Radiation-Tolerant Semiconductors

Thursday, 22 January 2026 - Friday, 23 January 2026

Book of Abstracts

Contents

Malfunction of semiconductor devices by energetic particle incidence (Keynote Talk)	1
Development of in-situ instruments for lunar resource exploration and the lunar radiation environment	1
Radiation-Tolerant Semiconductor Detectors for the High-Luminosity Large Hadron Collider (HL-LHC) ATLAS Experiment and Their Evaluation Methods	1
Radiation tolerance and mitigation strategies for the ATLAS muon trigger at the HL-LHC	1
Experience of Considering Radiation Effects for Satellite Developments	1
Radiation tolerance assurance for the space system	1
Test beam line visit	1
Banquet (Engi, Near Tsukuba Station, https://beercafe-engi.studio.site/)	2
Muon-induced Soft Errors in FinFET and Planar SRAMs	2
Custom integrated circuits for the CERN Large Hadron Collider radiation environment (Keynote Talk)	2
Analog ASIC Development at KEK and Its Applications to Measurements in High-Radiation Environments	2
Space–semiconductor research and development platform based on theoretical simulation technologies	2
Irradiation Effect on SiC and SiC composites	2
Diamond MOSFETs: A Promising Platform for Electronics in Extreme Environments	2
Driving the Space Computing Power Innovation by DIOS (Dependability Improvement Technology on Orbit Server System)	3
Closing	3
Opening	3
Banquet	3

1

Malfunction of semiconductor devices by energetic particle incidence (Keynote Talk)

2

Development of in-situ instruments for lunar resource exploration and the lunar radiation environment

3

Radiation-Tolerant Semiconductor Detectors for the High-Luminosity Large Hadron Collider (HL-LHC) ATLAS Experiment and Their Evaluation Methods

Corresponding Author: manabu.togawa@kek.jp

4

Radiation tolerance and mitigation strategies for the ATLAS muon trigger at the HL-LHC

5

Experience of Considering Radiation Effects for Satellite Developments

6

Radiation tolerance assurance for the space system

7

Test beam line visit

8

Bang	uet (Engi.	Near	Tsuku	ba St	ation.	httr	s://bee	rcafe-e	ngi.stu	dio.s	ite/`
		,	1.002	100110	~~~~	~~~,						

9

Muon-induced Soft Errors in FinFET and Planar SRAMs

10

Custom integrated circuits for the CERN Large Hadron Collider radiation environment (Keynote Talk)

11

Analog ASIC Development at KEK and Its Applications to Measurements in High-Radiation Environments

12

Space-semiconductor research and development platform based on theoretical simulation technologies

13

Irradiation Effect on SiC and SiC composites

14

Diamond MOSFETs: A Promising Platform for Electronics in Extreme Environments

15

Driving the Space Computing Power Innovation by DIOS (D	epend-
ability Improvement Technology on Orbit Server System)	-

16

Closing

17

Opening

 $\textbf{Corresponding Author:}\ tadayuki.takahashi@ipmu.jp$

18

Banquet