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Motivation
•Glitch noises are short‑lived, non‑Gaussian transients that contaminate the 
gravitational wave data, degrade search pipelines, and may mimic or mask 
astrophysical signals if left uncharacterized 

•LIGO has prepared large-scale training data with the cooperation of citizen 
scientists and has successfully used it to perform classification using machine 
learning 

•However, KAGRA does not have such training data, so a similar approach 
cannot be used 

•Therefore, in this study, we investigated whether it is possible to classify glitch 
noise contained in KAGRA's observational data using unsupervised learning 
techniques



Gravitational wave detector

Credit: LIGO

• In 1916, Albert Einstein predicted 
the phenomenon of space-time 
distortion propagating as waves 

• When an extremely heavy object 
accelerates, space-time is 
violently shaken, and the 
distortion travels at the speed of 
light



• September 14, 2015 
• Detection of gravitational waves 
from the merger of two black 
holes (announced February 11, 
2016) 
• First direct detection of 
gravitational waves 
• BH masses before merger: 
approximately 36 and 29 times 
the mass of the Sun 
• → Post-merger mass: 
approximately 62 solar masses

PRL116 061102
Phys. Rev. Lett. 116, 061102

First detection of gravitational waves by LIGO



Astrophys. J. Lett. 848:L12 (2017), arXiv:1710.05833 
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• Electromagnetic wave observations over a 
wide frequency range were conducted on 
the neutron star binary merger event 
GW170817 

• It has become possible to elucidate 
astronomical phenomena by combining 
optical observations of multiple 
wavelengths, observations of cosmic rays 
such as neutrinos, and observations of 
gravitational waves

Multi messenger Astronomy
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• Advantages of Multiple Observations 
• Improved accuracy in determining the 
direction of gravitational wave sources 
•  Improved accuracy in estimating 
parameters such as optical distance, 
orbital inclination, and gravitational wave 
polarization (resolving degeneracy) 
• Increased probability of simultaneous 
observations with three or more 
detectors 

• International collaborative observations by 
LIGO-Virgo-KAGRA and collaborative 
research (data analysis and publication)

International Gravitational-Wave Observatory Network

https://observing.docs.ligo.org/plan/



Credit: LIGO/Caltech/MIT/R. Hurt (IPAC)



 Large-scale Cryogenic Gravitational wave Telescope KAGRA

•O3GK: Two-week joint observation with 
GEO600 in April 2020 
•O4a: Four-week joint observation with LIGO and 
Virgo in May 2023 
•O4c: LVK joint observation from Jun 2025 to 
Nov
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•A laser interferometer-type gravitational wave 
detector constructed underground at 
Ikenoyama in Hida City, Gifu Prefecture 

•It is a 3km-long interferometer  
•The current configuration of the 
interferometer is PRFPMI 

•Underground structure and a cryogenic 
mirror 

•The mirror is made of sapphire and cooled 
to approximately 40K

International collaborative observations with KAGRA
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 Large-scale Cryogenic Gravitational wave Telescope KAGRA
Underground experiment : Low ground vibration

•Ground vibration is strongly disturb when observing gravitational wave 
•Ground vibration in Kamioka underground is about 1/100 of ground in Tokyo



• Cooling the mirror reduces the thermal noise that affects laser reflection 
• Using sapphire substrate for mirrors(Aluminium oxide, Al₂O₃) 
• Good thermal conductivity in lower temperature 
• Highly transparent across a wide range of wavelengths from ultraviolet to infrared

 Large-scale Cryogenic Gravitational wave Telescope KAGRA
Cryogenic temperature : Low thermal noise



Importance for classification of Glitch noises
Transient noise(Glitch noise)：Non-stationary, non-Gaussian noise that 
appears in gravitational wave detectors

• Confirm that the gravitational waves are from an astronomical 
sources 
• Distinguishing gravitational wave signals from binary star mergers 
from noise originating from the environment, equipment, etc. 

• Identify the cause of the glitch noise and make improvements such as 
removing the noise source to improve sensitivity

Classifying glitch noise can provide important information for improvement
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[Abbott+ 2017]

Chirp Blip

[Zevin+ 2017]

GW170817



Previous study : Gravity Spy
•Gravity Spy [Zevin+ 2017, Bahaadini+ 2018, Glanzer+2023] 
•The Gravity Spy project collaborated with citizen 
science to classify LIGO glitches and create a 
labeled training dataset 
•The LIGO O1/O2 data are classified into 22 types 
of glitches, and the O3 data are classified into 23 
types of glitches 

•It also successfully used the dataset to build 
machine learning models with high classification 
accuracy (97.1%) 
•The model is incorporated into a pipeline that 
analyzes observational data and is used to 
determine whether detected signals are 
gravitational waves or glitch noise
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Previous study : Unsupervised Learning on Gravity Spy

A generative encoder‒decoder that learns a compact latent 
vector by reconstructing time‒frequency glitch images

[Sakai+ 2022, 2024]
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1. Variational Auto Encoder : VAE 2. Invariant Information Clustering : IIC

An unsupervised learning that maximizes mutual information 
between predictions for paired/augmented views of the 
same input

The Gravity Spy dataset was classified using unsupervised learning and showed 
comparable classification accuracy



The glitch noise classification process in this study

GW data

(c)Gray scaling & Resize

z

224 px
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(a)Detecting Glitch noise
(b)Perform Q-transform on the data and  
convert it into a time-frequency space images

(d) For each glitch, 
create four time-span 
images and train them 
together

(e)Learning with VAE to 
generate latent variables 

(f) Latent variables learned by VAE are 
dimensionally reduced using UMAP and 
plotted in 3D space.

(g)Using spectral clustering, grouping 
glitch noises with similar shapes based 
on their features
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KAGRA O3GK data

• Input data: KAGRA Strain channel from the O3GK period 
• Event detection: The glitch detection pipeline Omicron (Robinet+ 2020) was used to identify the time of sudden 
noise occurrence 
• SNR > 7.5, 10-2048 Hz (peak frequency) 
• 4.63 events/min 
• Imaging: Time-frequency space image creation (Q transform) 
• Four images were created for each event, at 0.5, 1, 2, and 4 seconds. 
• Gray scaled + 224x224 pixel size 
• Data size: 45,345 events

0.5 s 1 s 2 s 4 s

1event
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Conditions of Unsupervised learning in this study

epoch

learning curve

validation curve

• We changed the VAE hyperparameters to check the difference in the learning curve 
• Since there was no significant difference within the range we checked, we adopted z=512 
and minibatch=96 parameters 
• UMAP was used to compress the learned latent variables (512 dimensions) to 3 dimensions 
• Spectral clustering was used to visually check how the features were divided when the 
number of classes was 4 to 12

z

VAE (based on Sakai 2022/2024 CNN 
configuration) 
Latent dimension z∈{32, 64, 128, 256, 512} 
Minibatch {32, 64, 96, 128} 
Epoch 100 
Learning rate: 5e-4 
Training data:Test data = 80%:20%
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Glitch Noise Shapes and Classification
• Visually check the glitch noise 
shapes contained in the 
clusters (4 to 12) divided by 
spectral clustering 
• When the number of 
classes is small, different 
shapes (blips and lines) are 
grouped together in the 
same cluster 
• When the number of 
classes is large, blips are 
separated into different 
clusters
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Classification into 8 classes where shape 
differences are considered to be clear



Glitch Noise Shapes and Classification

• Blips account for approximately 
80% of the total  

• LIGO O1/O2 also has many blips 
• The cause of glitches other than 
Scattered Light is unknown 

• The scattered light is caused by 
the vibration of the Power 
Recycling mirror 
[Yamamura+, 2024, CQG, 41, 205008]

Shape of glitch noise Number of glitch noise Percentage

Middle line 621 1.4%

Lower line 294 0.6%

Blips 35925 79.2%

Complex 44 0.1%

Blips & Line 4016 8.9%

Separated Blips 4358 9.6%

Loud 60 1.3%

Scattered Light 27 0.6%
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Evaluation of the number of clusters

• In this study, we classified O3GK glitches into eight types. To verify the 
validity of these results, we used the following two methods: 

• Davies-Bouldin Index (DBI): Evaluates the degree of separation and 
dispersion between clusters  

• Silhouette Coefficient: Quantifies the degree to which each sample 
conforms to its assigned cluster



Evaluation of the number of clusters

• Davies-Bouldin Index (DBI): Evaluates the degree of separation and dispersion between 
clusters  

• Silhouette Coefficient: Quantifies the degree to which each sample conforms to its 
assigned cluster

21



Evaluation of the number of clusters

• Davies-Bouldin Index (DBI): Evaluates the degree of separation and dispersion between 
clusters  

• Silhouette Coefficient: Quantifies the degree to which each sample conforms to its 
assigned cluster

Smaller values ​​are better The closer to 1 the better
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Evaluation of the number of clusters

• From visual confirmation + DBI and silhouette coefficient comparison, it is considered that 
there are eight types of glitch shapes included in the O3GK data 

• The results are consistent with the results of analyzing O3GK data with Hveto and visually 
distinguishing the shapes (6 types) [KAGRA collaboration, 2025, PTEP, 8, 083]

Smaller values ​​are better The closer to 1 the better
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Summary
• We performed unsupervised machine learning tequnique to characterize 
O3GK glitches into eight classes by sequentially applying a VAE for 
representation learning, UMAP for dimensionality reduction, and Spectral 
Clustering for partitioning 

• The certainty of the number of clusters was confirmed by the Davies‒Bouldin 
Index (DBI), silhouette coefficients, and complementary expert visual 
inspection 

• The number of classes of glitches observed in KAGRA O3GK appears reduced 
relative to that reported for LIGO O1/O2 

• One possible reason is the higher noise floor in KAGRA, which may hide 
additional glitch shapes that could otherwise be detected
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Summary
Future Work:

• Apply this method to O4 observation data to investigate whether 
previously unavailable glitch types appear under improved detector 
sensitivity 

• Develop a system similar to GSpyNetTree that can automatically 
respond to gravitational-wave alerts, perform rapid glitch identification, 
and support low-latency data quality assessment


