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Glitch:

e Short-duration transient
noise;

 Can be superimposed on
astrophysical signal,;

 Can be very loud;
e Can last until ~4 s;



Motivation

* To isolate glitches;
* Better understanding of the noise (hon-gaussian one especially);

* Be able to produce bank of glitch to simulate noise with non-
gaussianities;

= We need then to be able to segment and to subtract glitches
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Workflow

>| Preprocess

g Pretagging

a) Training
- Clipping augmentation

- Dilation augmentation

.

Y

- Inference, GradCAM++, Bounding

Box, Contouring

L

(- )
b) Classification & Extraction

1

c) Glitch Substraction
- DWT, Masking, DWT-"
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Golden Dataset Sele "m

* Among 26 classes™ focus on
Blip, Whistle or Scattered
Light;

* Equipartition of event type
* GravitySpy CL> 95%

* No siblings or neighbour
events

* No eventsina*2 swindow

*according the GravitySpy classification (Zevin et al. 2017)
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Golden Dataset Sele

* Among 26 classes™ focus on

Blip, Whistle or Scattered
Light; =
 Equipartition of event type ~

* GravitySpy CL> 95%

* No siblings or neighbour
events

* No eventsina*2 swindow
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*according the GravitySpy classification (Zevin et al. 2017)
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Golden Dataset Sele

* Among 26 classes™ focus on

Blip, Whistle or Scattered
Light; =
 Equipartition of event type ~

* GravitySpy CL> 95%

* No siblings or neighbour
events

* No eventsina*2 swindow
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Scattered Light
100(
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*according the GravitySpy classification (Zevin et al. 2017)
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Golden Dataset Selection

* Among 26 classes™ focus on
Blip, Whistle or Scattered
Light;

* Equipartition of event type
* GravitySpy CL>95%

* No siblings or neighbour
events

* No eventsina*2 swindow

*according the GravitySpy classification (Zevin et al. 2017)
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Preprocessing and data augmentation

* Q-transform the Timeseries signal;
* Keep frequencies between 8 Hz and 8192 Hz;

* Keep only a4 second window centered on the trigger;
Data augmentation

Spectrogram l Spectrogram ) ‘ Spectrogram )
\ 4 N
Random et
o Clippin
Clipping (02%5?
(Q~U(25-50))

Random dilation
(zoom~ U( 1-8))

4 20
01/22/2026 Christopher Alléné | spectrogram | (epect e el O

* Put the frequency axis in log-scale;
* Apply the data augmentation;

* Add padding on the 4 borders;

* Resize to have a 224x224 image;

Multiple clipping (Q in 10, 15,
20, 25, 30) — 5 images

! 4 zooms (1, 2, 4, 8) } [ 4 zooms (1, 2, 4, 8) }




T o [ ]
g Confusion Matrix (%) - Validation events 100

0.0 %

* ResNet50 Model basis; I
 Trained on Golden Dataset;
* Pre-processed events;
* Curiculum Learning (based on
triggers SNR level;
* 4500 events dataset (1500 of
each class);
- /0% training set Whistle (161)
- 20% validation set
- 10% test set biip (159 Scatared i 120 Whisto (159)
. 50 epochs: geniMersholies

80

60

Scattered Light (134) |

-40

Event Pretagging

-20

= (a) Glitch events can be classified
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Class Activation Map

Having a heatmap of the activate neurons on a given layer:
»Tells where is the relevant information on the input image.

VV F ‘ I'/"\'l class 1
| — | \__/
2 — .
GAP F W, | ' class 2
Ny - P\
<2 Fk ( )| class d
~ N/

*Zhou, Bolei, et al
"Learning deep features
Class Activation for discriminative
Map localization." Proceedings
of the IEEE conference on
CAM computer vision
and pattern recognition.
2016
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From CAM to zoom selection

* Layer of the first bottleneck;
* Integrate over the frequency axis;
* Refine the zoom level by estimating the event duration;

CAM O CAMO
0.175 .
200 l 200
0.150 - !
175 2 i 175
= 0.125- |
150 > 150 4
2 0.100
125 = 125 4
S 0.075-
100 4 = 100 1
2 0.050
75 4 E 75 4
& 0.025
50 + 50 +
0.000
25 I T T T T T 25 e
0 50 100 150 200
0 PiXGl

0 50 100 150 200 0 50 100 150 200



Glitch Emboxing

Do once more the integrations of the CAM;

> 175

* First on frequencies; 150
* Gives time duration At; 195

* Second over time; 100
* Gives frequency bandwidth Af; -

50

25

0

0 50 100 150
= (b) First glitch extraction
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Contouring & Mask

Preprocessing the contouring:

* Make Rectangular window
(of size At X Af);

* Apply the rectangular
window to input and CAM;

* Contouring for {5, 10, ... ,
50}% thresholds on:

Wij = \/mputu X CAMU

* Fill the contour with ones to
make binary mask base.
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Finding optimal contour threshold

Protocol to statistically test the
threshold:

* Apply the binary mask (contouring
result) on CAM:

>
insidecgmi; = mask;; X CAM;; [z 10
* Apply the inverse mask on CAM, then 0 ]
invert it again : 04

outside gm,ij = 1 — (1 — maskl-j) X CAM;;
e Make the associated distributions :

(pin’ pout) '3

e Get a statistic of it
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/| = inside_cam

* Normalize the CAM 1000

B outside_cam

A
0 I[M ,, |
04 06 0.8

Values

0.0 0.2
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Statistic to optimize

Maximize the common surface || ™= inside_cam

M outside_cam

under both of the histograms : 1000

N
Nmin — E :min(pin,iapout,i)
)

Minimize the difference
between the 2 histograms :

N
Ndiff — Z ‘pin,z’ — pout,i‘

Find the threshold maximizing :
Ntot = Nmin — Ndiff

Values
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Example of masking

Window

Original

1000 08

L06
100
04

0.2

0.0

0.0 0.2 04 0.6 0.8
+1.240328741 x 10°

Window
Original

08

0.6

04

0.2

0.0
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+1.260176 x 10°
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Original

Original

Window
Extraction

10
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1
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Window
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1000
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Example of masking

Window

Original

Window

Extraction

Original Extraction
1000
1000 08
F0.6
100 100
| Loa
10 10 0.2
0.0
1
1 18 20 22 24 26
04 06 08 1.0 1.2 +1.26017501 x 10°

+1.26018395 x 10°

Window

Original Extraction

1000

los

= (b) Second glitch extraction

28 3.0 32 34 36
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Discrete Wavelet Transform

‘_"" g[n] —F@—> Approximation coefficients
i[n] h[n] —F@—' Detail coefficients

A

|
Low pass filter

High pass filter
|
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Discrete Wavelet Transform

v

[n] —b@—b Approxmation coefficients

R
x[n] J—b

[n] —@—D Detail coefficients

|
Low pass filter

High pass filter

R |
Transformation
G2} 2 ilr
Elgnal—>|: Gyiz) H L2 e
Golz) HL 2 i>|: gl Y
Gylz) L2 iII-- .. A

Gplz) H L2
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Discrete Wavelet Transform

v

[n] —b@—b Approxmation coefficients

_...g
}L[ﬂ]J—Dh

[n] —@—D Detail coefficients

High pass filter

Low pass filter

Transformation Reconstruction

- o, Dy

Gqlz) HLl2 — — T2 Hyiz) Reconstructed

- 0, Signal

Signal Gz H 2 [ 2 —Zp 12 Hyiz) 2

. Ay Ly E'L N . .-q-r ]

Gglz) HL2 Gyiz) H Lo — T2 [ Hyl2) —= T2 Hglz)

A Ay A A
Golz) H L2 v e s — Cgen ol T2l Hyiz)
Al 'q'l'. "
Gplz) Hl2—» — T2 — Hplz)
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Discrete Wavelet Transform

‘_"" g[n] —F@—> Approximation coefficients
i[n] h[n] —F@—' Detail coefficients

A

Low pass filter

High pass filter

Transformation

Reconstruction

Oy
GylZ) L2 —=
- 0,
Signal Gyiz) Hiz o
S Ay
GglZ) <2 &2} H.

GulZ) Hi2 = = =

Gl .

Hqlz)

I""|_||:1:'

T2

HilZ)

— = T2 HylZ) Reconstructec
Signal

— T2 1 Hplz)

H.:.I:E]
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Masking the DWT
of the signal

e Fach details coefficients
follows:

* D;from 8192 to 4096;
* D, from 4096 to 2048;
* D3 from 2048 to 1024,

* And the approximant :
* A € [O’ n+1].
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Masking the DWT
of the signal

1.

S
S
S

olit the Q-Transform
nace according DWT

olitting;

Integrate the mask along
frequencies;

Resample to fit the DWT
sampling;

Multiply the DWT by the
translate mask;

Transform back to a time
sSeries;
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Masking the DWT

of the signal

1.

Split the Q-Transform
space according DWT
splitting;

Integrate the mask along
frequencies;

Resample to fit the DWT
sampling;

Multiply the DWT by the
translate mask;

Transform back to a time
sSeries;
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Masking the DWT

of the signal

1.

S
S
S

olit the Q-Transform
nace according DWT

olitting;

Integrate the mask along
frequencies;

Resample to fit the DWT
sampling;

Multiply the DWT by the
translate mask;

Transform back to atime
sSeries;
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TimeSeries #0Uld48KYCO [GPS 1260183778.04 .. 1260183782.04]

w  Original
Denoised

78.5
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CO m p lex CO n d itiO n S 819(% Transform #LeoGt1PRzA - "No_Glitch™ (CI: 100.0%) o
Glitch

1.Multiples glitches: 5 o
» LeoGt1PRzA E
* DFA1LgmI5z of

2.Very fainted glitch 3 5

8
-04 0 04 08 12 16 2 24 28 3.2

Time [seconds] from 2019-06-19 05:41:30 UTC (1244958108.0)
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Complex Conditions
Glitch

Continuous Wavelet Transform :
LeoGt1PRzA and DFA1Lgmi5z

1.Multiples glitches:
* LeoGt1PRzA (red line)

+ DFA1Lgmi5z (blue line)| =
2.Very Fainted glitch ;' J

= (c) Glitch subtracted

GPS Times [s]
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Conclusion

* We have a complete framework to (a) classify, (b) segment and
(c) subtract glitches from noise.

* The segmentation and subtractions apply on fainted glitch

* Awhole procedure to deal with multiple glitch in a narrow
neighbouring allows to subtract them separately

01/22/2026 Christopher Alléné
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Thanks for your attention

01/22/2026 Christopher Alléné



Glitch

GravitySpy classifies Glitches on
events (Omicron triggers) among 26 "

classes.
Focuson:

* Whistle
* Scattered Light

. Blip

01/22/2026

1000

100

1000

100

Frequency [Hz|

10

Scattere
1000

100

10
~1.0

Time [seconds]

Christopher Alléné

—0.2 —0.1 0.0 0.1 0.2 —0.2

-0.1

0.0

0.1

31

Tt

Normalized energy



Glitch

GravitySpy classifies Glitches on
events (Omicron triggers) among 26
classes.

E
Focuson: 5
* Whistle

* Scattered Light

. Blip

10

—0.2

100C

100

1

Whistle

100«

10

Scattered Light
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Data augmentation

Random Clipping
(Q~U(25,50))

Spect. Clipping (Q = 25)

01/22/2026
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Random dilation
(z~U(1,8))

Multiple dilation
(z=1{1,2,4,8})

33
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