

Wavelet-Based Extraction of Transient Noise in Gravitational-Wave Interferometers using a Learning Architecture Guided by Manifold Clustering

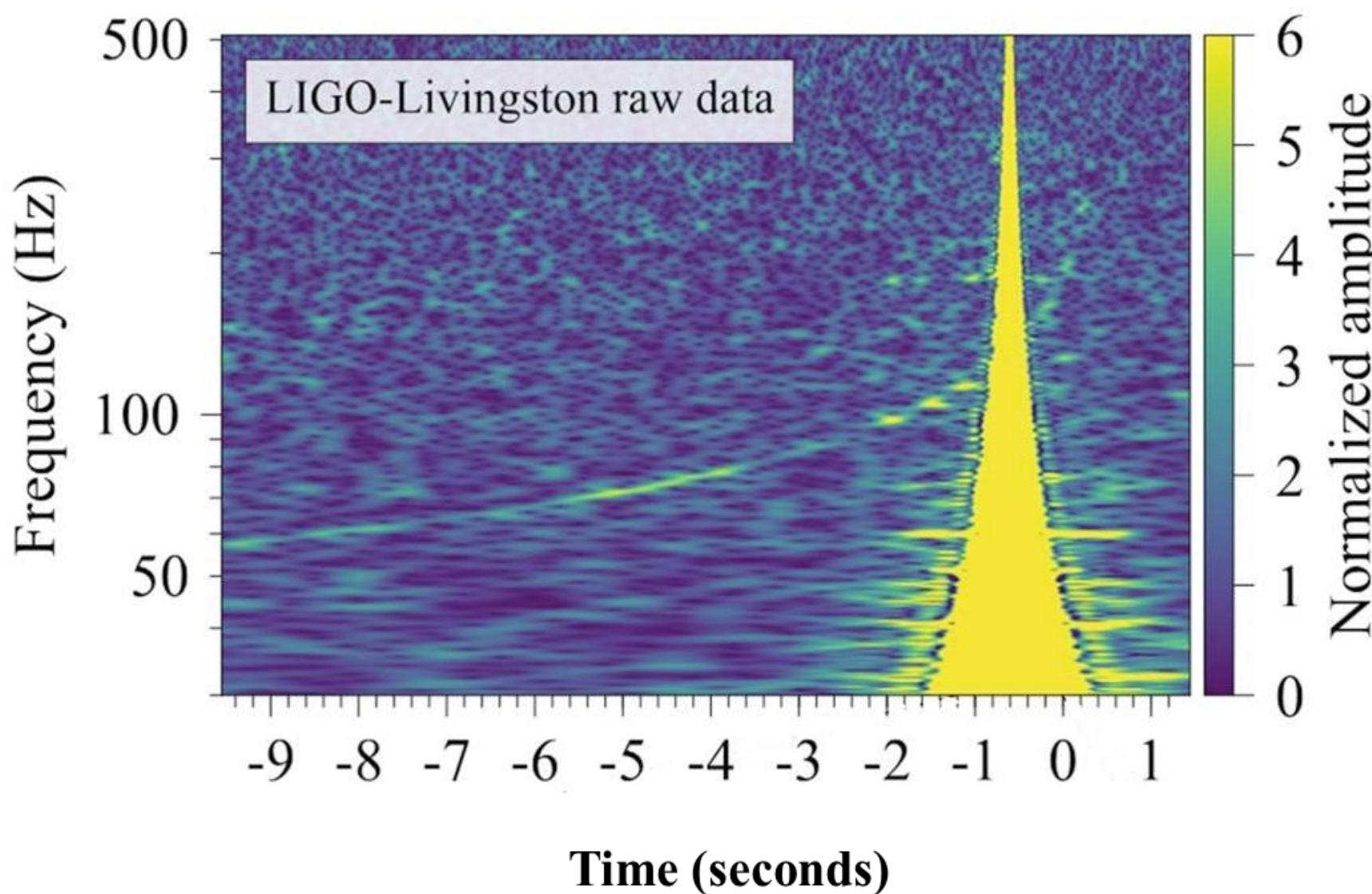
Christopher Alléné,

January the 22nd, 2026

東京都市大学
TOKYO CITY UNIVERSITY

JSPS

Glitch



Glitch:

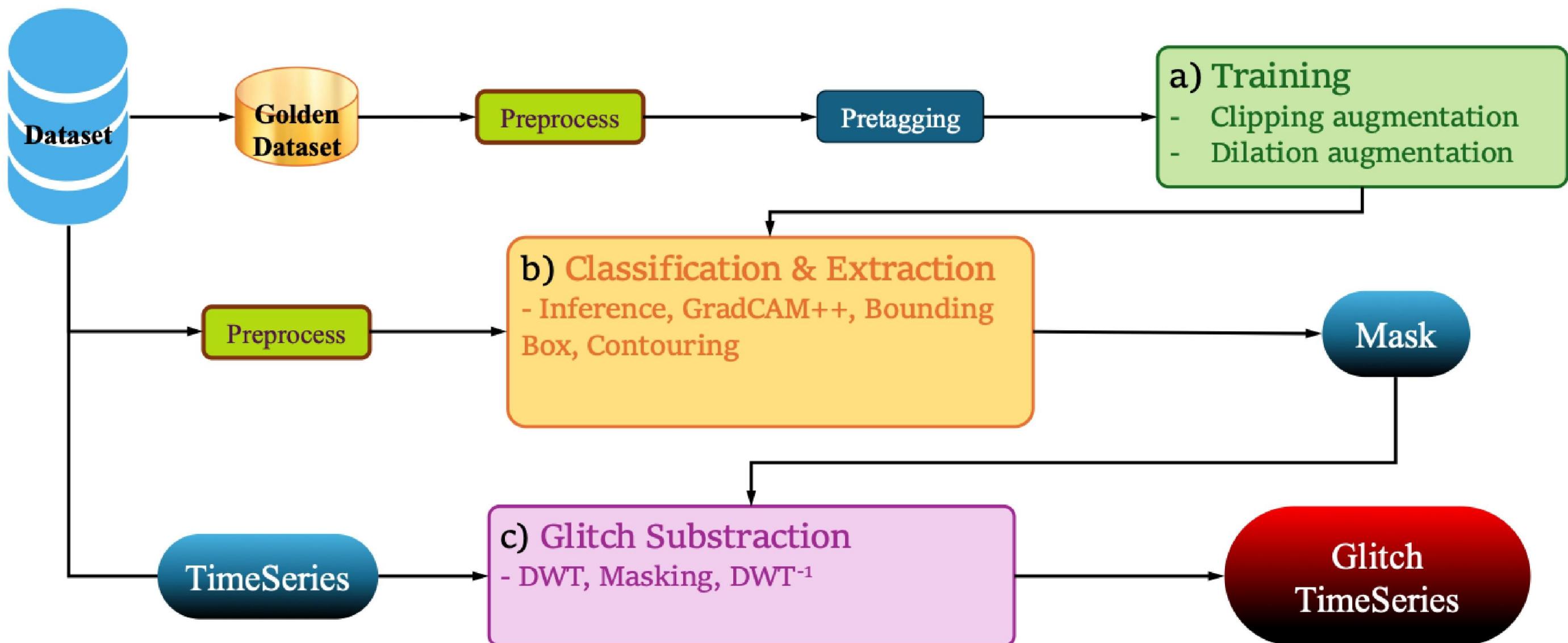
- Short-duration transient noise;
- Can be superimposed on astrophysical signal;
- Can be very loud;
- Can last until ~ 4 s;

Motivation

- To isolate glitches;
- Better understanding of the noise (non-gaussian one especially);
- Be able to produce bank of glitch to simulate noise with non-gaussianities;

⇒ We need then to be able to **segment** and to **subtract** glitches

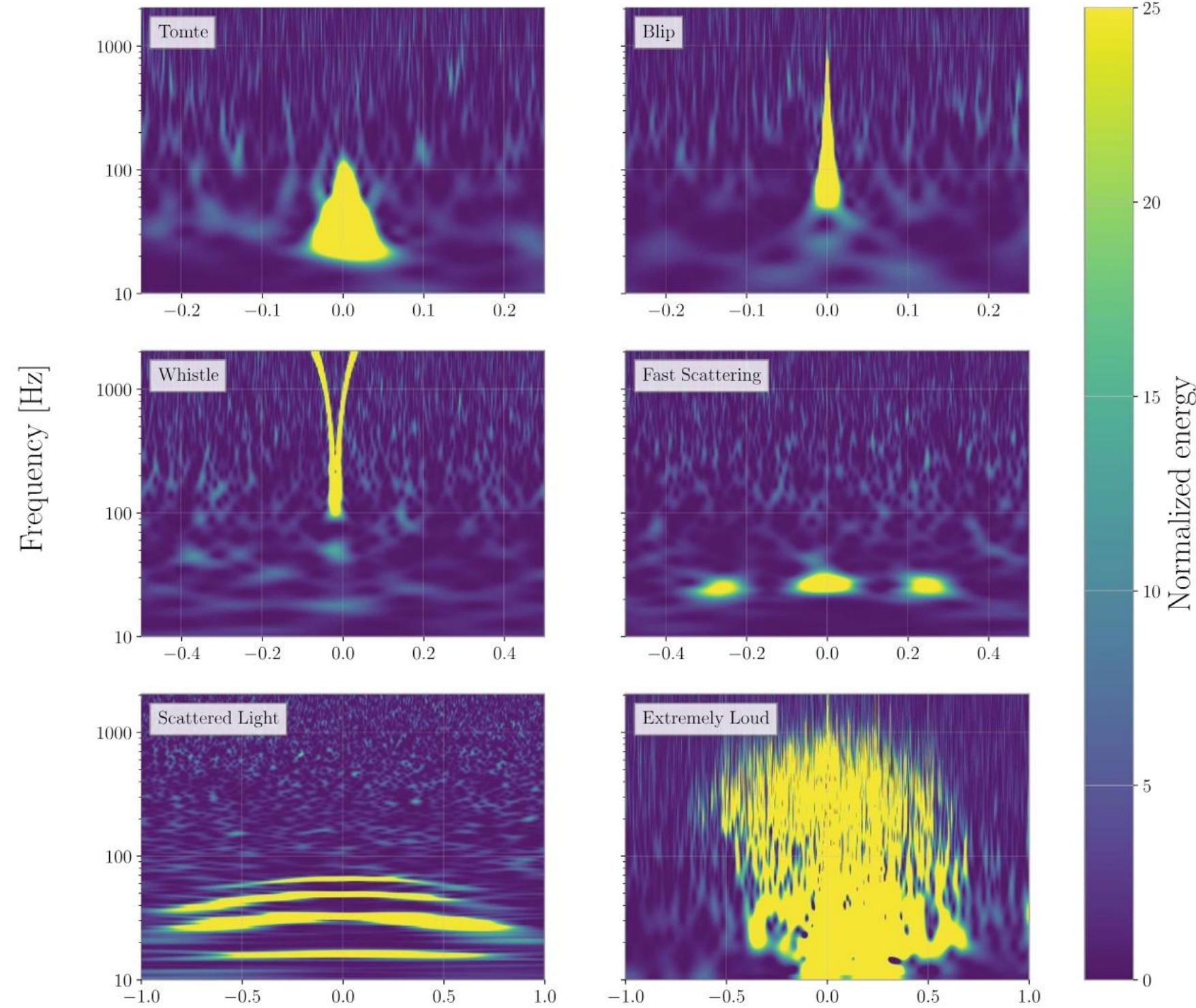
Workflow



Golden Dataset Selection

- Among 26 classes* focus on Blip, Whistle or Scattered Light;
- Equipartition of event type
- GravitySpy CL > 95%
- No siblings or neighbour events
 - No events in a ± 2 s window

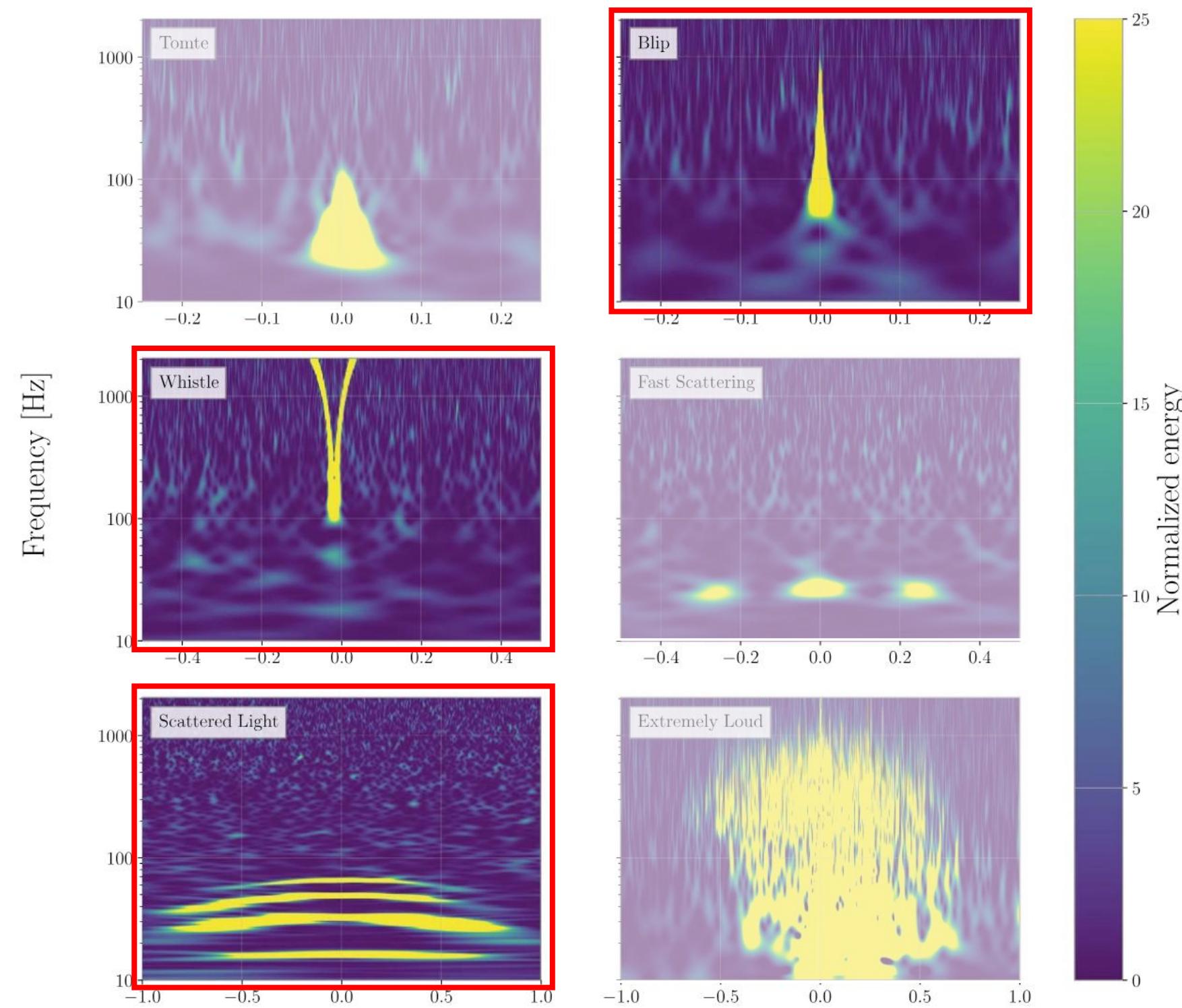
*according to the GravitySpy classification (Zevin et al. 2017)



Golden Dataset Selection

- Among 26 classes* focus on Blip, Whistle or Scattered Light;
- Equipartition of event type
- GravitySpy CL > 95%
- No siblings or neighbour events
 - No events in a ± 2 s window

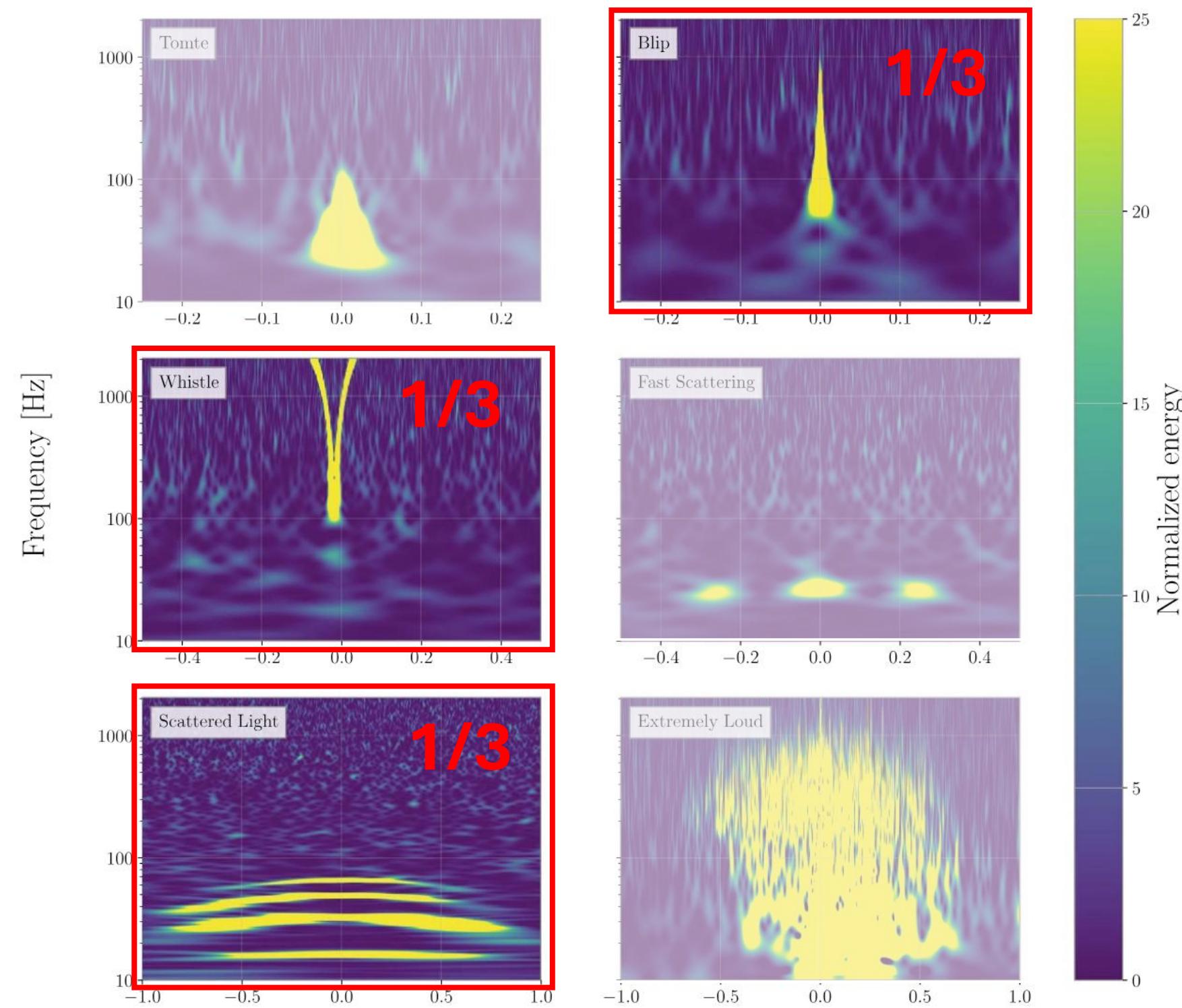
*according to the GravitySpy classification (Zevin et al. 2017)



Golden Dataset Selection

- Among 26 classes* focus on Blip, Whistle or Scattered Light;
- Equipartition of event type
- GravitySpy CL > 95%
- No siblings or neighbour events
 - No events in a ± 2 s window

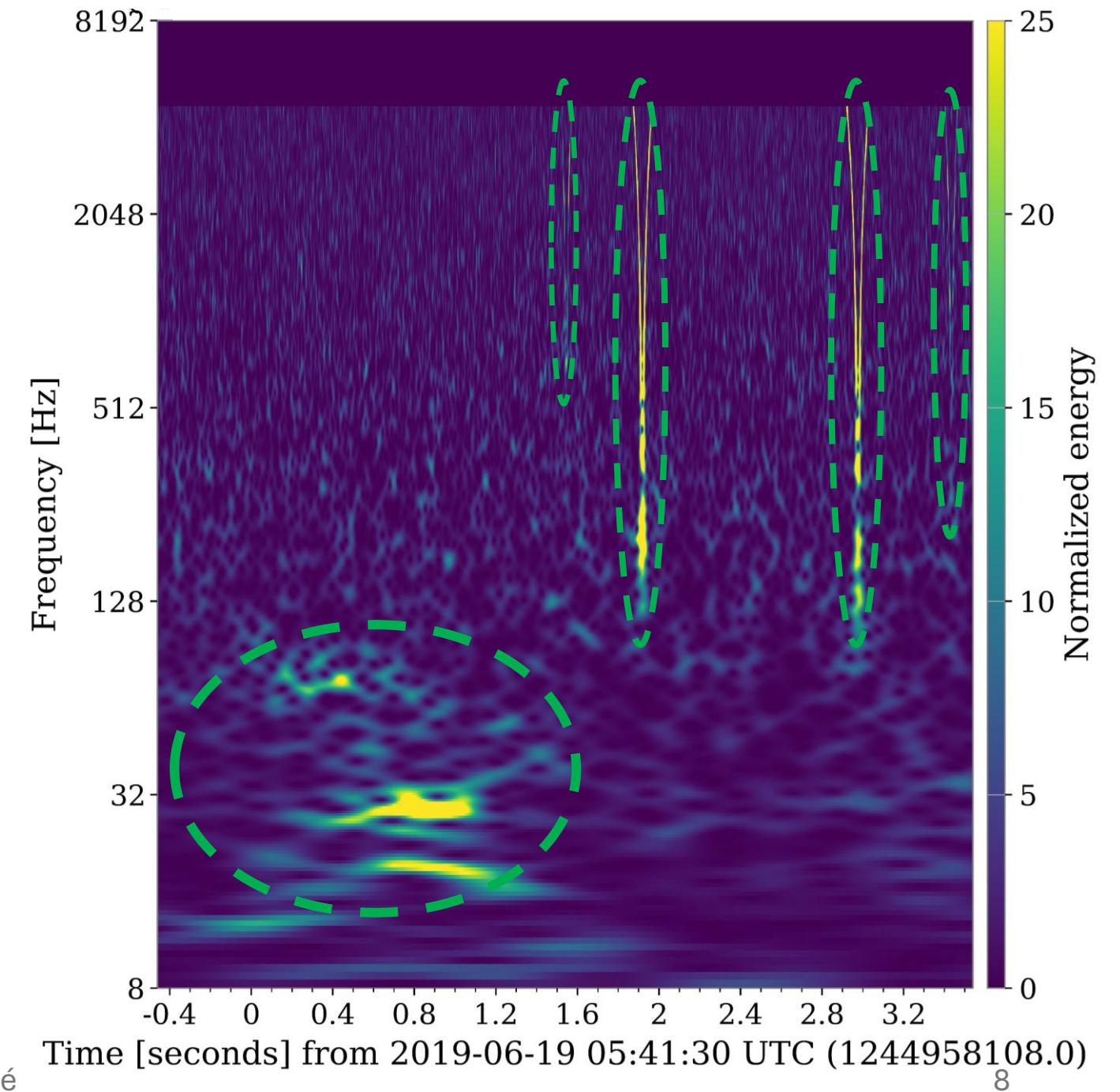
*according to the GravitySpy classification (Zevin et al. 2017)



Golden Dataset Selection

- Among 26 classes* focus on Blip, Whistle or Scattered Light;
- Equipartition of event type
- GravitySpy CL> 95%
- No siblings or neighbour events
 - No events in a ± 2 s window

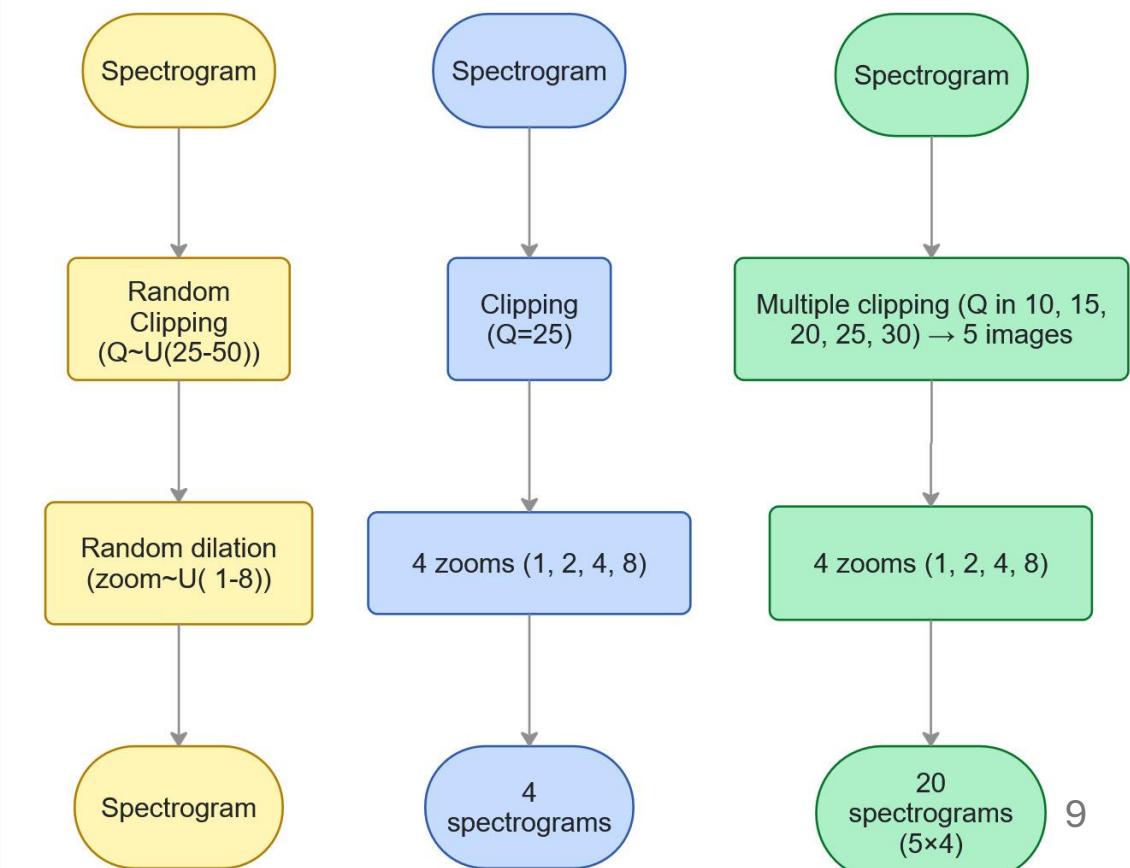
*according the GravitySpy classification (Zevin et al. 2017)



Preprocessing and data augmentation

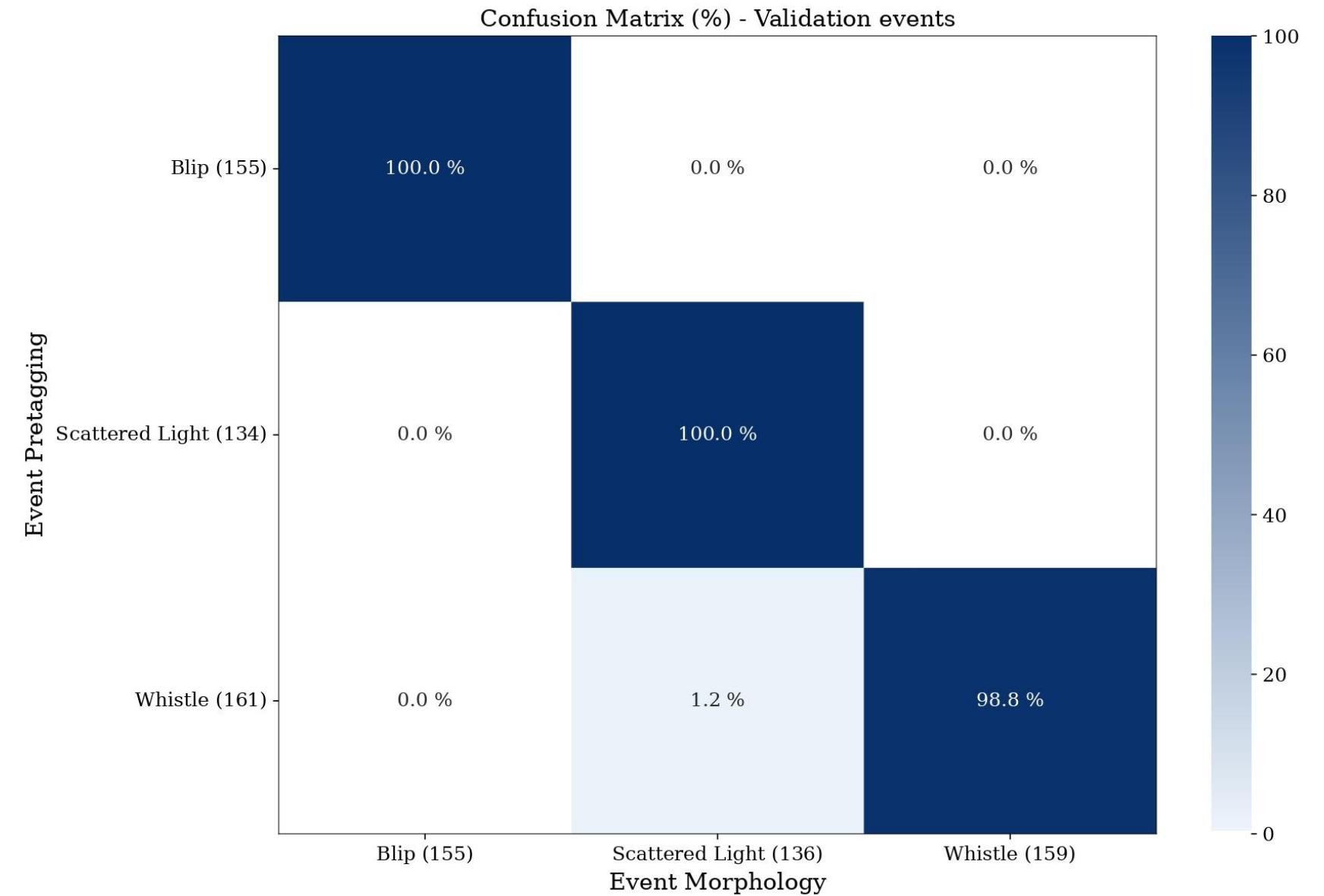
- Q-transform the Timeseries signal;
- Keep frequencies between 8 Hz and 8192 Hz;
- Keep only a 4 second window centered on the signal;
- Put the frequency axis in log-scale;
- Apply the data augmentation;
- Add padding on the 4 borders;
- Resize to have a 224×224 image;

Data augmentation



Training

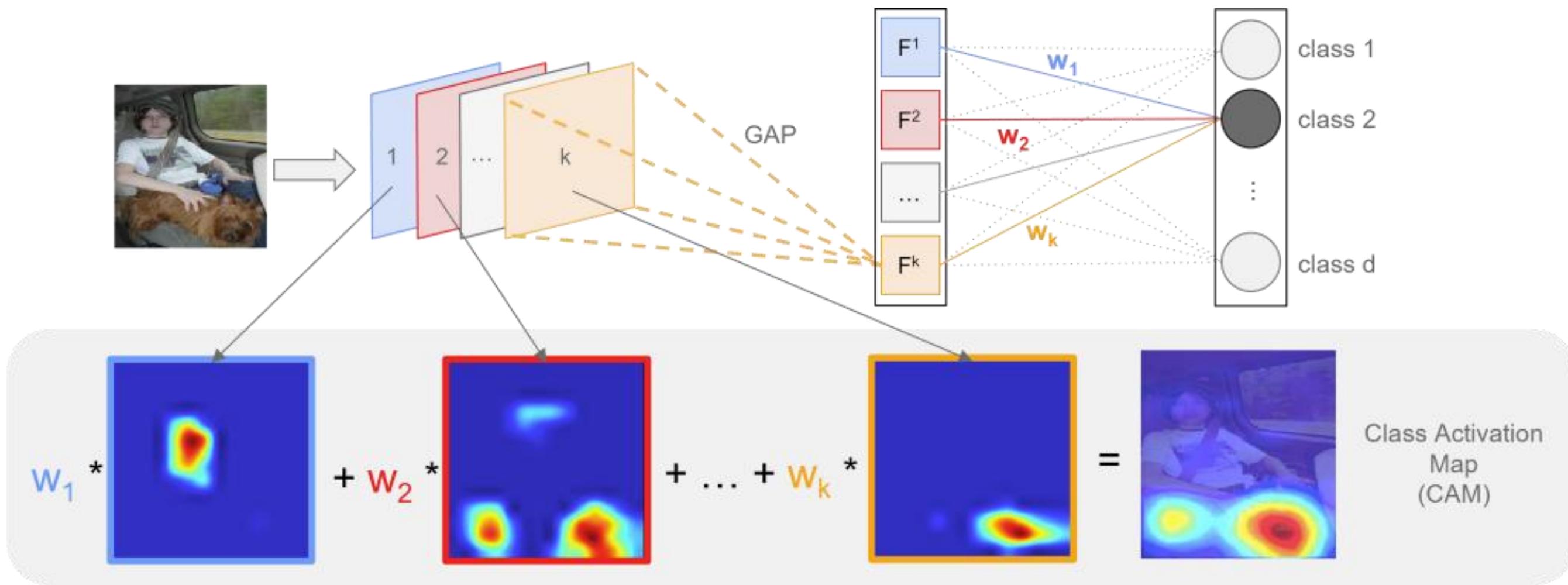
- ResNet50 Model basis;
- Trained on Golden Dataset;
- Pre-processed events;
- Curriculum Learning (based on triggers SNR level);
- 4500 events dataset (1500 of each class);
 - 70% training set
 - 20% validation set
 - 10% test set
- 50 epochs;



⇒ (a) Glitch events can be classified

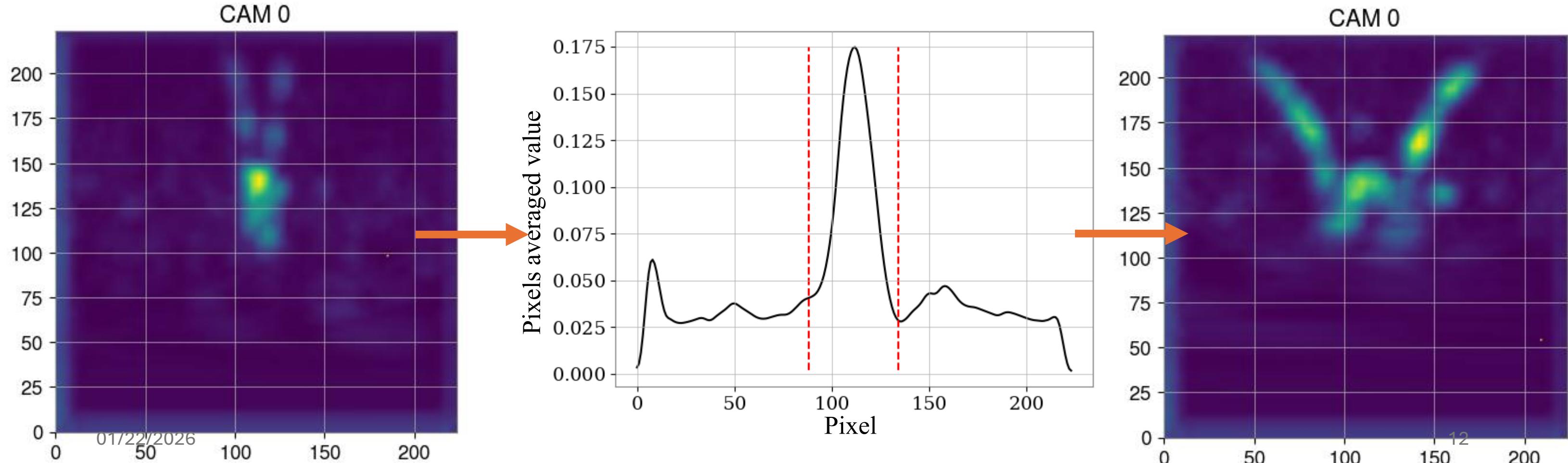
Class Activation Map

Having a heatmap of the activate neurons on a given layer:
➤ Tells where is the relevant information on the input image.



From CAM to zoom selection

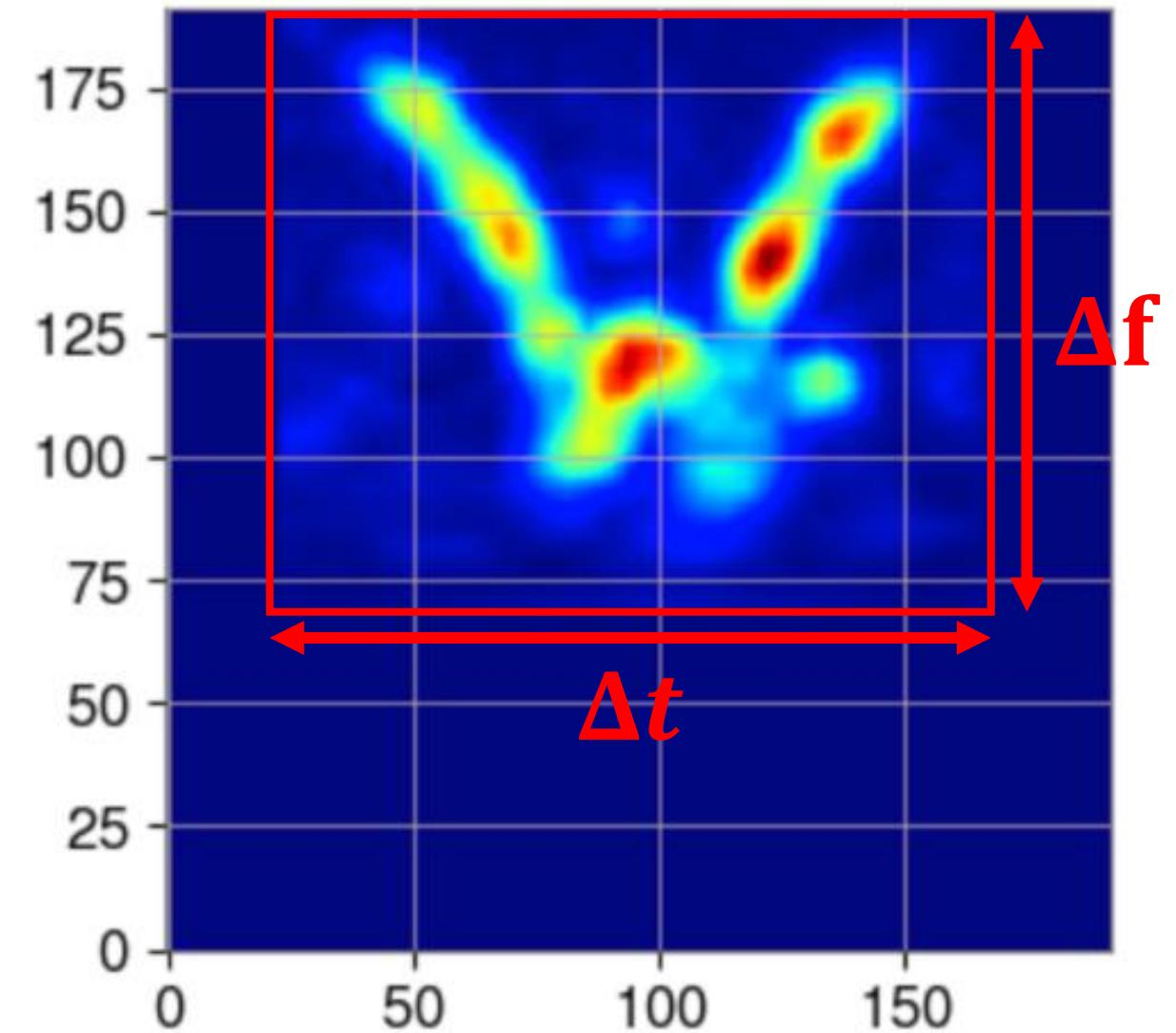
- Layer of the first bottleneck;
- Integrate over the frequency axis;
- Refine the zoom level by estimating the event duration;



Glitch Emboxing

Do once more the integrations of the CAM;

- First on frequencies;
 - Gives time duration Δt ;
- Second over time;
 - Gives frequency bandwidth Δf ;



⇒ (b) First glitch extraction

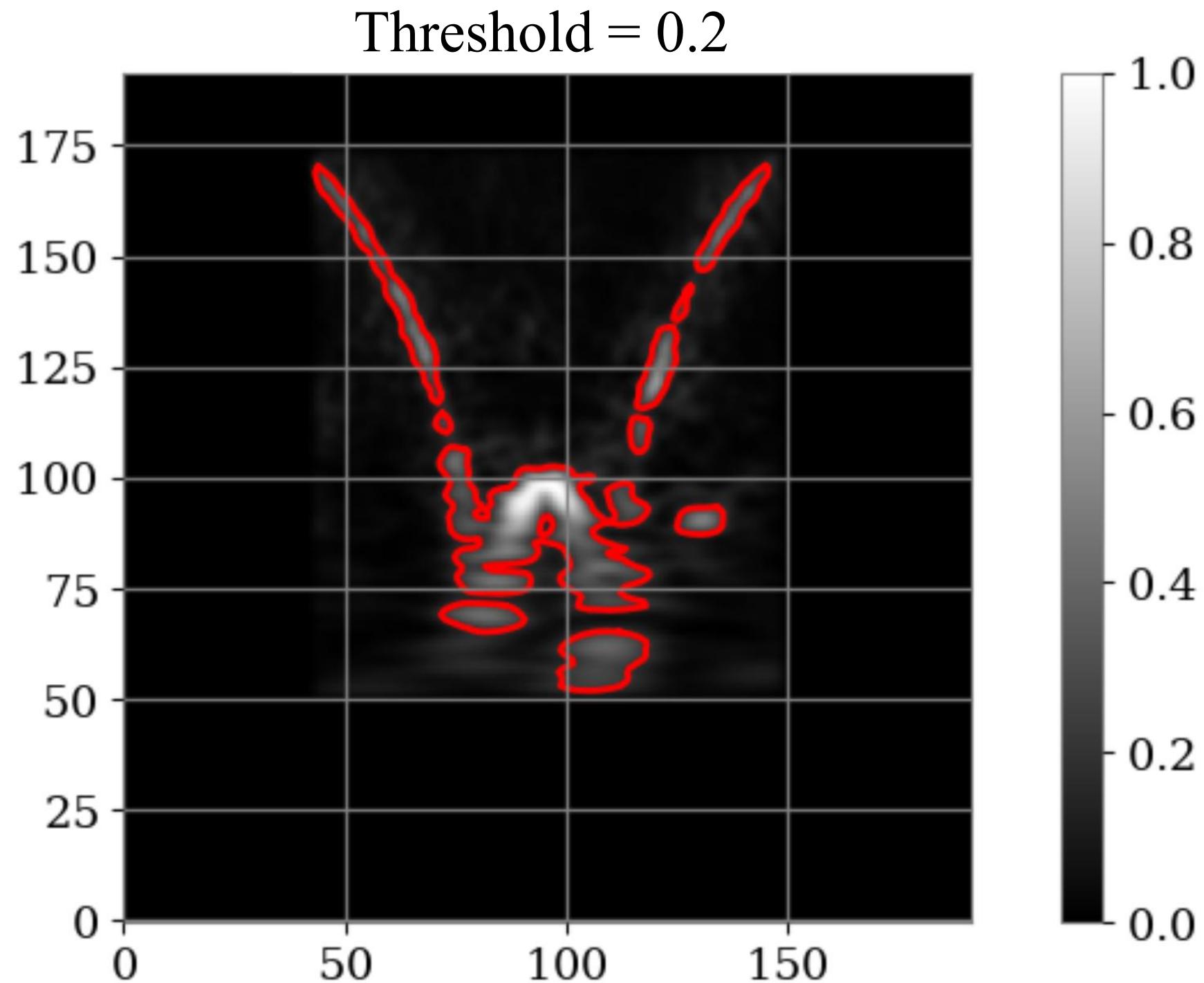
Contouring & Mask

Preprocessing the contouring:

- Make Rectangular window (of size $\Delta t \times \Delta f$);
- Apply the rectangular window to input and CAM;
- Contouring for $\{5, 10, \dots, 50\}\%$ thresholds on:

$$w_{ij} = \sqrt{input_{ij} \times CAM_{ij}}$$

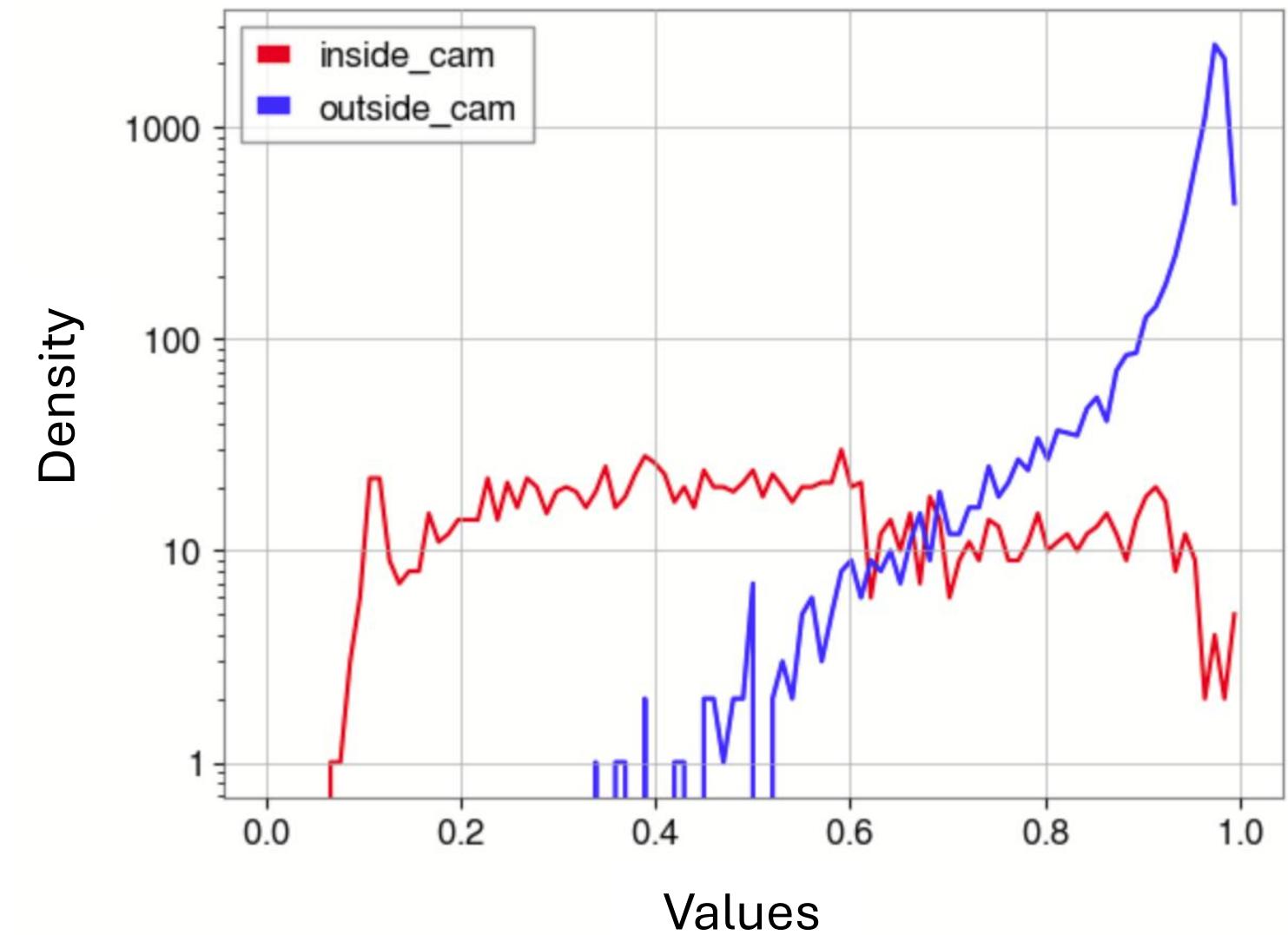
- Fill the contour with ones to make binary mask base.



Finding optimal contour threshold

Protocol to statistically test the threshold:

- Normalize the CAM
- Apply the binary mask (contouring result) on CAM :
$$inside_{cam,ij} = mask_{ij} \times CAM_{ij}$$
- Apply the inverse mask on CAM, then invert it again :
$$outside_{cam,ij} = 1 - (1 - mask_{ij}) \times CAM_{ij}$$
- Make the associated distributions :
 (p_{in}, p_{out})
- Get a statistic of it



Statistic to optimize

Maximize the common surface under both of the histograms :

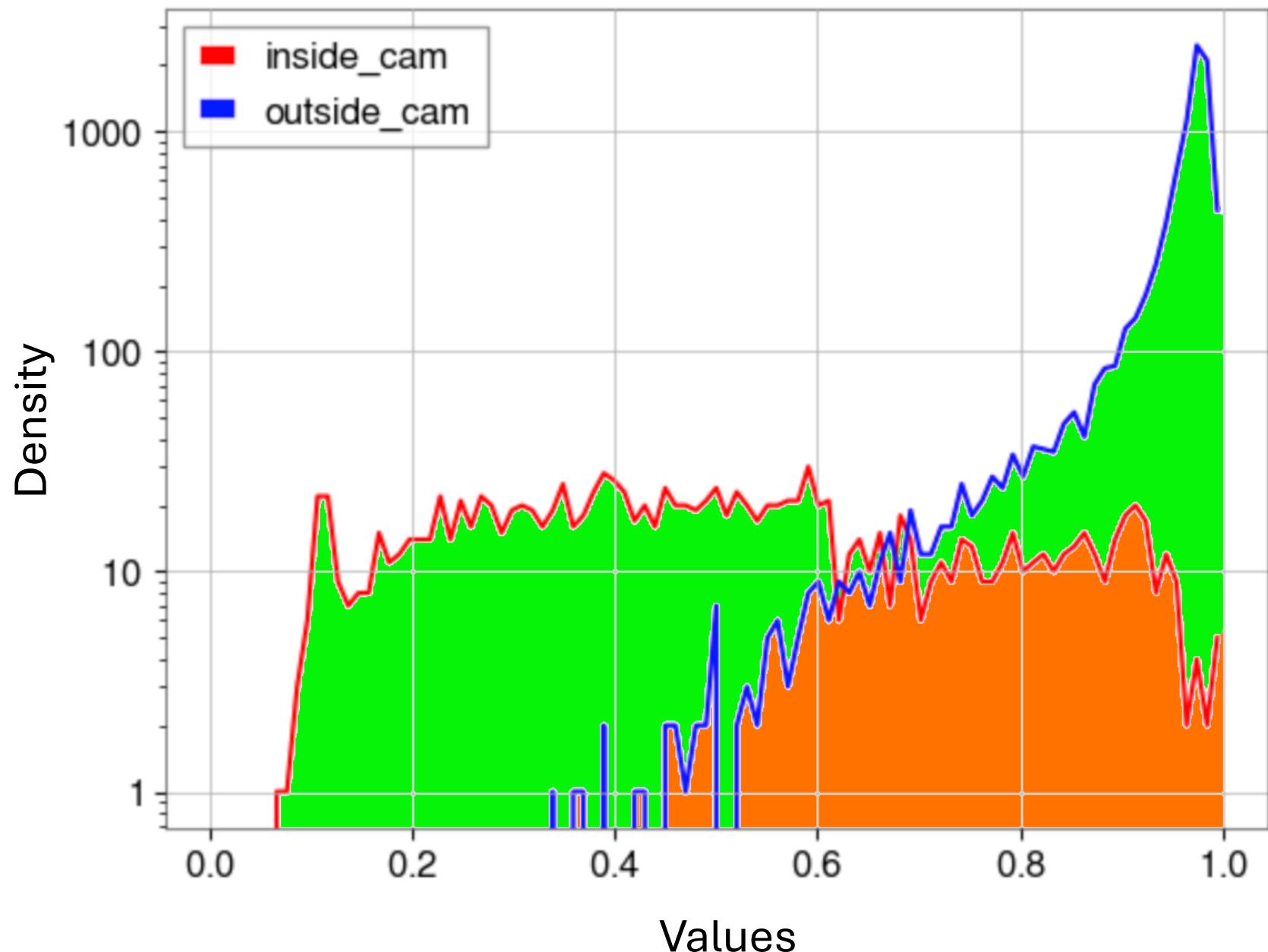
$$\eta_{min} = \sum_i^N \min(p_{in,i}, p_{out,i})$$

Minimize the difference between the 2 histograms :

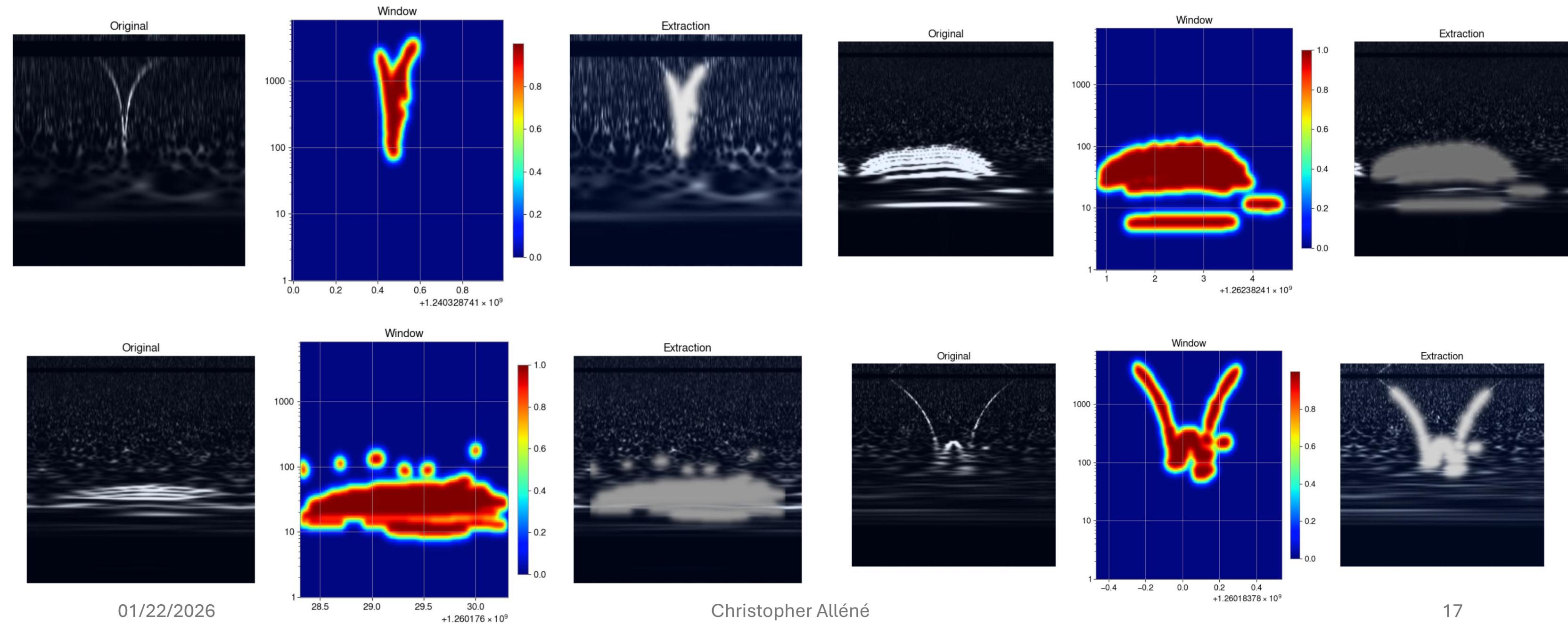
$$\eta_{diff} = \sum_i^N |p_{in,i} - p_{out,i}|$$

Find the threshold maximizing :

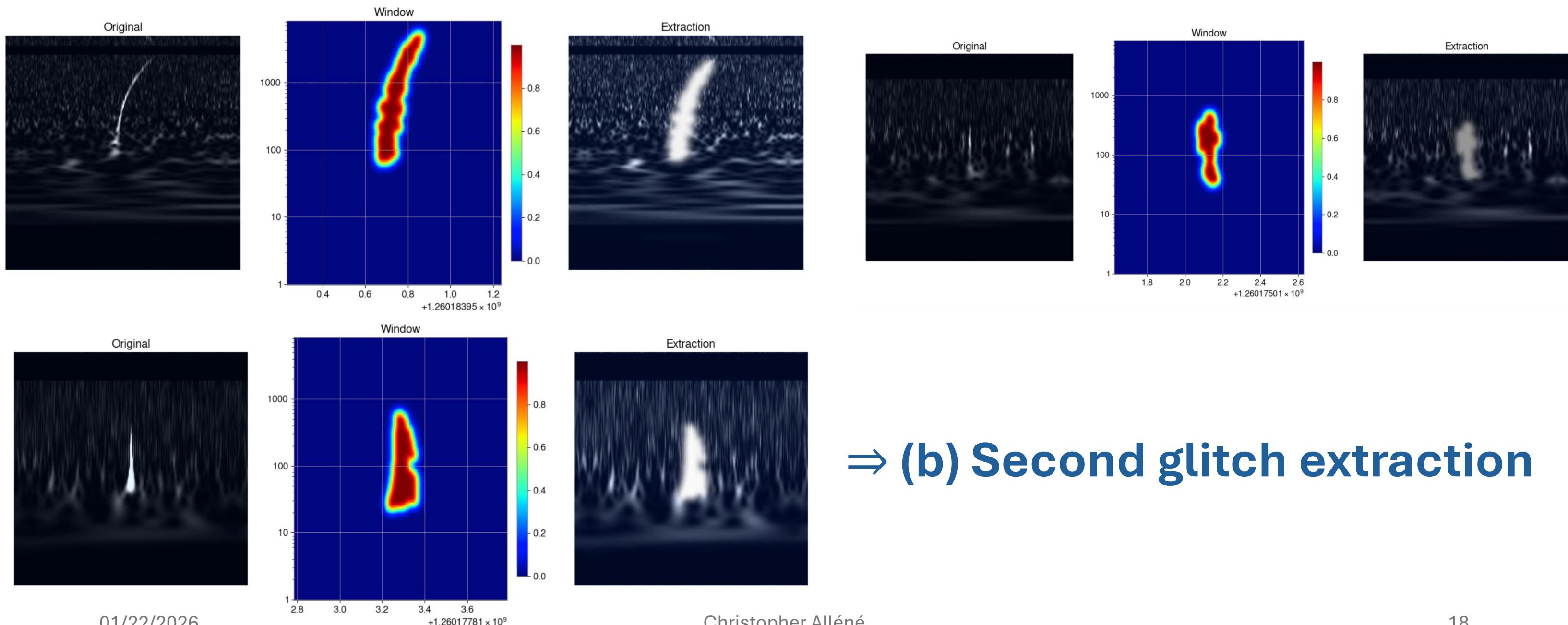
$$\eta_{tot} = \eta_{min} - \eta_{diff}$$



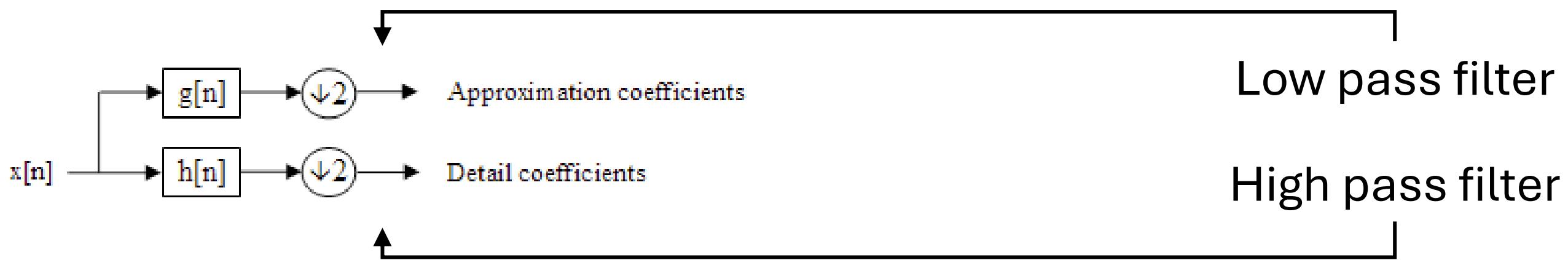
Example of masking



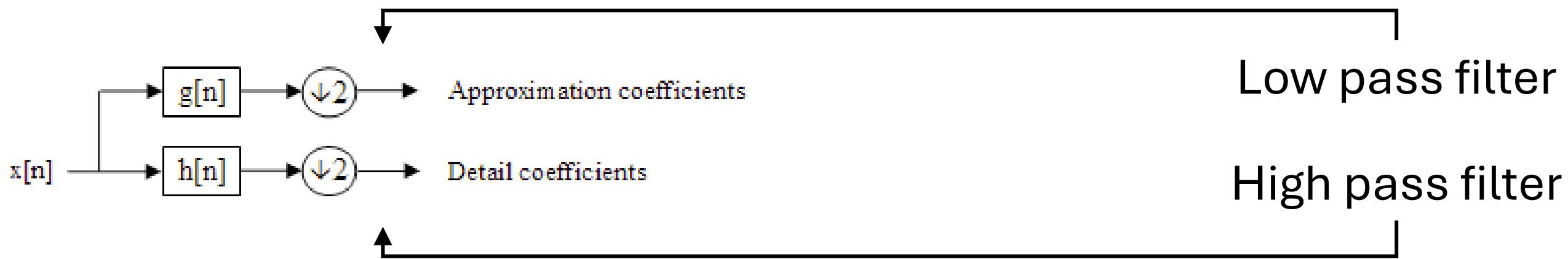
Example of masking



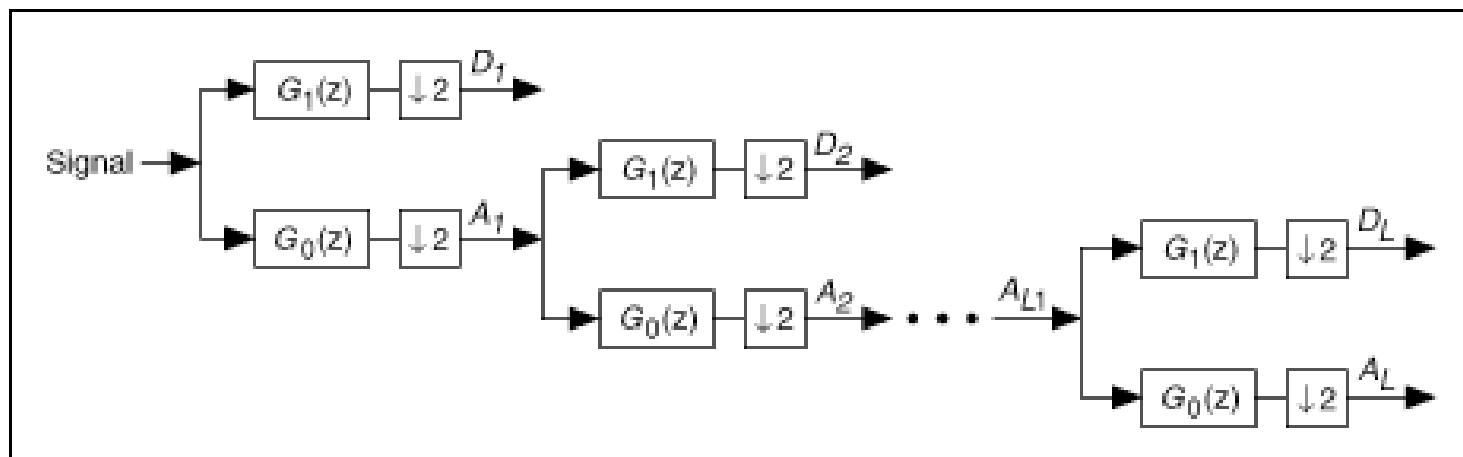
Discrete Wavelet Transform



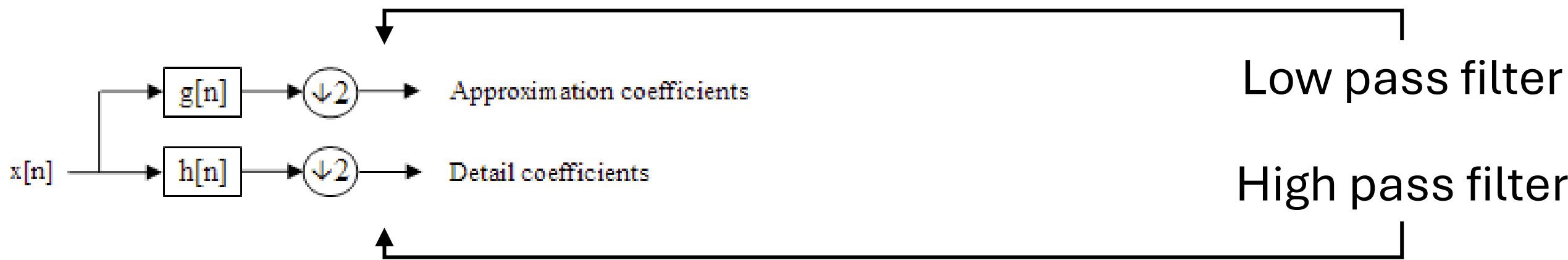
Discrete Wavelet Transform



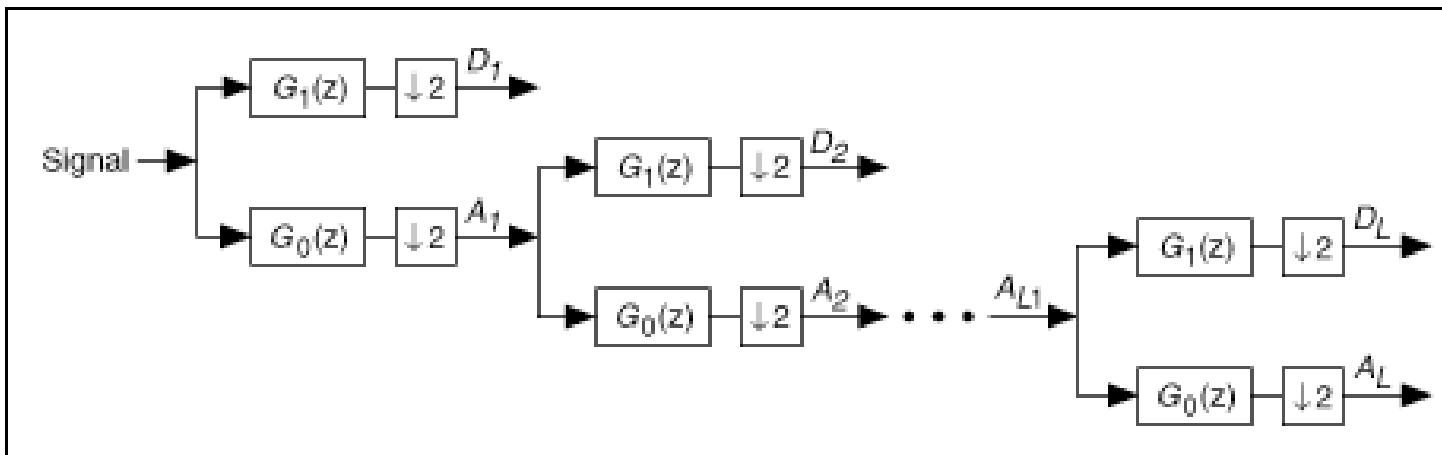
Transformation



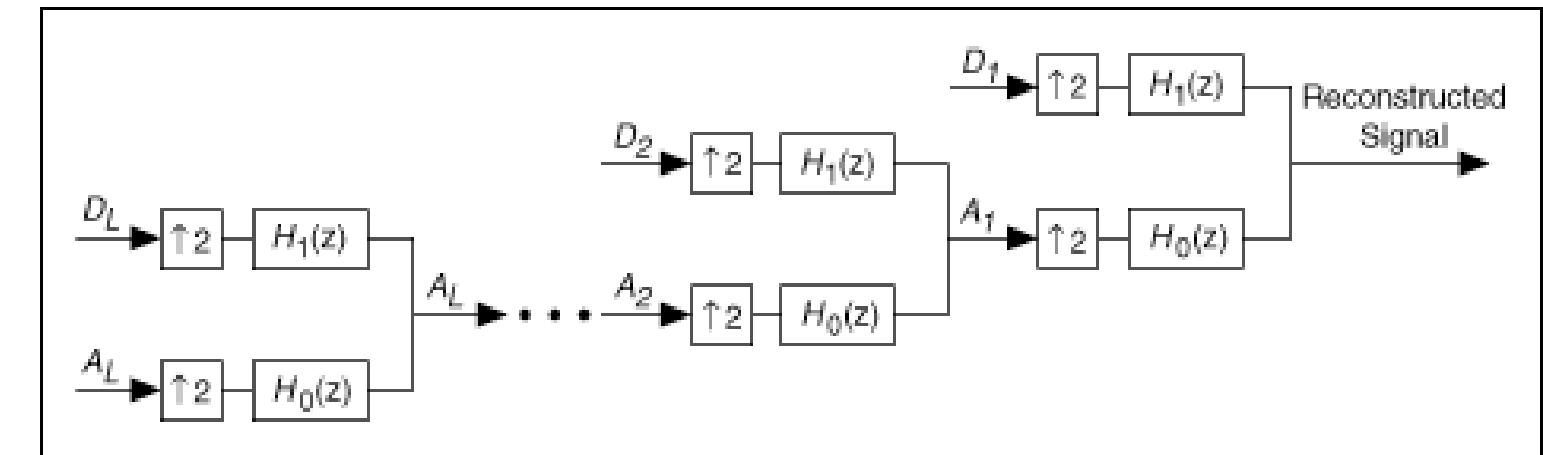
Discrete Wavelet Transform



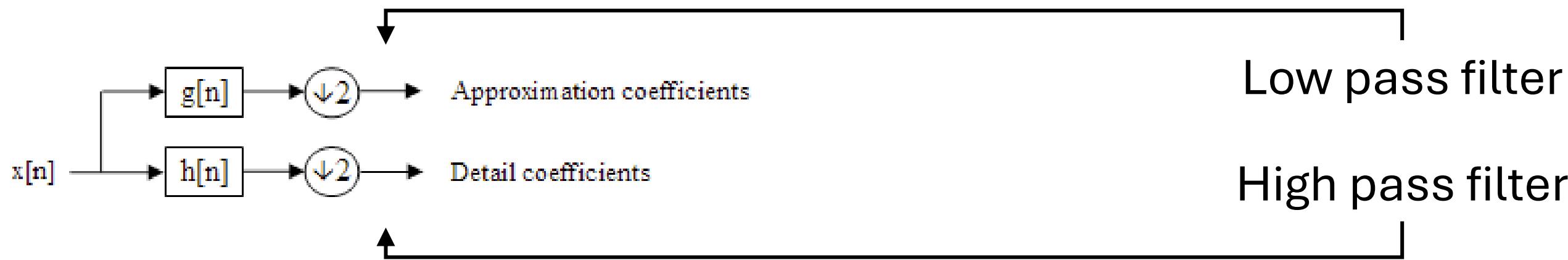
Transformation



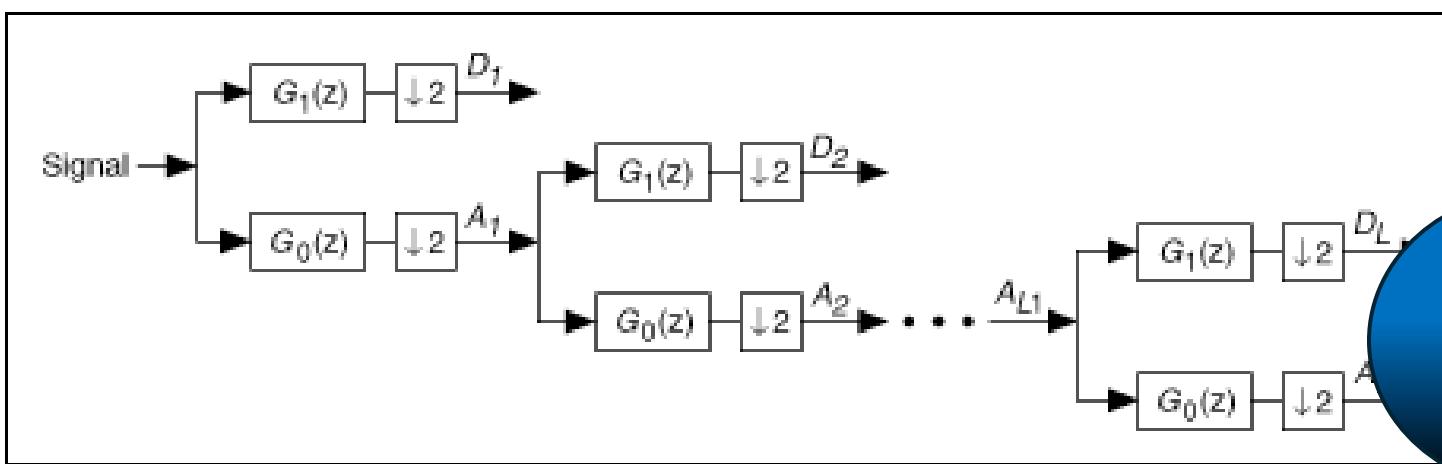
Reconstruction



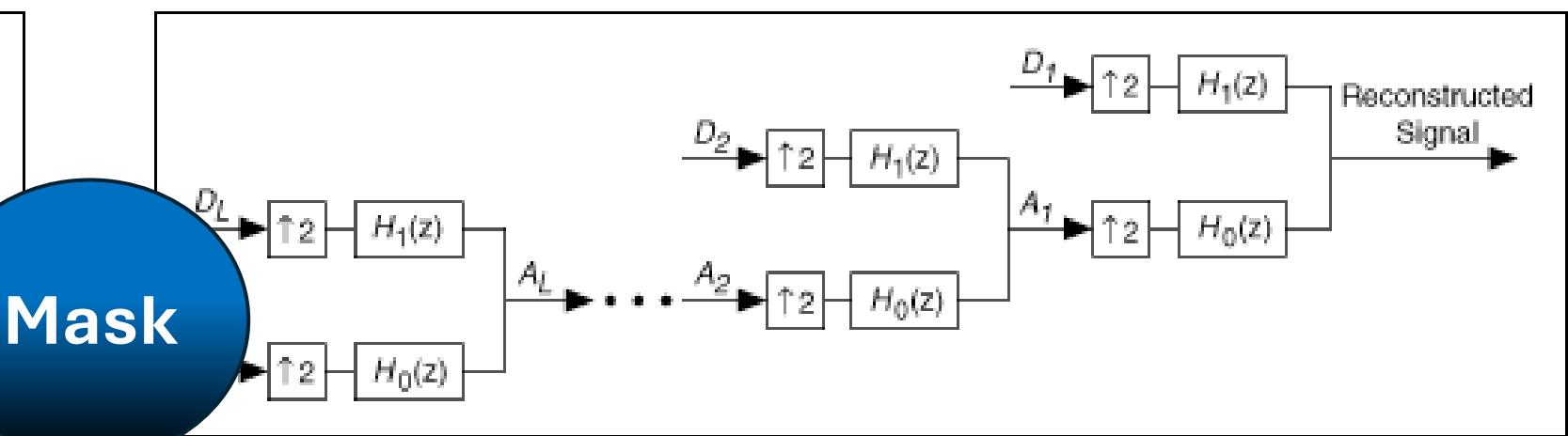
Discrete Wavelet Transform



Transformation

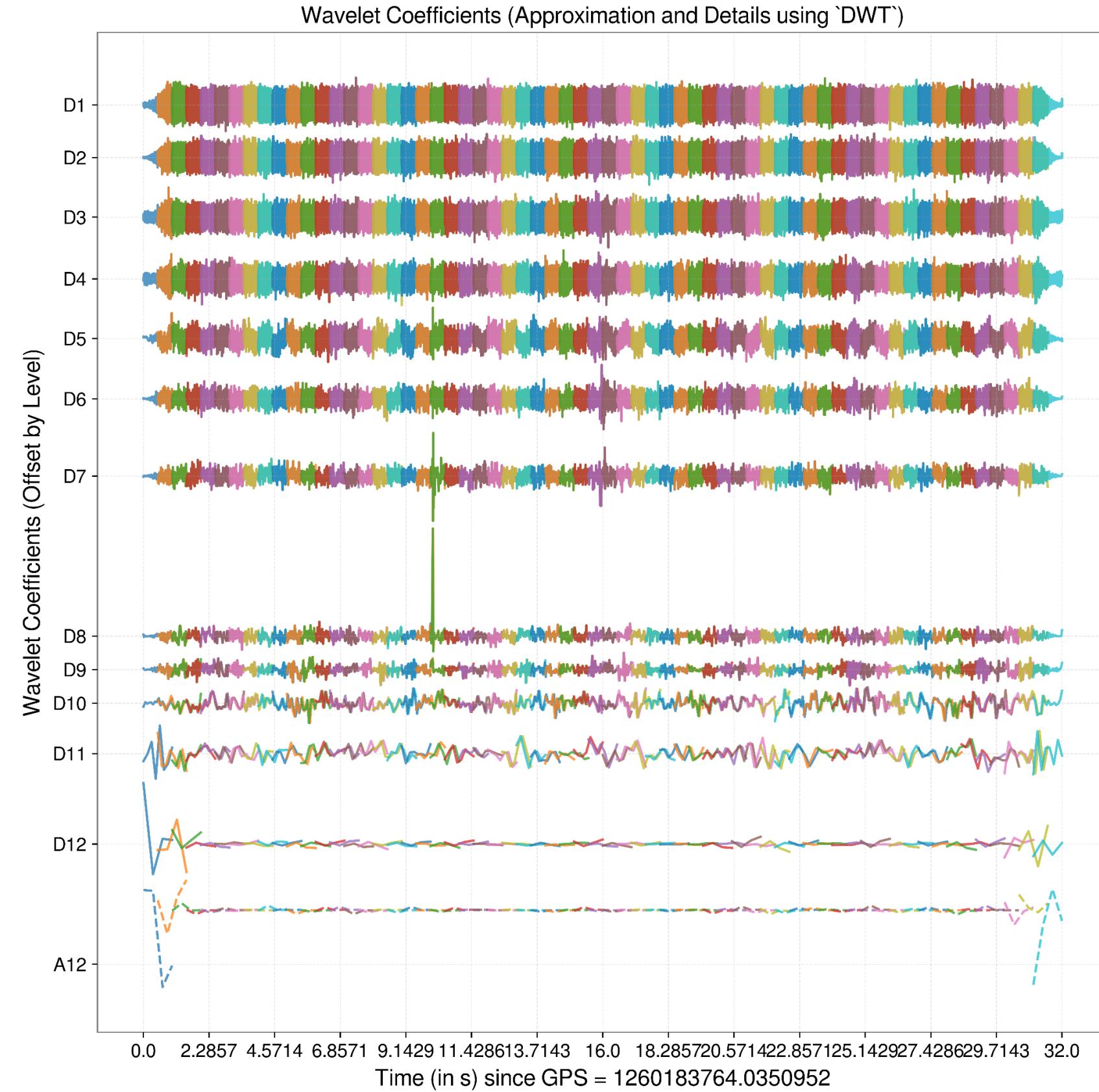


Reconstruction



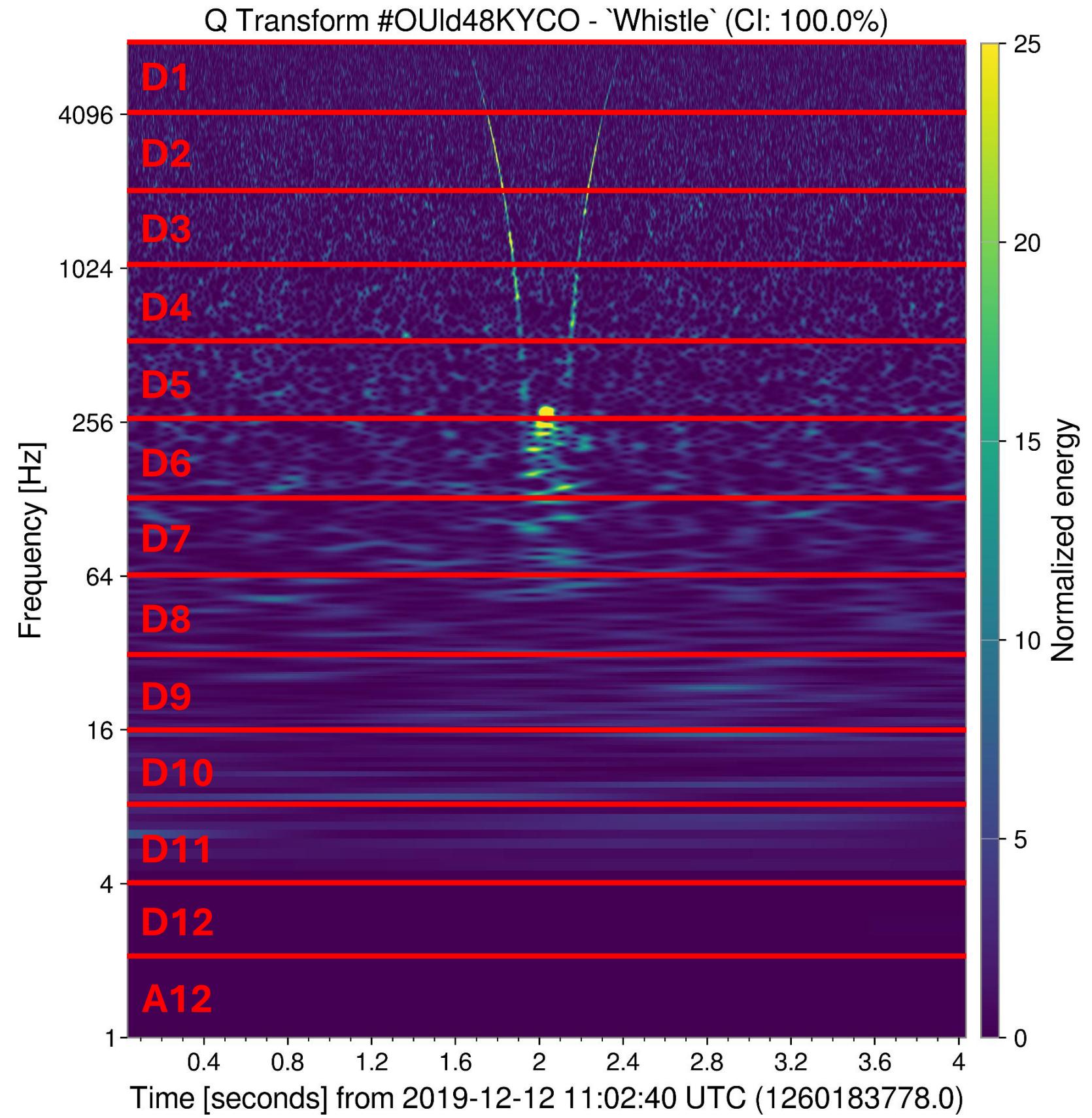
Masking the DWT of the signal

- Each details coefficients follows:
 - $D_n \in \left[\frac{f_s}{2^{n+1}}; \frac{f_s}{2^n} \right];$
 - D_1 from 8192 to 4096;
 - D_2 from 4096 to 2048;
 - D_3 from 2048 to 1024;
 - ...
- And the approximant :
 - $A_n \in \left[0; \frac{f_s}{2^{n+1}} \right];$



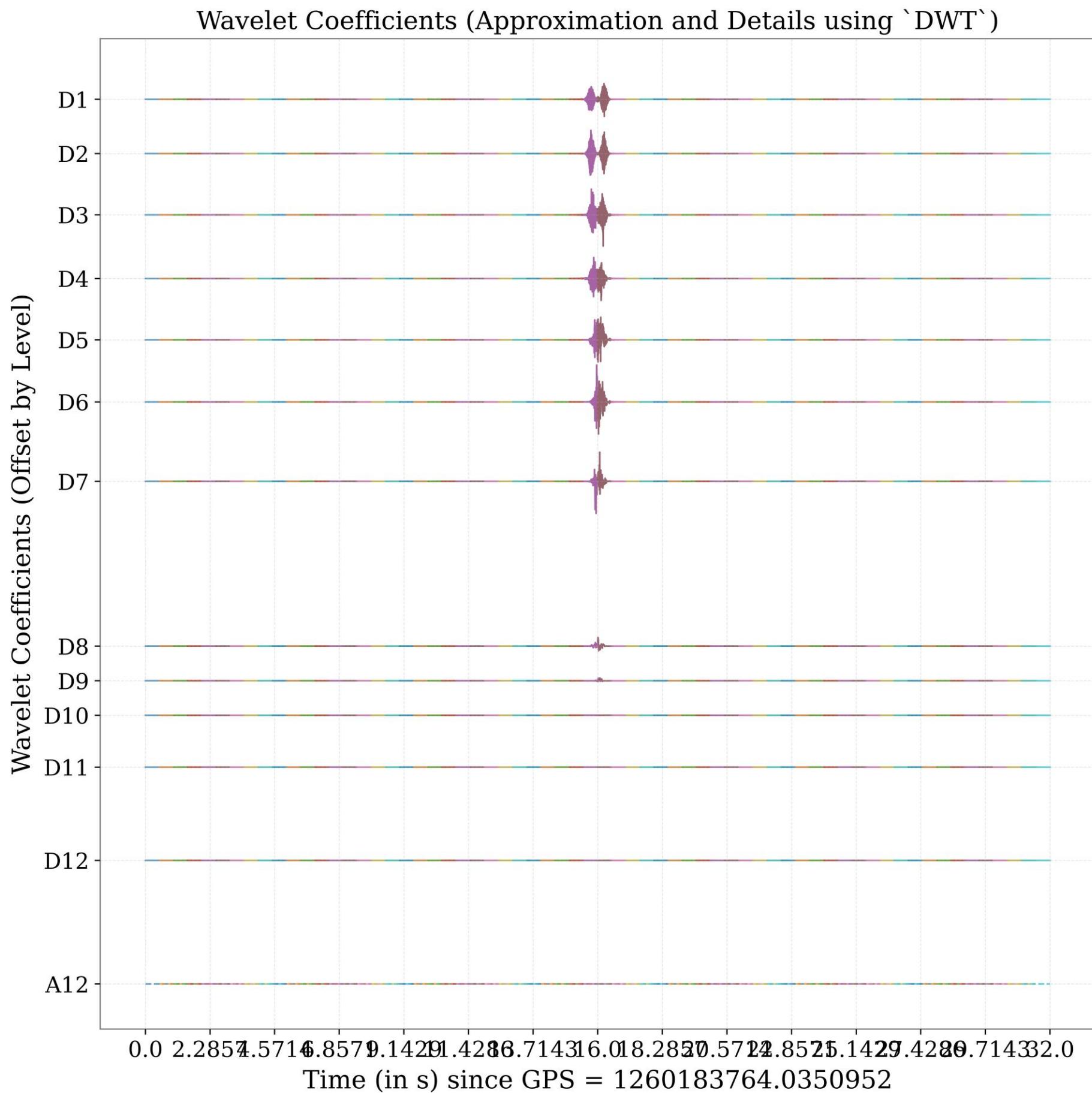
Masking the DWT of the signal

1. Split the Q-Transform space according DWT splitting;
2. Integrate the mask along frequencies;
3. Resample to fit the DWT sampling;
4. Multiply the DWT by the translate mask;
5. Transform back to a time series;



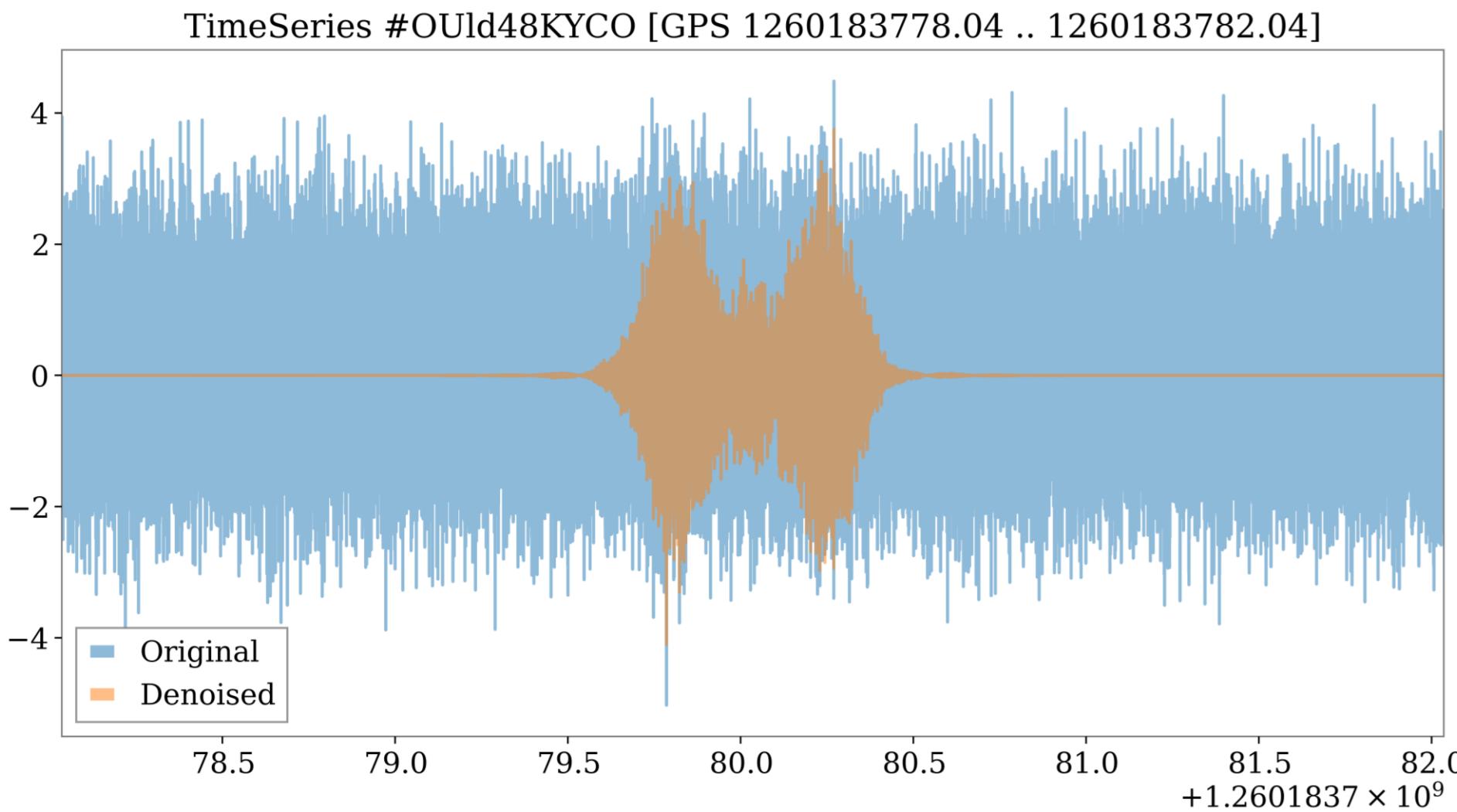
Masking the DWT of the signal

1. Split the Q-Transform space according DWT splitting;
2. Integrate the mask along frequencies;
3. Resample to fit the DWT sampling;
4. Multiply the DWT by the translate mask;
5. Transform back to a time series;



Masking the DWT of the signal

1. Split the Q-Transform space according DWT splitting;
2. Integrate the mask along frequencies;
3. Resample to fit the DWT sampling;
4. Multiply the DWT by the translate mask;
5. Transform back to a time series;

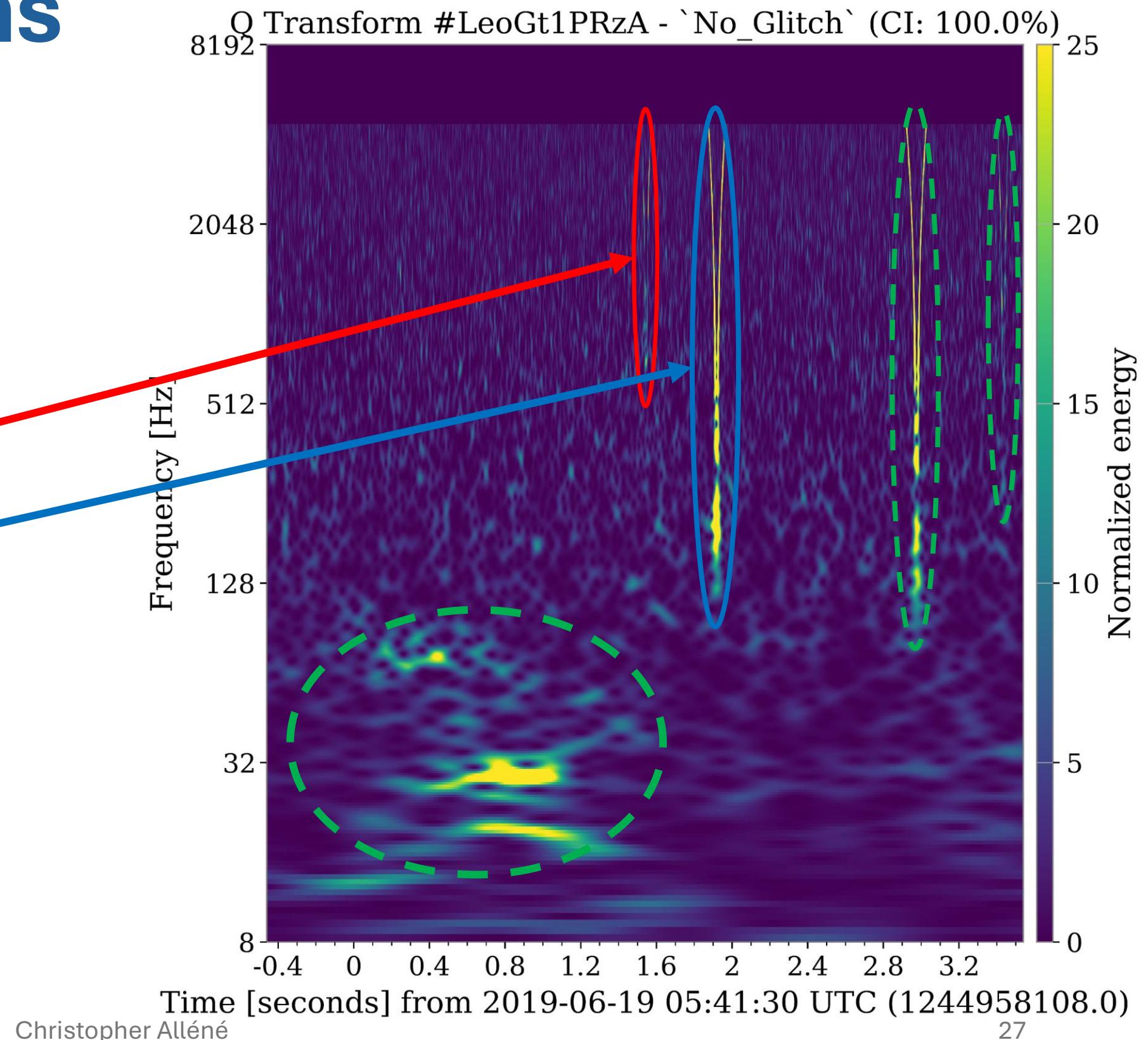


Complex Conditions Glitch

1. Multiples glitches:

- LeoGt1PRzA
- DFA1Lgmi5z
- ...

2. Very fainted glitch



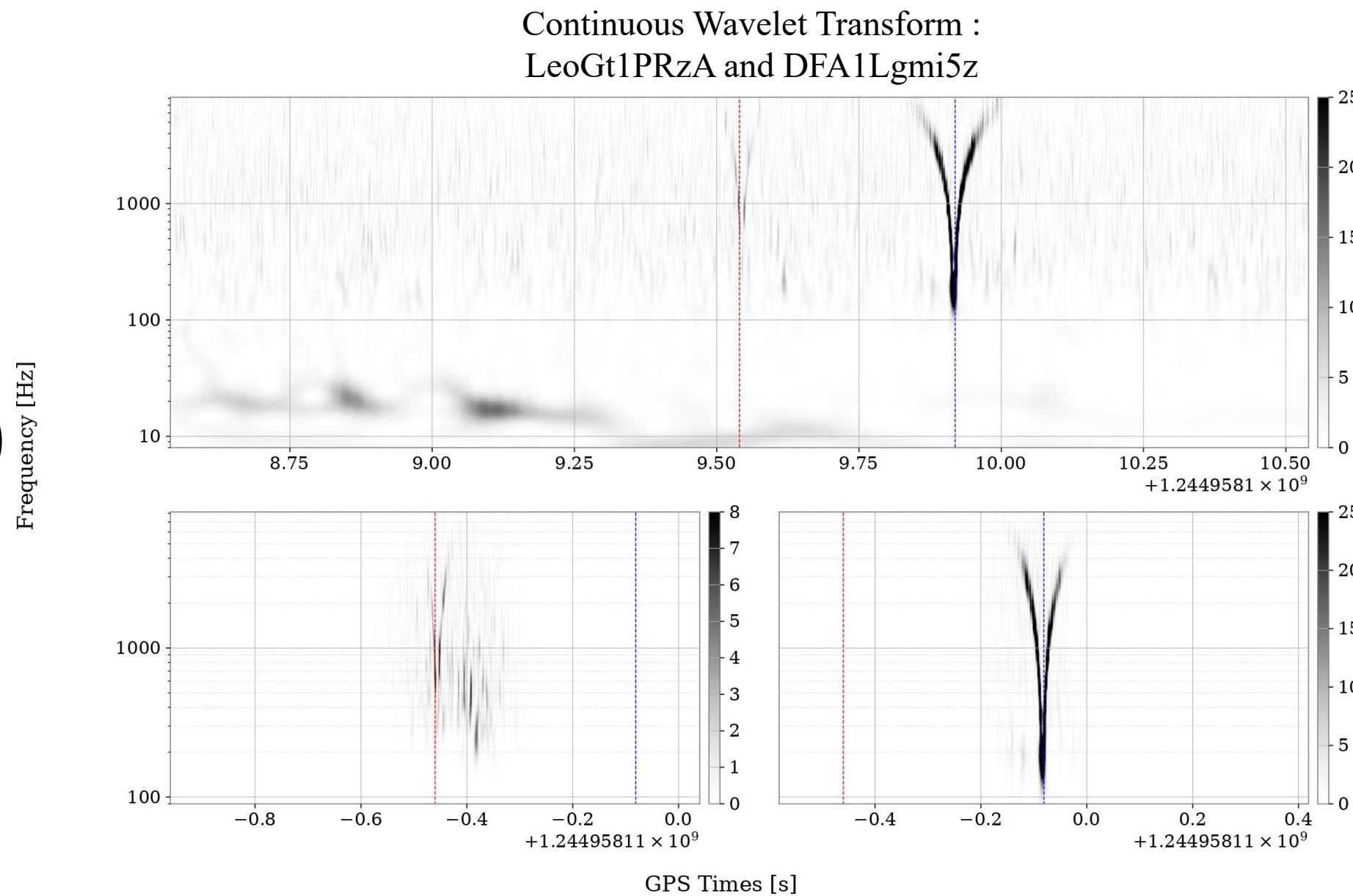
Complex Conditions Glitch

1. Multiples glitches:

- LeoGt1PRzA (red line)
- DFA1Lgmi5z (blue line)
- ...

2. Very Fainted glitch

⇒ (c) Glitch subtracted



Conclusion

- We have a complete framework to (a) classify, (b) segment and (c) subtract glitches from noise.
- The segmentation and subtractions apply on fainted glitch
- A whole procedure to deal with multiple glitch in a narrow neighbouring allows to subtract them separately

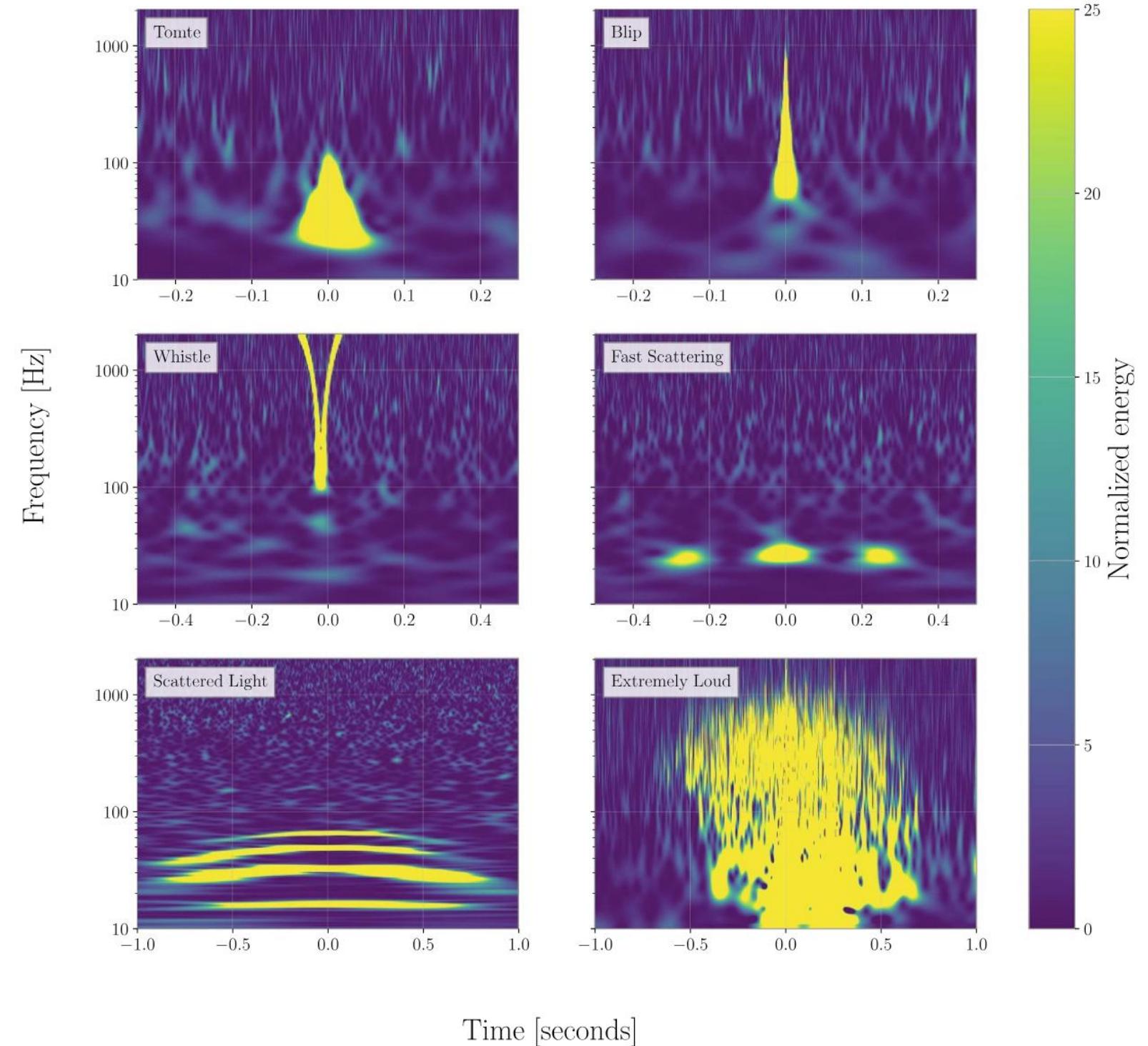
Thanks for your attention

Glitch

GravitySpy classifies Glitches on events (Omicron triggers) among 26 classes.

Focus on :

- Whistle
- Scattered Light
- Blip

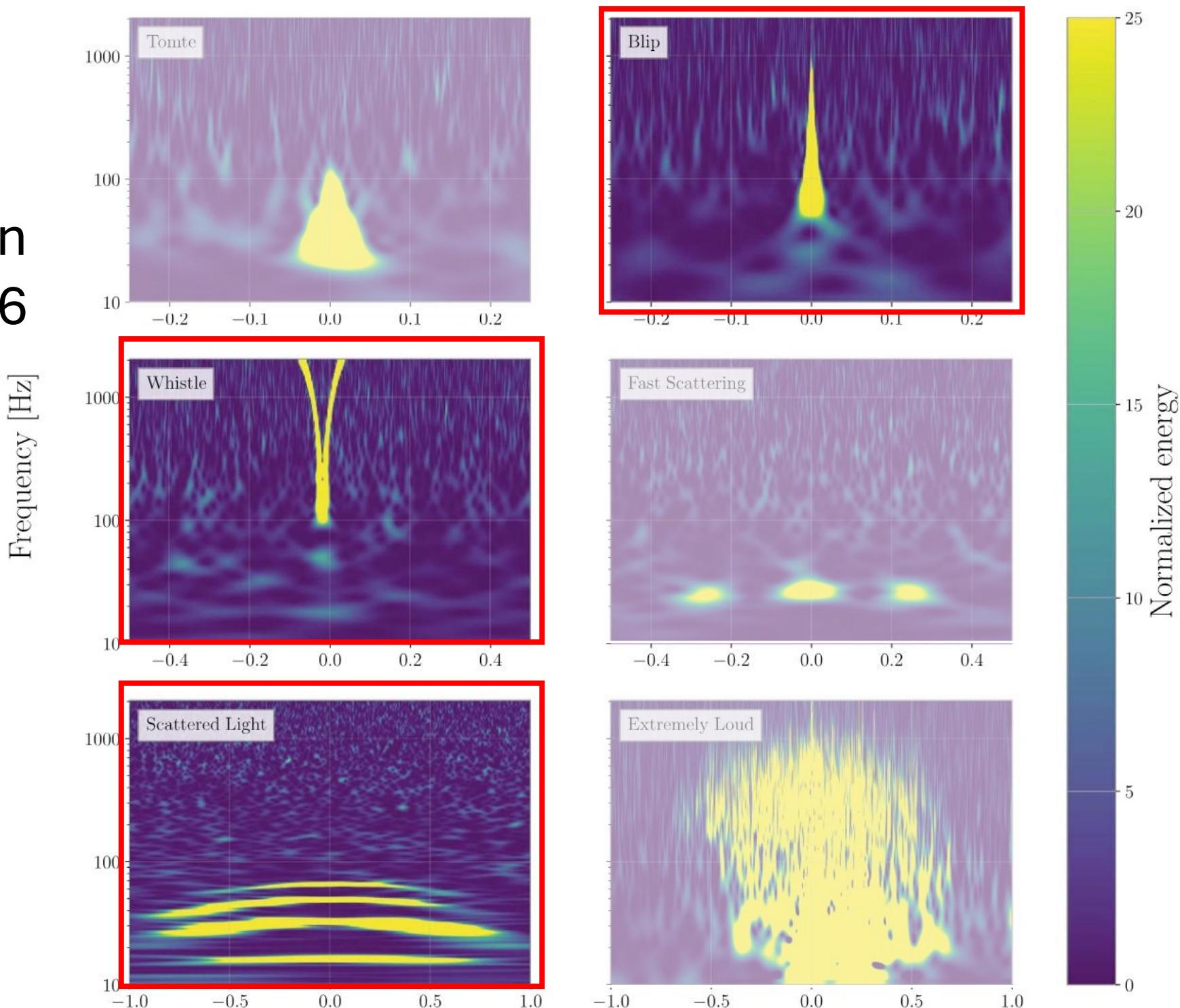


Glitch

GravitySpy classifies Glitches on events (Omicron triggers) among 26 classes.

Focus on :

- Whistle
- Scattered Light
- Blip



Data augmentation

