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QCD matter under extreme conditions

From BEST collaboration

High T, zero/near-zero uB region
e Smooth crossover from QGP to HRG.

Quark-Gluon Plasma e Early universe; experiments at the LHC
(Large Hadron Collider) at CERN, or
top RHIC energy HIC.

Intermediate T, high yB region

e First-order phase transition (with an

Temperature (MeV)
Z

endpoint: the critical point).
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% 200 400 600 800 1000 1200 1400 1600 Scan program); future facilities like

HIAF, CBM, FAIR, and NICA.

e Medium to low-energy heavy-ion
collisions (e.g., the RHIC Beam Energy

Baryon Chemical Potential - p (MeV)



HIC:

cal inverse problem

(1) Nuclear Structure (2) Initial Parton Distribution (3) QGP properties and EoS
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Initial condition EoS Bulk Viscosity Shear Viscosity

CLVisc:

1. CCNU-LBNL Viscous Hydro, CCNU = Central China Normal University
2. A 3+1D viscous hydro parallized on GPU using OpenCL

Purpose: Describe the non-equilibrium space-time evolution of hot QCD matter
Feature: 100 times faster than using a single core CPU.

L.G. Pang, Q. Wang and X. N. Wang, PRC 86 (2012) 024911
L.G. Pang, B.W. Xiao, Y. Hatta, X.N.Wang, PRD 2015
L.G. Pang, H.Petersen, XN Wang, PRC97(2018)n0.6,064918
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Dissipation

First order: acausal

shear viscosity bulk viscosity 5 4
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resistance to flow gradients resistance to expansion _Alﬂ_iﬂﬂ_v))\ B AQ,}T;NQV)/\ o Aggé\ﬂﬂy))\j

Expansion rate: ¢ = Vit

v — ox7{p, V) — 9 Apraps
Shear viscous tensor: ot SIVVe T =24 Vaug,

1
s = —A““A”ﬁ(vaug — Vgua),

Vorticity tensor:

AHYeB (AMO:AVﬁ 4 AuﬁAm) AHVACIB

1
Double projection operator: 5
gt

Projection operator: AHY — — ulu?
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Numerical vs Analytical solutions

Riemann Solution Bjorken Solution Viscous Gubser Sol.
1.5 T T T 10 T T T T T
—— Riemann —— CLVisc , L=2, ny/s=0.2, k= —10.0
----- CLVisc 09l 7o =0.6 fm —— Bjorken ] 10 ' ' I R A
10 T, 036GV 14t/ N
0.8¢
nv/s=0.08
o 0.7+
s % S
= 0.6
0.0+ 0.5F
0.4}
05 . . . 0 & 6 -4 -2 0o 2 4 6 8
-10 -5 0 5 10 0.3 L L L 1 L x [fm]
z [fm] 0 2 4 6 8 10 12
T—T0 [fm]
L=2, n/s=0.2, A;=—10.0
Constructing Analytical Solutions: 10 b sl

« Select a specific spacetime metric.

« Make symmetry assumptions: Assume a homogeneous energy
density distribution.

« Obtain the flow velocity: This yieldsu = (1, 0, 0, 0) in the chosen
coordinates.

« Transform back to flat spacetime: This results in a non-zero flow

velocity profile. L.G. Pang, H.Petersen, XN Wang, PRC97(2018)n0.6,064918
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Relativistic fluid from different groups

Mean transverse velocity
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CLVisc for different EoS and /

7=0.4 fm 7=1.9 fm 7=3.7fm 7=6.7 fm
n/s=0.0

/ =0 (shear viscosity over entropy density)
‘-. Lattice QCD EoS (smooth cross over)

EOSL

n/s=0.0

/ =0 (ideal hydro)
‘-. N First order phase transition

EOSQ

n/s=0.08

/ =0.08 (viscous hydro)

% ‘. Lattice QCD EoS (smooth cross over)
n/s=0.08 / - 0_08
g ‘. First order phase transition

It is unknown whether the information of EoS survives the complex dynamical evolution of
HICs and exists in each single event of the final state output.
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L for inverse/variational problems in HICs

Human brains are not optimized for

Dog o _
processing high-dimensional scientific
data. Deep neural network can be trained:

Cat (i) to identify optimal feature combinations

(ii) to represent variational functions

Lattce QCD EoS (crossover)
EOSQ (First order phase transition)
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EoS for different phase transition types

particle 16 32 flattened fc output EOS
spectra features features 128 layer
15x48 15x48 8x24 quark gluon plasma
— &
— ) critical o
‘JHJ g first order
E k ./ phase transition
E X \\ energy density
2 £\
- 2 .
: o N
8x8 conv, 16 7x7x16 conv, 32 =
dropout(0.2) dropout(0.2) dropout(0.5) . !
bn, PReLu bn, avgpool, PReLu bn_gigmoid hadronic matter
| N N color superconductor
. N ; 2
UO) = =7 2 [bslog s + (1 — yi) log(1 — g)] + Alle][z
i=1 L ‘
L2 regularization baryon chemical potential HMB

DL helps to decode the information of QCD phase transition in the QCD EoS (>93% accuracy).

Nature Communications 2018, LG. Pang, K.Zhou, N.Su, H.Petersen, H. Stoecker, XN. Wang.
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Spinodal vs

Maxwell 1st order phase transition
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Point Cloud of 420 particles

Point Cloud: Permutation symmetry

Global Max Pooling

Repeat for all particles

m weights for each filter 128 new features

Point Cloud Network, repeat 2 times
1st time m=>5, 2nd time m=128

128 neurons 128 neurons

Fully connected layer

Output

y >0.5 for Spinodal

y <0.5 for Maxwell

J. Steinheimer, L.G. Pang, K. Zhou, V. Koch and J. Randrup, JHEP 12 (2019) 122
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Capture local and long range correlations
N Dynamical Edge Convolution Network

Particles ( kNN + Edge Convolution ) x 2 Point Cloud Network

o ||| 2o [oow || memrems ) || [Crocw |
o J||o% (oow | |® [ wemremmes ] || [(s0cw |
o(rr | sob (om )| @ (mmurs] || (o0 ]
o7 e | 0
L. R [ 10 CNN ]J.[..,t treat J | [ 1D.CNN ]

Self similarity, scaling invariance

Find its k nearest neighbors in feature space.

PLB 827(2022) 137001, Y.-G. Huang, L.-G. Pang, X.F. Luo and X.-N. Wang
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Auto Encoder for order parameter

PHYSICAL REVIEW RESEARCH 2, 043202 (2020)

Nuclear liquid-gas phase transition with machine learning

Rui Wang ®,12" Yu-Gang Ma,!'>" R. Wada,® Lie-Wen Chen ®,* Wan-Bing He,! Huan-Ling Liu,?> and Kai-Jia Sun®>

(a) 10? ARSH (b) 102 F——————— () 102 s
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Nuclear EoS at high density region

Skyrme potential + IMQMD

off-diagonal = misclassified
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PLB 822 (2021) 136669, Y.J Wang, F.P. Li, Q.F. Li, H.L. L"u, and K. Zhou
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Jet eloss and medium response

\| Run/Event: 151076 / 1328520
Lumi section: 249

Can Being Underwater Protect You From Bullets? CMS | ot ecrde: it 14 105129 2010 GEST

Jet 1, pt: 70.0 GeV

Jet 0, pt: 205.1 GeV

66 [f the bullet is shot from an angle of 30 Degrees, then being underwater in the ] ]
range of 3-5 feet (0.9-1.5 meters) can ensure safety from most guns. Jet q uenchi ng in hot QGP
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The nuclear EoS and Mach Cone

x (fm) - x (fm)
R.B.Neufeld. PRC79,054909(09’)

Nuclear EoS: ¢® = — =sin? Shear Viscosity: width of the shock wave
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LBT: YY He, T Luo, XN Wang, Y Zhu,

PRC 91 (2015) 054908, PRC 97 (2018) 1, 019902 .0 1=6.6fm/c
~10 0 10 —10 0 10 —10 0 10 ~0.24

CLVisc: X X X

LG Pang, Q Wang, XN Wang, PRC 86 (2012) 024911

LG Pang, H Petersen, XN Wang, PRC 97 (2018) 6, CoLBT:
064918

XY Wu, GY Qin, LG Pang, XN Wang,PRC 105 (2022) W Chen, T Luo, SS Cao, LG Pang, XN Wang,
3, 034909 PLB 777 (2018) 86-90
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LBT: Linear Boltzmann Transport

p1of1 = — / dpadpsdps(fifo — f3fs) |Mia—za|’ (2ﬁ)454(z p') + inelastic

Medium-induced gluon(HT):

jet parton

dN, N 2C s,
dzd?k, dt ~  wk?*

Tracked partons: particle holes
Jet shower partons R
Thermal recoil partons
Radiated gluons
Negative partons(Back reaction induced by

energy-momentum conservation)

YY He, T Luo, XN Wang, Y Zhu, PRC 91 (2015) 054908, PRC 97 (2018) 1, 019902
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DL assisted jet tomography (gamma-jet)

Input 1

1 p" mass

2 p" mass

Hadron cloud

N p" mass

Input 2

1D CNN
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EPJC 83 (2023) 7, 652
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DL assisted jet tomography
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DL assisted jet tomography:
,\/\~ The diffusion wake signals are

u ! enhanced significantly, allowing
s oo s s oo s 25 oo 25 s oo 25 fOr more differential studies

Aq)h]el 55 ¢jet_¢h A¢h]et - ¢jet_¢h A¢hjet - ¢jet_¢h A¢hjet = ¢iet_¢h

ZYang, YY He, W Chen, WY Ke, LG Pang, XN Wang, EPJC 83 (2023) 7, 652
Z Yang, T Luo, W Chen, LG Pang, XN Wang, PRL 130 (2023) 5, 052301
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Jet iInduced sound wave in QGP

-triggered-jet-hadron correlation CMS Preliminary
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Diffusion Wake

2024: First Observation of the Predicted Diffusion Wake in LHC Pb+Pb Collisions
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e Forward Mode

Introduce dual numbers: - +-
where 2 =

x+xd)+(y+yd)=x+y+(x+ yd
x+xd)-(y+yd)=x—y+(x—pd
x+xd)x(y+yd) =xy+ (xy+ xy)d

L _ 1 Y4 20

x+xd x  x?

Forward mode for Rl — R"

R" —» R!

Reverse mode for

Auto Differentiation:

machine precision

e Reverse Mode
Ol

D= —

adjoint number:
ow

X 6b

N
y\@/

: out: [
/
zZ

@ _

stepl:w =20
_0b
step2:w =w+ b—
ow
_ _ _Oc
stepd:w=w+c—
ow
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Real particle Quasupartlcle @

o - :.‘.o o 6. %

Real horse : Quasihorse @ @ 9
LR . o )
A U ©

In Z(T)

=1nZ,(T) + In Zy 4(T) + In Z,(T),

Fermi-Dirac distributions,

16V [
nZ,(T)=— — 2d
nZy(T) 5t ), T
1
In ll — exp (—?\/pz + mg(T))]
B 5 4
nZ,(T) =+ —— d

In [1 + exp (—%\/p2 + g, (T))] ,

(2)

Deep Learning Quasi Parton Model

ResNet
1
; P+
i
! ResNet
b ~
m———————

input :

I
|
|
|
I
|
|
I
|
\

quarks, m4(T,03) for strange quark and my(T,63) for
gluons, where 6, 05 and 63 are the parameters in DNN
shown in Fig. 1.

The resulting pressure and energy density are com-
puted using the following statistical formulae,

P(T) =T (%)T, (5)
-1 (22D ©)
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Deep Learning Quasi Parton Model

EoS vs Lattice QCD Learned Mass 77/ S

l.2_<‘--\-"'|""|_ (}.12_--~<|--"|"--1 -““““-‘mu-
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- = Neural network w2 m, |
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T/T, | | B v | T/T, T/T,

0.05F

oog}

FuPeng Li, HL Lu, LG Pang, GY Qin, PLB 2023
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Extended to 2 dimensions: ( , )

output Equation Of State
T e e e i g = —
!/i \l & H
| azy | %8| 030y, e
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| 0.15 .
" | & 0.10
e e e e s e |- T —
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[A NN—A input _1

L(0y,0;,03) = |syy — Sinputl + | T E- IXE,NN = XzB,inputl + XS - Xf,input| + Lyc 1 2

0.5
€ [GeV/fm?3]

FP Li, LG Pang, GY Qin. PLB 868 (2025) 139692
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To 4 dimensions: ( , , , )

Baryon-Strangeness Correlation

Output T | — T T | R
AP s 1 | | N
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————————————————— || o u 3@ ==« QM-HRG =
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6,) @) | mpes) LQCD
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Mass Model ‘ | nz; %20 / | | ()
(62) —J g e ! 0
| | e | O |-,
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(63) <y | e )| | B e, a
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FP Li, LG Pang, GY Qin. in prepare
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DL for holographic model using PINN

Conventional Holographic model: ML Holographic model:
Neural
Model: metric »|Experiment/lattice " Givan ” etk
h parameters model
ML
\ 4
Prediction Model: metric Compared
1 Optimal Loss with S from
Compare Compare parameters function holography
h | v
Experiment/lattice o Prediction
sIT? 0‘35{5
Ny=0 Nr=241 ‘____..--—"‘""' 0.30
15— N=2 =— NE24141 ‘l“'("’ —
. . . . > 3
Einstein-Maxwell-Dilation model @ o o
10t o ’
0. DeWolfe, S. S. Gubser, and C. Rosen, Phys. Rev. D 83, 086005 (2011), arXiv:1012.1864. 0.15
0.10
ion: 1 @, 1 3
Actions  §, = s [J—_QR — = P = 50,0049 = V(#)
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“ g(z) .l"'n'.'.':'l-:;;“.. --®-- Freeze outline and S
A(2) = din(az? + 1) + din(bz* + 1), f(2) = e ~A@*k ~ 0.10
37 ) B 1 dp
| = — » = 5=—. 0.05
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0.0
X. Chen, M. Huang, Phys.Rev.D 109 (2024) L051902; JHEPO2 (2025)123 85
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Extend CLVisc
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— ¥l — g 7t
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» Future work: 4D EoS + transport coefficients

XY Wu, GY Qin, LG Pang, XN Wang, PRC 105 (2022) 3, 034909
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Exploring QCD matter in extreme conditions with Machine Learning
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Theintegration of deep learning techniques and physics-driven designs | Intreduction EVIEWARTICEE
isreforming the way we address inverse problems, in which accurate Physics-driven learning
physical properties are extracted from complex observations. Thisis

C
QCD physics 1 |
particularly relevant for quantum chromodynamics (QCD) — the theory P T y — . . N UCI . SC' TeCh. 34 (2023) 6: 88
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