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Primordial Black Hole

Figure 1:  Differences in the formulation of black holes and primordial 

black holes [Science Tokyo]

• Origin: Formed from gravitational collapse 

of large primordial density fluctuations

• Dark Matter Candidate: A promising 

contender for explaining dark matter
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Hawking Radiation

Figure 2:  Illustration of Hawking radiation [Physics feed]

Accelerating PBH Phenomenology via Neural Operators 2 / 27



PBHs as Particle Factories
• Hawking temperature of PBH [J. D. Beckenstein, PRD (1973), S. Hawking, Comm. Math. Phys. (1975) & PRD (1976)]

𝑘B𝑇PBH = ℏ𝑐3

8𝜋𝐺𝑀PBH
∼ 1.06( 1016g

𝑀PBH
)MeV ∼ 1010( 1016g

𝑀PBH
)K

• Emission rates of particle 𝜒 [A. A. Starobinsky, Sov.Phys.JETP (1973), S. A. Teukolsky (1974), D. N. Page, ApJ (1976)]

[D. Ida, K. Oda and S. C. Park, PRD (2003, 2004)]

d2𝑁𝜒

d𝐸d𝑡
=

𝑔𝜒

2𝜋
Γ(𝐸, 𝑀PBH)

𝑒𝐸/𝑘B𝑇PBH − (−1)2𝑠𝜒

‣ 𝑔𝜒: Degree of freedom of 𝜒
‣ 𝑠𝜒: Spin of 𝜒
‣ Γ(𝐸, 𝑀PBH): Greybody factor

• Lifetime of PBH [D. N. Page, PRD (1976)]

𝜏PBH ∼ 13.8 × 109 years ( 𝑀PBH
5.1 × 1014g

)
3

• Particle Factory: Can be a source of various particle emissions through Hawking radiation
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Computation of Hawking Radiation

Secondary particles produced by the decay and hadronization of primary particles
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Secondary Spectrum & BlackHawk

• Emission rate of secondary photons [A. Arbey and J. Auffinger, EPJC (2019), A. Coogan et al., PRL (2021)]

d2𝑁 sec
𝑗

d𝐸d𝑡
= ∫

+∞

0
∑

𝑖

d2𝑁pri
𝑖

d𝐸′d𝑡
d𝑁 𝑖

𝑗

d𝐸
d𝐸′

d2𝑁 sec
𝛾

d𝐸𝛾d𝑡
= ∑

𝑖=𝑒±,𝜇±,𝜋±

∫ d𝐸𝑖(
d2𝑁pri

𝑖
d𝐸𝑖d𝑡

)d𝑁FSR
𝑖

d𝐸𝛾
+ ∑

𝑖=𝜇±,𝜋0,𝜋±

∫ d𝐸𝑖(
d2𝑁pri

𝑖
d𝐸𝑖d𝑡

)d𝑁decay
𝑖

d𝐸𝛾

• How to compute the secondary spectrum

‣ For low energy (≲ 5 GeV) : use HAZMA [A. Coogan et al., JCAP (2020)]

‣ For mid energy (5 GeV ≤ 𝐸 ≲ 10TeV) : use PYTHIA [T. Sjöstrand et al., Comput. Phys. Commun. (2008)]

‣ For high energy (≳ 10TeV) : use HDMSpectra [C. W. Bauer et al., JHEP (2021)]

⇒ BlackHawk
[A. Arbey & J. Auffinger, EPJC (2021)]
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Challenges in Computing Secondary Spectra
[A. Coogan et al., PRL (2021)]

Figure 3:  Comparison of the emission rates computed by HAZMA 

and PYTHIA

Figure 4:  The primary spectrum for 𝑀PBH = 1013g intersects 

the ROI from Hazma and Pythia.
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Q1: Can’t we directly obtain secondary spectrum?

𝜓(𝑀)

?
⇨

d2𝑁 total
𝛾

d𝐸𝛾d𝑡
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Q2: How about an inverse direction?

𝜓(𝑀)

?
⇦

d2𝑁 total
𝛾

d𝐸𝛾d𝑡
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Operator Formulation of Hawking Radiation

• Total photon flux is defined by convolution of the single secondary photon flux and the mass 

function:

(
d2𝑁 tot

𝛾

d𝐸d𝑡
)

𝜓

= ∫
𝑀max

𝑀min

d2𝑁 sec
𝛾

d𝐸d𝑡
𝜓(𝑀)d𝑀

∫
𝑀max

𝑀min

𝜓(𝑀)d𝑀 = 1

• If we fix 𝑀min and 𝑀max, then this can be expresses as the linear operator:

ℌ : 𝜓(𝑀) →
ℌ

(
d2𝑁 tot

𝛾

d𝐸d𝑡
)

𝜓
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Operator Formulation of Hawking Radiation

• Total photon flux is defined by convolution of the single secondary photon flux and the mass 

function:

(
d2𝑁 tot

𝛾

d𝐸d𝑡
)

𝜓

= ∫
𝑀max

𝑀min

d2𝑁 sec
𝛾

d𝐸d𝑡
𝜓(𝑀)d𝑀

∫
𝑀max

𝑀min

𝜓(𝑀)d𝑀 = 1

• If we fix 𝑀min and 𝑀max, then this can be expresses as the linear operator:

ℌ : 𝜓(𝑀) →
ℌ

(
d2𝑁 tot

𝛾

d𝐸d𝑡
)

𝜓

We call this operator the Hawking Operator.
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Hawking Operator

𝜓(𝑀)

ℌ
⇨

d2𝑁 total
𝛾

d𝐸𝛾d𝑡
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Inverse Hawking Operator
Is it well-defined?

d2𝑁 total
𝛾

d𝐸𝛾d𝑡

ℌ−1

⇨

𝜓(𝑀)
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Two Pillars of Operator Learning

Deep Operator Network (DeepONet)
[L. Lu et al., Nat. Mach. Intell. (2021)]

Fourier Neural Operator (FNO)
[Z. Li et al., ICLR (2021)]
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DeepONet Architecture

• Consider an operator 𝐺 : ℱ︀ → 𝒢︀, where 𝑓(𝑥) ∈ ℱ︀ and 𝑔(𝑦) ∈ 𝒢︀ are functions.
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Neural Hawking Operator

• The Hawking operator is defined as ℌ : 𝜓(𝑀) ↦ d2𝑁/d𝐸d𝑡
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Neural Inverse Hawking Operator

• The Inverse Hawking operator is defined as ℌ−1 : d2𝑁/d𝐸d𝑡 ↦ 𝜓(𝑀)
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More Precise: MambONet

MambONet (Mamba Operator Network)

: Mamba + Multi-Head Attention + Transformer

[T.-G. Kim & S. C. Park, arXiv:2410.20951]
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Prepare Data - Generalized Beta Prime Distribution
• Generalized Beta Prime Distribution for generating various PBH mass functions: [McDonald et al. (1995)]

𝜓(𝑀|𝑀𝑠, 𝛼, 𝛽, 𝛾) = 𝛽
𝑀𝑠𝐵(𝛼, 𝛾)

( 𝑀
𝑀𝑠

)
𝛼𝛽−1

(1 + ( 𝑀
𝑀𝑠

)
𝛽

)
−(𝛼+𝛾)
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Prepare Data - Amoroso Distribution
• Amoroso distribution for generating various PBH mass functions: [G. E. Crooks (2010); C. Combes et al., MCS (2022)]

𝜓(𝑀|𝑀𝑠, 𝛼, 𝛽) = 1
Γ(𝛼)

|𝛽|
𝑀𝑠

( 𝑀
𝑀𝑠

)
𝛼𝛽−1

exp(−( 𝑀
𝑀𝑠

)
𝛽

)
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Results - Log Normal
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Results - Smooth Power Law
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Results - Critical Collapse
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Results - Comparison of Models
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Results - Efficiency Comparison
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Inverse Hawking - Uncertainty Quantification
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Inverse Hawking - Comparison of Models
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Inverse Hawking - Comparison of Models (Reconstruction)
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Summary

• New Paradigm: Neural Hawking Operator

Established a unified framework (ℌ) that replaces the discontinuous “patchwork” of traditional 

simulation tools with a continuous, end-to-end differentiable model.

• Precision Meets Efficiency

MambONet achieves scientific-grade accuracy (1 − 𝑅2 < 10−6) while being significantly more 

lightweight (2.7M params) than SOTA baselines.

• Accelerating Discovery

Delivers 𝒪︀(103) speedup compared to numerical methods, enabling rapid hypothesis testing

• Toward Inverse Phenomenology

Successfully demonstrated the inverse mapping (ℌ−1), opening a direct path from gamma-ray 

observations to PBH mass distribution discovery.
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Supplements



Greybody Factor

• A radial equation for massless field around a rotating black 

hole: [S. A. Teukolsky, ApJ (1973)]

∆−𝑠 d
d𝑟

(∆𝑠+1 d𝑅
d𝑟

) + (𝐾2 − 2𝑖𝑠(𝑟 − 𝑀)𝐾
∆

+ 4𝑖𝑠𝜔𝑟 − 𝜆)𝑅 = 0

‣ ∆ = 𝑟2 − 2𝑀𝑟
‣ 𝐾 = 𝑟2𝜔
‣ 𝜆 = 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)

• Choose tortoise coordinate 𝑟∗, then it becomes Schrodinger-

like equation: [S. Chandrasekhar, Proc. Roy. Soc. Lond. (1975)]

Λ2𝜙 = 𝑉 (𝑟)𝜙

‣ 𝑟∗ = 𝑟 + 2𝑀 ln(𝑟/2𝑀 − 1)

• At the far field, the solution is:

𝜙(𝑟∗) ∼ 𝐴𝑒𝑖𝜔𝑟∗ + 𝐵𝑒−𝑖𝜔𝑟∗ , 𝑟∗ → +∞

‣ Greybody factor: Γ = 1/|𝐵|2

[A. Arbey & J. Auffinger, EPJC (2021)]

Figure 5:  Hawking spectra of massless particles of various 

spins from a PBH



PBHs as Particle Factories

Figure 6:  The emission rates of photons, muons, electrons and neutrinos from a PBH with 𝑀PBH = 1015g



Input Energy Limit of PYTHIA

Figure 7:  Excerpt from the PYTHIA manual indicating the lower limit of primary particle energy for accurate simulation



Is the Inverse Hawking Operator Well-Defined?

• The Question: Given an observed total spectrum Φ(𝐸), can 

we uniquely determine the original PBH mass distribution 

𝜓(𝑀)?

• The Analogy: The Hawking operator ℌ, mapping a mass 

function to a spectrum, behaves much like a Laplace 

Transform.

𝜓(𝑀) ⟶
Hawking Op. ℌ

Φ(𝐸)

𝑓(𝑡) ⟶
Laplace ℒ︀

𝐹(𝑠)

• Since the Laplace transform is injective (one-to-one), we 

expect the Hawking operator to be as well, meaning its 

inverse ℌ−1 should be well-defined.

Sketch of Proof

• The operator is an integral transform: Φ(𝐸) =
∫ 𝐾(𝐸, 𝑀)𝜓(𝑀) d𝑀  where the kernel 𝐾(𝐸, 𝑀) is the 

spectrum from a single PBH of mass 𝑀 .

• Injectivity is guaranteed if the set of kernel functions 

{𝐾(𝐸, 𝑀)}𝐸  is dense (i.e., they can form a basis for any 

reasonable 𝜓(𝑀)).

• At high energies (𝑀𝐸 ≫ 1), the kernel simplifies to:

𝐾(𝐸, 𝑀) ≈ poly(𝑀, 𝐸) ⋅ 𝑒−8𝜋𝑀𝐸

• Two theorems confirm this:

‣ Müntz-Szász: Confirms that sets of exponentials like 

{𝑒−𝑐𝑛𝑀} are dense.

‣ Paley-Wiener: Ensures that small perturbations don’t 

break this property.

Conclusion: The operator is injective.



Training Details

• A dataset of 100,000 PBH instances with varied mass functions was generated via a custom 

Rust code, which simulates the Hawking radiation process. We divided the dataset into training 

(80%), validation (15%), and test (5%) sets.

• We utilized several neural operator architectures (e.g., DeepONet, FNO, MambONet) 

implemented in PyTorch.

• For optimizer, we used SPlus optimizer [K. Frans et al., arXiv:2506.07254] and for learning rate scheduler, we 

used the ExpHyperbolicLR [T.-G.Kim, arXiv:2407.15200]

• Hyperparameters for each architecture were optimized using Optuna’s TPE sampler over 100 

trials (1 trial includes 10 epochs), targeting minimum validation loss.

• The best models were trained using the discovered parameters for 250 epochs with a batch size 

of 100.

• For both training and inference, we used single NVIDIA RTX 5090 GPU with 32GB of memory.



Inference Rate vs Batch Size

Figure 8:  Inference rate (samples/second) with varying batch sizes
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