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• Nb₂O₅ dissociation begins at 200–250 °C, whereas other oxide layers require higher temperatures
[M. Delheusy, 2008, X-ray investigation of Nb/O interfaces]
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Resonance Frequency Shift Measurement
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niobium and modifies the electron mean free path
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Gradient of Oxygen Profile Strongly Depends on Heating Temperature

• Highest gradient accurs for 3 h at 250°C

• For 20 h at 250°C, gradient remains high

• Cavities treated for 3 h at 300°C: a

comparable gradient, yet covering a

wide range of 𝐶𝑂 values

• Gradient sharply decreases at higher T

or for longer t than 3 h at 300°C
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[W. Desorbo, 1963, Effect of Dissolved Gases on Some Superconducting Properties of Niobium]

• 𝑇𝑜𝑛𝑠𝑒𝑡 − 𝑇𝑑𝑖𝑝 vs. 𝐶𝑂,δ, strong linear relationship

• 𝑇𝑜𝑛𝑠𝑒𝑡 − 𝑇𝑑𝑖𝑝 vs. 𝐶𝑂,λ, weaker linear or logaritmic

dependence

• ∆𝑓𝑑𝑖𝑝 vs. 𝐶𝑂,δ, strong linear relationship

• ∆𝑓𝑑𝑖𝑝 vs. 𝐶𝑂,λ , weak, highly scattered

relationship, especially for 250°C treatments
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• Mid-T heat treatments produce strongly temperature-dependent oxygen-gradient profiles

• Mid-T heat treatments at 250 °C results in a markedly high gradient, and extending the duration from 3 h

to 20 h does not substantially reduce it

• Mid-T heat treatments ≥330 °C for ≥3 h generate an oxygen distribution with a relatively low gradient

• The dip width—that is, the temperature interval from the onset of the dip to its minimum—reflects the

Tc suppression caused by interstitial oxygen

• The dip correlates more strongly with the average oxygen concentration within the normal-conducting

skin depth than with the average oxygen concentration within the total magnetic-field penetration depth
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