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Challenges of QCD: from UV to IR

Strong QCD:
agrangian of Quarks & UV:
Gluons at UV SU(N#)L x SU(Nf)r
= QM, NJL, SM, HLS SUNe=3)
Holographic R
. CHPT,
QCD might NRQCD......
0 LQCD,
help! How DSE/RG

does it work?

color flux tube

Dual superconductor ...

v mergent world: IR: chiral symmetry
Ve Oberservables (IR breaking & confinement

Hadron physics(spectra, form factors, parton distribution
functions...), QCD phase transitions(HICs, Cosmology),
EOS (Neutron stars) 3




One of the biggest breakthroughs in theory: AdS/CFT

Juan Martin Maldacena. Adv. Theor. Math. Phys., 2:231-252, 1998.
Edward Witten. Adv. Theor. Math. Phys., 2:253-291, 1998.

what

you want

to compute * The AdS/CFT duality spans all physics arXivs (Lec 15) pp.1-204)
g == -
S
I
s
you know
g

Matteo Baggioli 1908.02667v2 [hep-th]
Holographic Duality: (d+1)-Gravity/ (d)-QFT

27 years later, is it possible to use AdS/CFT describing the
QCD world? How far we are from the gravity duality of QCD?



From UV to IR: RG flow and holography

AdS/CF

FIG. 1. AdS/CFT as an RG flow. The left panel repre-
sents an RG fixed point, so that the entire geometry is
scale-invariant (empty AdS). The middle panel shows a
thermal state, where the IR geometry is instead a black
hole with horizon at rg. The third panel represents an
RG flow where the UV fixed point flows to gapped theory
in the IR, ending smoothly at a minimum radius r;,.
Only the first geometry is fully scale invariant.

Hong Liu,Julian Sonner, 1810.02367,
Rept.Prog.Phys. 83 (2019) 1, 016001

uv

)-Gravity/ (d)-QFT

5D field theory or bulk field theory

AAdS,
Jiluv = D;|s
i
-
d(2) o
3
S
" X(z) 3-
=

H

™(G?) (g°A%  (qq)

!

. : |
Dynamical holographic QCD ! Deformed Ad85

QCD Dynamics at IR induces
deformation of AdS5 metric



“Entanglement” of gluodynamics and quark dynamics

iy Py
XY \x /AN !{\\
Top-down D4/D8,D3/D7 Dp brane: D4, D3 Dq brane: D8, D7 | | :: \ ()’
el
VS " Y
sperT PNJL Polyakov—loop

) NJL model
potential

bottom-up DhQCD Dilaton—Background Flavor probe

Dynamical holographic QCD framework

So= —1 [ d*z\/gse 2 (R + 4020 & — V(D))
S=S;+AS pa
= 1
G / S = _/d%- gse_(I’Tr(|DX|2+VX — 4—92(F§+F§))
5%

Danning Li, M.H., JHEP2013, arXiv:1303.6929
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“Entanglement” of gluodynamics and quark dynamics

Improved hQCD model:

U. Gursoy, E. Kiritsis, F. Nitti

DeWolfe-Gubser-Rosen model:

Phys.Rev.D 83 (2011) 086005

Gtluonic background+ matter field
(Confinement & chiral symmetry breaking)

S\.’—QC]D = Sg -+ Sf

2
5,= MN? [ =5 ( - 3(5’;) + vg(,u)

Sy = —MENIN,:f d’z V(A T:]\/— det (guw + K(A)OuT0,T + w(N)F)

V.
V,(\) = 12 [1 +Vid+ +2 + Vire (A /Xo)3\/log(1 + A /,\n)] .

Vy(¢) = —12cosh(ey¢) + (6¢7 — gw + eo,



Matti Jarvinen

V-QCD
- _ v ~ LV L/Ryjj i '
Dual fields: ¢ < G, G*, a<+> G, G", (A7) < '(1 £ v5)y 0

Sv_qcp = Sg + Spei + Sa + Scs

S, = MNE [ Pxy=g R 5007 + V,(0)

SDBI = —M3NC ] d5X Vf(qb) Tr [\/— det(gw + W((b)F,L(LI{/)) -+ (l_ — R)
M3 N? 2
S0 = —— / d°x\/—g Z(¢) [0pa — Tr (A, — AY) /N
‘N _ 1
Scs = : /Tr{—IAL/\F/_/\F/_—I——A[_/\AL/\AL/\FL—|—
247_r2 2

+1LOAL/\AL/\AL/\AL/\AL+(LHR)]



“Entanglement” of gluodynamics and quark dynamics

S=5;+ AS Confinement &
DhQCD model: f chiral symmetry breaking
(simplest version) Sc = mic;ﬁ [ &Pz \/Goe 22 (R + 400, 20M & — Vi (D))
Can add any probe action g _ _fd% gse_(DTr(|DX|2—|—VX-|—4—;2(FI2,—|—F§))
5

Bulk field theory or 5D field theory

5D(Bulk) field theory, has operator/bulk field correspondence,

flexible to extend to pure gluon sector, 2-flavor, 3-flavor, 4-flavor
finite temperature, chemical potential, magnetic field, rotation

Hadron Physics and QCD matter, Hydrodynamics......



How does it work?

Boundary QFT Bulk Gravity

A(d—A) =m?L?

Local operator Oi(z) Bulk field ?;(z, 1)

@ Operator/Field correspondence:

4D boundary operator O(x) « 5D bulk field
local, gauge invariant, scaling dim. A oz, z = 0) = 272 po(z) + 22 < O(z) >
o4
<€%fd $¢D($)0($)>CFT = ("5enle |¢5(:£ z—0)—do(x)
‘ Zowr|Ji] = Zaa[®[Ji]] ‘ Zapr|J] ~ e~Torl?Vl

0" Iar[P[J;]]
0J1(x1) ... 0T, ()

Correlators:

<01 (il) Ce On(;}:.n)) —

J;=0

Using bulk field to calculate observables: two-point correlation gives mass spectra,
three-point correlation gives form factor, and so on. 10



Hadron spectra and form factors:

glueball, light flavor, heavy flavor

11



Pure gluon sector

Zo = _EGE"”[ r)GH (1), Danning Li, M.H., JHEP2013, arXiv:1303.6929
IR: Gluon condensate D=4  Tr(G?)
Effective gluon mass D=2 (g2A2> B  String tension, linear confinement

Sp = i Az =gFe?? [R‘* +4g" MV ) PN — V(D)

hid®) sz NP y
Dimension-2 dilaton field {4:' gt MM s NN

d(z) = b2,

. 1 a 5]

de,[u]:FQxE: K?--Ii:'.! ]._I E
-EI_E
Vb

3 1 =
2% x 35T (2) I
Agp( —1In 2




Scalar glueball D.N.Li, M.H., JHEP2013, arXiv:1303.6929

,
My,
20

m- [~ 4l
UGg = 1GeV

15

hep-lat /0508002
[hep-lat /0510074].

[hep-lat /0103027].
[hep-lat /9901004]
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Glueball spectra: Yidian chen, M.H., 1511.07018

: o
I 2 I
3 Lo 1
i - — [ ”— -
| —— [ | g+ - 0
: mam =
L 0 o ==
i o 1% 1
I —
Il —— = —
s —
++ —+ po - —

Agree well with lattice result except
0- and 2* but ...

14



JH 4-dimensional operator: &(x) Alp _-U__Lf
ot Tr(G?)=E®. E*— Bo. Bo 1 (0| 0
0+ Tr(GG) = E*. B® 1lo] o
07 Tr ({(D:Gyw) . (D-G )} (DG pa) o [0] 45
0 Tr ({ (D;Go) (DG )} [D“Gm)) o o] 45
1—+ fril'}-.’.'ﬂ“ [Grz ] G?,.:- [ ,r:-ur] fm'xﬂ“ [G” 1 {"v?pJ {G"f J T 1 94
fﬂh{{}it ’V gw-‘ [ ??'p] ’V Ir_"t"t-‘ fam ﬂ“ ’VG:IW-‘ [-'F?.ﬁ'-‘ G:‘?'f]
1+ @ (E, - Ey) B. 6 |1 15
1—— dabe (Eﬂ ~ Eb) E. 6 1] 15
27T EPEY — BB} — trace 412 4
2-T E}BY + B{E} — trace 412 4
o dabes | Ei (E}, x E;_.)’r 62| 16
Y — 3 J
2~ does | Bi (Eb x Bf_.) 62| 16
3+ d**S | B B] B 6 3] 15
3= d**S | B E] EF 6 3] 15

Lin Zhang, Chutian Chen, Yidian Chen, M.H.
Phys.Rev.D 105 (2022) 2, 026020
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_ 1
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+MZ 5 (2)9?)
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S /daﬂf gse PP (09 0My

Fun

St

T2
— VL REMYON by + 2V BNV vk
— VarhVMh + ﬂ'fg,a(z)(hMNhMN — h?)),

~, + Vo T =m?% T,

Vo

, ,12
T S el

rr 2
_gn + 1l’ffé?{v?ﬁ?:rz = Tnfé’_n%n

¥ r 2
3A, + % —pd [3As —2 —P‘I’]
Va = 2 " 1
1
+Z—252A3e—ﬂr-m-‘l’ﬂff§;,5_

i 2
~V + VeV =my , T,

2
rr fr d 1 !
A, + 2 —p? [As—z_p'l’
Vv = 2 i 1
1 2A, — P 2
. = Cr.m. Jﬂif P
—|—zge e ¥ 5

Lin Zhang, Chutian Chen, Yidian Chen, M.H.

e

Phys.Rev.D 105 (2022) 2, 026020

16



mg/GeV

- - - -
o+ P 0 1= 9=+ 1 > o 1 o ¥
1 1 1 1 1
i 1 1 1 1
1 1 1 1 1
I 1 1 1 1
1 ] ] |—pii==_ 1
i i 1 i i
1 ] 1 1 1
1 1 1 1 1
1 1 1 1 1 -
i 1 1 1 1 A
1 1 1 1 1
1 1 1 1 1
i i i i i
: | | | |
I 1 1 1 1 4.5'
| | 1 [ |
i i i i i .
1 1 1 1 1
1 1 1 1 1
I 1 1 1 1
I 1 1 1 1
1 1 1 1 1
1 1 1 1 1
i i i i i
i i i i i
1 1 1 1 1 -
1 1 1 1 1 - .
I 1 1 1 L
[ [ 1 — S
1 1 1 | .
1 1 1 1
= i i [ i e
: | | | e -
I 1 ] ] e 4.0'
i i i i i
i i 1 i et
1 1 1 1
1 1 1 1 1 L
: ; : B : | =
1 1 1 1 1 - )
I 1 1 1 1 -
: | | | . - -
1 1 1 1 1 3 ” |
1 1 1 1 e
: | | - .
| | | | —
1 1 1 1 E .
i i i i i
i i | i —1 S
[ - i i i ] [
possss | : : : 35 - =
1 1 1 |
1 1 1 1
e (— I 1 | | [FTES H H
1 1 1 1 i 1 [
1 1 1 1 1 1 1=
[ i | i i
| dp— ] ] i i -t
] ] o — 1 1 b
1 1 1 1 1
1 1 [ 1 1 =
i 1 1 1 1
1 1 1 1 1
1 1 1 1 1 e
1 1 1 1 1 g
I 1 1 1 1
! ! ! ! — Laco 3.0t =
1 ] 1 1
I i [ J—— i Lacoz = — LocDi
1 1 1 1
! ! ! ! LOCD3 Y LOCD2
1 1 1 1 ==
! ! ! ! LacDd Lo
[ ] 1 1 — R
! : : : — Model LI | LaCDs
b U 1 1 1 1| —— Masdal L1
I i i i Mol 1LV !
! 1 1 1 — iesdal
] [ [ | Model IILIVIZ) .
I i i i Mzt LI
1 1 1 1 —
| | | | — 2.5/ s
o+ oo+ o 1= 9=+ 1= - o 1— — 3—

Glueball Odd ball

Lin Zhang, Chutian Chen, Yidian Chen, M.H.
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gluon background

Agree well with lattice results on EOS for pure gluon system

sf 1.4F
sk 1z}
ab 1.0}
T o3t [ | —  input (z)
" 8 g6} parameters |
2f 0} — Input V{g)
't oz} —  Input ¢{z)
of sew== _ A S ‘ parameters Il |
1.0 1.0 1.5 2.0 25
TiT,
| 2sf o
sk L 2o} e input Vg
Eu . = 15} = Inputeiz)
3 1.0}
1t ost
Of wwm=® . 0np====*
1.0 0 15 20 25

Lin Zhang, Chutian Chen, Yidian Chen, M.H.
Phys.Rev.D 105 (2022) 2, 026020

Quardratic dilaton field describes pure gluon system reasonably weI1Ié



Graviton-Dilaton-Scalar system for 2-flavor system

D.N. Li, M.H., JHEP2013, arXiv:1303.6929

Action for pure gluon system: Graviton-dilaton coupling

1
16?1’@5 .

Sa = [ d*z\/gse 2 (R + 40 20M & — V(D))

Gluonic background

Action for light hadrons: KKSS model (promote dilaton field to a
dynamical field)

. 1 :
SKKss = — fdJI gse PTr(|DX >+ Vx (X TX, ) + E(FE + F3))
5

5D linear sigma model

Total action: S=58+ ;TT—fSKKSS-

19



Quenched Unquenched
background background

A0
bs(z) 20 |

Lif

10

05

(] —— 2
0 1 2 3 4 ’ 0 5 10 15 2

r I 2 r 4 ! ! A !
—AS +AS2—|_§¢) — gASf[) —EE¢X2 — U_._

rr ! ! I :_))A r 3 m
D"+ (34, —20))8 — e\ % - ée%—%%@ (Vg((]?) A3 Vo(x, @)) — 0,

Y+ (3/—1; — (I;))(! — EQASVC’X()(,_ d) = 0.
D.N. Li, M.H., JHEP2013, arXiv:1303.6929 20



Two-point correlator gives the spectra:

—5; + Vi(z)s, = misﬂ,

- 2 Ay
—T, + V?r wlin = 'mn(wn — € -XLP”)"

2 A, Ag
_‘f*‘n + Vﬂ‘ffn = g5€ X(Wn — € X‘f-*n)-;

—v 4+ V(2)vn = m2 v,

n,u

rr
2
—a,, + Vaa, = m; ay,,

Three-point correlator gives form factor:

. N .
f2F Q) = =~ f‘izﬁﬂ”’_@v(quz){(ﬁzw) + ggx’e* s (m—p)?},

95 Ne

34" (3A. — ¢')?

Vg 2 —|— 4 + EBASVC,XX?
3A7 — ¢ +2x /x —2x 2 /x?
V’Tf._[,‘:' — 2
(B3A, — ¢ +2x /x)?
4 ,
4
Al’f o ¢.ff (Auf o ¢II)2
V — 5 5
¥ 2 * 4 ’
A!f o {;5:1 (A . )2
V?..-' — s 5
9 + 4
A - (A, -9
Vo= =25 +( i )’ + gze*ex,
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Dilaton in Mod I : b(z) = Mf_ -2
Dilaton in Mod IT:  ®(z) = ji2=2 tanh(uks 22/ 1i2)

Mod IA Mod IB  Mod ITA  Mod 11B

Gs/L° 0.75 0.75 0.75 0.75
my (MeV) 5.8 5.0 8.4 6.2
a'/3 (MeV) 180 240 165 226
e 0.43 0.43 0.43 0.43

e - - 0.43 0.43

Table 7. Two sets of parameters.

22



Produced hadron spectra and pion form factor comparing with data

D.N. Li, M.H., JHEP2013, arXiv:1303.6929

( Mod TA )

Ground states: chiral symmetry breaking
Excitation states: linear confinement

m>/n~ 4ug

Hg = 0.43GeV 0

( Mod B )

™
-
-
--------
......
-

.........................

.
-
-
-
--------
LT
LT

( Mod IIA )

Spectra and pion form factor cannot be
simultaneously produced!
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Graviton-Dilaton-Scalar system for 4-flavor system

f’{% + 4 ot K=+ Do
) g 1 P — L+ S+ Ko D--
. s —a A ! 21y ' V2 K Ko —y/ W' + = DL
S —f d” x+/ —ge Tr{IID X) [(DyuX)+ MZ|X| Vvt D
. \ D D+ D;* —
- 12 (LMY Lyew + BMVYByn) + (DMH) (Do H) + _-u;-’|H|E}__ [+ &+ 3 ay K 2]
495 e L af — S+ L X Ky D;
B K Ry ~Jim+2 D
\ I Dy D3 — 73 Xel
extended Linear Sigma Model (3 + %+ e - K b
W. |. Eshraim, F. Giacosa and D. H. Rischke, o o I+ Ly e K D-
Eur. Phys. J. A51, no.9, 112 (2015) TeTt =7 %~ e fIn+ 3 D
\ e D+ Dz —;‘%m
Solving background with chiral condensate:
) . Y.D. Chen, M.H.arXiv: 2110.08215,
gloy _ _ 1 / 4o {f — ':2”;'[3:“-’“3}' + 4.=;[z:|r:;[.:] + i'::[:}‘l':,l::]}'— Phys.Rev.D 105 (2022) 2, 026021 '
1 /) - H.Ameld, Y.D. Chen, M.H.arXiv:2308.14975,
‘?_j*] (3 (2u(2)2 + va(2)? + vo(2)?) — g{gm(:jﬁ La(z) 4+ r;ﬁ[zj,i].) 4+ Phys.Rev.D 108 (2023) 8, 086034) arXiv:2309.06156

-

i >0

e

g wiz) Fe—0lz] Y
(he(z)hi(z)) — -‘fc[ﬂ‘}
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Two-point correlation function gives mass

—g(z)
(2 5 MNE oy N h
..r'.:' :I _— fd. I {TJ‘ :..‘I- ({dﬂ.f nu - ..4.?1'.] [nl'-_-u'_-'\ 4k - ..4._Il|.':| J.ilf_u
— &
_|_‘? =) MP_ NG { ra b Az, . Ab }
4—2?? ) MNVPg T AyyApg
52
Gratdm o
Vector field N o —St&Et
Yol R0
Dsil D*+
ay i =1 +
AT
Axial vector field A Anpe — L “ : + v
V2 Ky KY -
DY DY
_.l- + 5— + = g]? T
. o1 —Em ot = +
Pseudoscalar field T=wt=— -~ v E'JE' =
2 K K

1’ r My

<J,!T,ﬂ"r;;,b> = 5ab(@;1@p

P+ VEMV, *-.J”VH]'
F2

2 [
—q gu.l!) X qg N ﬂlg 3

Dy a=12..15

_mrl'rr
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EOM for hadrons: eigenvalues give hadron spectra

rr
2
—s,. +V(z)s, = mZs,. Via 7Vib b 2 p
n s(2)8n non: (L0 T)7) 2 0% (4uGy — 47 Gpu) X —

I 2 As
_ﬂ_ﬂ —I_ Vﬂ',tpﬂﬂ — f“*n(ﬂ_ﬂ — € ]l/‘ijﬂ)

— @+ Vioon = gies x(my — e xipn).

rr
. i — 2 i
—v, + Vo(2)vn = my, ,vn,

—a, + Vaan = mZan, poosAs - B4, -0 ® Ay,
' 2 4 XX
3A, —@" +2x" /x —2xX%/x?  (BA, — @ + 2y /x)?
V?r,-:p — + :
2 4
A-"f o (I,ff (AF o 'q)f)E
V — = 5 i
7 > 4 7
AH’ o (I).”' (Af o (I).F)Q,
-L/Ygr _ 8 s .,
' 2 * 4
A —d (A —d)?
Va - 8 5 + ( s 1 ) + g%ﬁZA,ﬂ,.XZ*
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4-flavor hadron spectra: ground state and excitation states

H.Ameld, Y.D. Chen, M.H.arXiv:2308.14975 Phys RevD 108 (2023) 8, 086034) arXiv: 2309 06156

1= 0.43
My = 0.0032
me = 0.1423
m, = 1.5971
Mhe = 1.985

o, = (0.2962)"
s = (0.2598)3

o. = (0. 302)3
Zm = 10
k= 30

The values of the free parameters with the unit of GeV

20

e p(Model) P (Exp.)
) « K*(Model) -~ K= (Exp.)
15k ) v s+ w(Model) - w(Exp)
_ ’ v + D*(Model) - D*(Exp)
E v D.* (Model) - D.* (Exp.)
@ 10r v
< | v Jiy (Model) v J/y (Exp.)
5t .
- L]
L L
I & ¥
I I
L
0 ' ' ' '
0 2 4 e |

2{]: ® 3y {Model} :11 {Exp]
i . Ky (Model) -~ K, (Exp)
[ ' « f; (Model) - f; (Exp)
151 . D;(Model) - Dy (Exp)
NE : v Det (Model) Dy (Exp)
"EE 1[]: v Xo (Model) v xo (Exp.)
r -
5_ =
I a ¢ ;
i N w
[]- 1 1 1
0 2 4 6
n
L o 17 (Model) m(Exp.)
- L
o] . K (Model) - K2 (Exp)
« 1 (Model) n(Exp.)
- + D (Model) - D" (Exp.)
a 1{]_ =
E i . . D.* (Model) . Ds* (Exp.)
EE v 1 (Model) + n. (Exp.)
i L |
5: . . .
I . :
- &
R
ﬂﬂ 1 2 3 4 5 6




Three-point correlation function gives EM and semi-leptonic form factors

ce~ %) ,
S = — /u{ﬁ;{: {r,l‘”‘ﬂ" ——(2( A}y — dum") Vamtg™e + Vi (On [?r T°) — EA?”T:"]I habe
!'i_':l-"l:'[_] ) ) )

. UUPUNQU’ MN Ve pVo + Vir \’Ab o+ fj‘irn“’“}gﬂb +J‘1§fm’filﬁ"ﬁ}fbm}

- .F:a L,rf.lr?_-r:kuh-r: +
M¥nA :I EHE;E

53 8(Vrm)
Aﬂa (x)sv b {y}é.ﬂ.”ﬁ(w}

(o|T {555 @ at" @G @} o) = -

538 (VVV)
EVEi(m}EVEE}(y]éVE’;(w) '

<U T{JILLJ_( )JVJ_(U)JVJ_{W}HD> = —

5 L 53 s(vaa)
|7 {751 @757 w5 w)}fo) = - 5492 (2)sv PP (y)649% (w)

H.Ameld, Y.D. Chen, M.H.arXiv:2308.14975 Phys.Rev.D 108 (2023) 8, 086034), arXiv:2309.06156
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Psudoscalar mesons

H.Ameld, Y.D. Chen, M.H.arXiv:2308.14975 Phys.Rev.D 108 (2023) 8, 086034), arXiv:2309.06156
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Vector mesons
H.Ameld, Y.D. Chen, M.H.arXiv:2308.14975, arXiv:2309.06156
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Fie(Q%)

0.0 02 0.4 06 0.8 1.0

Q* (GeV?)
E'D; — FE.(@%) 1
15} — @) = LQCD
E _FQ.DE} :
1.0} 0 .
— : 1 ~
S o5} 1<
T ; Ty
0.0} ]
_1DEI 1 1 1 I_: 1 1 1 1 1 1 1 1 1
0.0 0.5 1.0 15 2.0 0.0 0.2 04 06 08 1.0 1.2 14

Q@ (Gev?) @ (Gev?) 30



* Semileptonic decays involve the transition of a heavy meson (such .

as B or D) to a lighter meson via the exchange of a W boson.
* Understanding the form factors governing these transitions is s d(l)
essential for precision measurements of CKM matrix elements and

Ds) P(V)

testing the Standard Model. _ _
d(s) < d(s)

* The matrix elements within the SM is defined by (M. A. Ivanov et al., Front. Phys.(2019) )

Gr |, « _ _
M (D) = (PV)ITyy) = \/—% q ((P;V)IG¥* (1 — ~s)clDs)) 7™ (1 — s)!

* The transition form factors are defined by (. wirbel etal, z. phys. c198s))

2 2

M M M2 o M2
(P (p2) |V*| De) (P1)) = F- () [P"‘ - %q“’] +F (7)) =52 7 2q"

B AM . * L 2 €>2kq 7 2
(V (P2, €2) [V — A | Dig) (1)) = — (M + My) 5747 () + TR (*)

oM, G;qéqq“ [A3 (qz) A, (qz)] N 2”%;/;:05\:’55!73 y (qz)
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ll. Quantitative era of hQCD under the help of Al

1, Status of CEP from theory;
2, QCD phase transitions under rotation
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Equilibrium state

potential barrier is needed
for 1s-order phase transition

mu_B plays the role of
repulsive vector interaction,
potential barrier develops
when mu_B increases,
indicating a 1st-order phase
transition.

Consider a graph of Potential Energy which adds

the strong nuclear and electromagnetic forces.

> Positive indicates repulsion
§ Negative indicates attraction
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Equilibrium state

Latest lattice constraints on CEP
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EOS for cold QCD matter

The Einstein-Maxwell-dilaton system at finite baryon density

B 1 f() 1 B
Sp = 167G /d5.’£\/ —q {R — TFQ — Ea,uﬂba ¢ — V(o)
ds* = = [—g(z)dt + ﬁ + dx ]

the components of the vector field AM(z) are zero except
the t component At(z).  A,(0) =+ p/2% + -
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Equiibrium state Thheoretical predictions for the location of CEP
Nonperturbative theoretical calculations (rPNJL model, DSE-fRG,fRG,holographic QCD):

Strategy of model calculations:

1, Fit model paraters with Lattice QCD EOS and baryon number susceptibility at zero chemical potential;
2,Predictions at finite baryon number chemical potential.

Xz
241 flavor(y=0)
15 B ﬂ_ﬁnt
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0.25F
i | el
10 0.20F
/ e/T
o 015
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] 3 » 5 3 3 T
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ML+hQCD:Xun Chen, MH, Phys.Rev.D 109 (2024) 5, L051902, e-Print:2401.06417
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Either input A(z) or V(z)

/d5$\/—_g [R - %@W - %6‘“@58% - V@)]

1

S pu—
E 167TG5

A(z) =dIn(az® +1) + dIn(bz* + 1) Input A(z) ansatz

f(z) = = ~AGRTE,

| Input | | Layer 1 | | Layer 2 | | Layer 3 | | Output |

64 neurons 128 neurons 64 neurons

The neural network here is used to determine the model
parameters from lattice EOS and baryon number susceptibility

a b c d k Gs T.

Ny=0 0 [0.072] 0 [-0.584| 0 ]1.326(0.265
Ny =2 10.067[0.023|-0.377(-0.382| 0 |0.885|0.189

Ny =2+1]0.204(0.013]-0.264 [-0.173 [-0.824]0.400 {0.128

ML+hQCD:Xun Chen, MH, Phys.Rev.D 109 (2024) 5, L051902,
e-Print:2401.06417 [hep-ph];e-Print: 2405.06179 [hep-ph]
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Equilibrium state
Locations of CEP from rPNJL model, holographic QCD models, DSE-fRG,fRG CONVErge at

around (Tc~100MeV, mu_B”c~700 MeV) 016 I
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Supervised learning, without input ansatz, ML lattice data and output A(z) and V(z)

T = T(zg; A(2), f(2))

ﬁ This means a network...
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(the dual physical quantity)
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Equivalenve of machine learning A(z) and V(\phi)

Alz) = a12* — aglog (1 4 22) —aslog (1 + a4z4) The corresponding constants are a; = 0.00037885, as =
f 0.062182, a3 = 0.21002, ay = 0.020314, f; = 0.31197,
2

flz)=fi+ T F 1 i) + f5 sech(fe + fr(z+ fs)?). f2 =0.079030, f3 = 0.34070.
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f(qﬁ) = C3 Sech(c4(¢ + 05)3)’ 0061371, Cy = 0.35482.
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Location of CEP hh'-
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Conclusion and outlook

5D DhQCD offers a systematic framework to describe the

emergent real world from QCD theory, including Linear
confinement and chiral symmetry breaking; hadron spectra
(glueball spectra, light-flavor and heavy flavor spectra) and form
factors, QCD phase transitions, thermodynamical and transport
propertities, and
More: 1)Nonequilibrium evolution, GW,

2) Inhomogeneous system

3) Hadron structure: PDF ......
Future: Al will definitely accelerate building hQCD framework

in quantitatively describing the nonperturbative QCD world!
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