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Primordial Black Hole

- Energy fluctuations immediately  « Qrigin: Formed from gravitational collapse
after the birth of the universe . . . .
of large primordial density fluctuations
‘10 billion years J 0.1 ms

 Dark Matter Candidate: A promising
contender for explaining dark matter

Black hole Primordial black hole

Figure 1: Differences in the formulation of black holes and primordial
black holes [Science Tokyo]
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Hawking Radiation

Singularity Boundary of Event Horizon

- +ve Energy Particle

\ Event Horizon
7= -ve Energy Particle \

Hawking Radiation Vi
-
\ ¢
/ I . -~ ‘.,Il‘ \ "
\ % - ), i

N

/
/ T / Hawking Radiation
i

Both Particles Demolish / '

Each Other £
-
¢ "\ E
-\

/i

Formation of Virtual Particles . . Vi +ve Energy Particles
Hawking Radiation are the Hawking Radiation

Figure 2: Illustration of Hawking radiation [Physics feed]



PBHs as Particle Factories

- Hawking temperature of PBH [3. D. Beckenstein, PRD (1973), S. Hawking, Comm. Math. Phys. (1975) & PRD (1976)]

hed 101%g 1016g
kg Tpp = ———— ~ 1.06 MeV ~ 1010 [ —8 | K
BPBH 8 G Mppn (MPBH ¢ Mpgn

- Emission rates of particle y [A. A. Starobinsky, Sov.Phys.JETP (1973), S. A. Teukolsky (1974), D. N. Page, ApJ (1976)]
[D. Ida, K. Oda and S. C. Park, PRD (2003, 2004)]

d?N, _ 9 T'(E, Mpgy) > g, Degree of freedom of x
dEdt 21 eE/ksTrpn — (—1)25x > SX: Spin of X
» I'(E, Mpgy): Greybody factor
« Lifetime of PBH [D. N. Page, PRD (1976)]
M. 3
Tppy ~ 13.8 x 109 years (5.1 pr(l){”g)

- Particle Factory: Can be a source of various particle emissions through Hawking radiation



Mass Function]

Computation of Hawking Radiation
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Secondary particles produced by the decay and hadronization of primary particles



Secondary Spectrum & BlackHawk

- Emission rate of secondary photons [A. Arbey and J. Auffinger, EPJC (2019), A. Coogan et al., PRL (2021)]
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e How to compute the secondary spectrum

» For low energy (< 5 GeV) : use HAZMA [A. Coogan et al,, ICAP (2020)]

» For mid energy (5 GeV<FE S lOTeV) . USe PYTHIA [T. sjostrand et al., Comput. Phys. Commun. (2008)] = BlackHawk

_ [A. Arbey & J. Auffinger, EPIC (2021)]
» For high energy (= 10TeV) : use HDMSpectra [c. w. Bauer et al., JHEP (2021)]



Challenges in Computing Secondary Spectra

[A. Coogan et al., PRL (2021)]
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Figure 3: Comparison of the emission rates computed by HAzMA Figure 4: The primary spectrum for Mppy = 10*3g intersects
and PYTHIA the ROI from Hazma and Pythia.



Q1: Can’t we directly obtain secondary spectrum?
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Q2: How about an inverse direction?
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Operator Formulation of Hawking Radiation

« Total photon flux is defined by convolution of the single secondary photon flux and the mass

function:
d2 Ntot M, .~ d2 Nsec
7 = T ap(MYAM
( dEdt ) /M dEdt ¥(M)
P

min

/ e H(M)AM = 1

M

min

then this can be expresses as the linear operator:
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Operator Formulation of Hawking Radiation

« Total photon flux is defined by convolution of the single secondary photon flux and the mass

function:
d2 Ntot M, .~ d2 Nsec
7 = T ap(MYAM
( dEdt ) /M dEdt ¥(M)
P

min

/ e H(M)AM = 1

M

min

« Ifwefix M, and M

max’

then this can be expresses as the linear operator:
4 d2Nt0t
(M 7
- (225
Y

We call this operator the Hawking Operator.




Hawking Operator
(M)
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Inverse Hawking Operator

d2 Ntotal
Y
5 w(M)

Is it well-defined?
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OPERATOR LEARNING

INPUT FUNCTIONS OUTPUT FUNCTIONS

) N OPERATOR
‘¢4 ';‘.‘.) (e.g., Neural Network)

OPERATOR
(e.g., Neural Network)

INPUT FUNCTIONS OUTPUT FUNCTIONS *



Two Pillars of Operator Learning

Article Published: 18 March 2021

Learning nonlinear operators via DeepONet based on

the universal approximation theorem of operators
Deep Operator Network (DeepONet)

Lu Lu, Pengzhan Jin, Guofei Pang, Zhonggiang Zhang & George Em Karniadakis & [L. Lu et al., Nat. Mach. Intell. (2021)]

Nature Machine Intelligence 3,218-229 (2021) | Cite this article

59k Accesses | 2235 Citations | 193 Altmetric | Metrics

Fourier Neural Operator

Fourier Neural Operator (FNO) For Parametrlc PDES

[Z.Lietal, ICLR (2021)] ]CLR 2021

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu,
Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar

Caltech



DeepONet Architecture

« Consider an operator G : & — G, where f(z) € F and g(y) € G are functions.

Discretized Input Function
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Query Point
-[ Trunk Net

Mapped Function
at Query Point




Neural Hawking Operator

 The Hawking operator is defined as § : ¢(M) — d?N /dEdt
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Neural Inverse Hawking Operator

« The Inverse Hawking operator is defined as $~! : d? N /dEdt + (M)
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More Precise: MambONet

MambONet (Mamba Operator Network)
: Mamba + Multi-Head Attention + Transformer

[T.-G. Kim & S. C. Park, arXiv:2410.20951]
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Prepare Data - Generalized Beta Prime Distribution

- Generalized Beta Prime Distribution for generating various PBH mass functions: [McDonald et al. (1995)]
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Prepare Data - Amoroso Distribution

« Amoroso distribution for generating various PBH mass functions:
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Curriculum Learning: From Simple to Complex

Curriculum Learning Target: GBP
(6radual Transition) (Complex)

rS‘I't:lr'f: Amoroso
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Results - Log Normal
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Results - Smooth Power Law

[ I [ [ T
1029 | .
Data
10712 - } icti
1055 L = = Prediction i
—15 | . —_—
10 - 1021 -
‘T‘m
— 1018 |- i £ 10'7 |
! N
o
=2 >
— () 13 .
S 1072 | ;12"
= 5
g 10 1
~
—24 | .
10 NZ
C 105 F i
10—27 | | ]
101 | _
10—30 ] 1 ] ] 10—3 EETITT BRI AR TTTT BT AR TTIT BRI AR TIT RETArEETIT RETETATITT MY WETTT BTN e
104 10'6 1018 1020 10?2 10=% 10 1072 10" 10° 10' 102 10° 10* 10° 10°

M [g] E [MeV]



Results - Critical Collapse
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Results - Comparison of Models
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Results - Efficiency Comparison
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Inverse Hawking - Uncertainty
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Inverse Hawking - Comparison of Models
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Inverse Hawklng Compartson of Models (Reconstructton)
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Summary

- New Paradigm: Neural Hawking Operator
Established a unified framework () that replaces the discontinuous “patchwork” of traditional
simulation tools with a continuous, end-to-end differentiable model.

 Precision Meets Efficiency
MambONet achieves scientific-grade accuracy (1 — R? < 107%) while being significantly more
lightweight (2.7M params) than SOTA baselines.

« Accelerating Discovery
Delivers @(10°%) speedup compared to numerical methods, enabling rapid hypothesis testing

« Toward Inverse Phenomenology
Successfully demonstrated the inverse mapping (571), opening a direct path from gamma-ray
observations to PBH mass distribution discovery.
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Greybody Factor

- Aradial equation for massless field around a rotating black
hole: [S. A. Teukolsky, ApJ (1973)]

2 orfm
ASE(ASH@) N (K 2is(r — MK

43 — =
. T A + 4iswr A)R 0

» A=1r2—2Mr
» K =rw
» A=1ll+1)—s(s+1)

« Choose tortoise coordinate r,, then it becomes Schrodinger-
like equation: [S. Chandrasekhar, Proc. Roy. Soc. Lond. (1975)]

A =V(r)¢
»r,=r+2MIn(r/2M — 1)
« At the far field, the solution is:
B(r,) ~ Ae™Ts + Be W r — 400

» Greybody factor: T = 1/|B|?

[A. Arbey & J. Auffinger, EPJC (2021)]
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Figure 5: Hawking spectra of massless particles of various
spins from a PBH



PBHs as Particle Factories
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Figure 6: The emission rates of photons, muons, electrons and neutrinos from a PBH with Mppy = 101%g



Input Energy Limit of PYTHIA

parm Beams:eMinPert (default = 10.;minimum = 10.)
The lowest CM energy that collisions are allowed to have. The highest is set by the full energy at initialization, as calculated in the respective

options above. If you do not want to generate events with a higher collision energy than this you can save some initialization time by raising
this number accordingly, so that fewer grid energies need to be used. You should not lower the value below the default one, however, since
the perturbative MPI machinery cannot be made to work at lower energies. If you do want to generate events with lower energies, it is

possible in a nonperturbative framework, see next.

Figure 7: Excerpt from the PYTHIA manual indicating the lower limit of primary particle energy for accurate simulation



Is the Inverse Hawking Operator Well-Defined?

 The Question: Given an observed total spectrum ®(E), can

we uniquely determine the original PBH mass distribution Sketch of Proof
Y(M)? « The operator is an integral transform: ®(FE) =
- The Analogy: The Hawking operator £, mapping a mass J K(E, M)y(M)dM where the kernel K (E, M) is the
function to a spectrum, behaves much like a Laplace spectrum from a single PBH of mass M.
Transform.  Injectivity is guaranteed if the set of kernel functions
{K(E, M)} is dense (i.e., they can form a basis for any
Hawking Op. $ reasonable ¥(M)).

p(M)  — O(E)
« At high energies (M E > 1), the kernel simplifies to:
Laplace £

f&) —  F(s) K(E, M) ~ poly(M,E) - e 87ME
« Two theorems confirm this:
- Since the Laplace transform is injective (one-to-one), we » Miintz-Szasz: Confirms that sets of exponentials like
expect the Hawking operator to be as well, meaning its {e=¢M} are dense.
inverse ! should be well-defined. » Paley-Wiener: Ensures that small perturbations don’t

break this property.

Conclusion: The operator is injective.



Training Details

- A dataset of 100,000 PBH instances with varied mass functions was generated via a custom
Rust code, which simulates the Hawking radiation process. We divided the dataset into training
(80%), validation (15%), and test (5%) sets.

« We utilized several neural operator architectures (e.g., DeepONet, FNO, MambONet)
implemented in PyTorch.

« For optimizer, we used SPlus optimizer i« rransetal, arxiv:2506.07254] and for learning rate scheduler, we
used the ExpHyperbolicLR 1.-6.kim, axiv:2407.15200]

- Hyperparameters for each architecture were optimized using Optuna’s TPE sampler over 100
trials (1 trial includes 10 epochs), targeting minimum validation loss.

« The best models were trained using the discovered parameters for 250 epochs with a batch size
of 100.

« For both training and inference, we used single NVIDIA RTX 5090 GPU with 32GB of memory.



Inference Rate vs Batch Size
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Figure 8: Inference rate (samples/second) with varying batch sizes
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