison of LOCA-R and more baselines

Jian et al., 2511.10515

Table 1: Comparison across baseline methods. Gemini 2.5 Pro is used for all cases, and results are
presented as the score of each theory problem, the total score of all 7 theory problems and the error rate
defined in Eq. 7. Bold indicates the best performance. LOCA-R consistently achieves the highest score and

the lowest error rate.

Method | 1 2 3 4 5 6 7 | Total Score | Error Rate
Human’s highest | - - - - - - - | 204 | 36%
Direct Prompting | 45 41 45 33 39 39 40 282 12%

Zero-Shot-CoT 45 37 45 45 45 38 40 295 7.8%
Few-Shot CoT 45 45 45 41 45 42 139 302 5.6%
ToT 45 45 45 41 45 40 39 300 6.3%

GoT 45 34 20 36 45 39 139 258 19%
MAD 45 33 42 43 45 44 40 292 8.8%
Self-refine 45 43 45 35 39 41 40 288 10%
PSN 45 32 39 43 45 43 45 292 8.8%
LOCA-R(ours) | 45 45 45 45 45 43 45 313 2.2%
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Summary and outlook

» Human scientific discovery necessitates a new research paradigm, Al may help

» From model to theory:

* Promote specific models as general theories by plausible reasoning
» Verify general theories on specific problems by logical reasoning

» LLM for scientific problem-solving:

« LOCA: break complex reasoning into smaller steps to enhence the reliability of review
* Near perfect performance on CPhO

> Al for scientific discovery: remains in its infancy, but very promising

Thank you!

13/40



