Matching scalar couplings between general renormalisable theories

Johannes Braathen

based on arXiv:1810.09388 in collaboration with Mark Goodsell and Pietro Slavich

> KEK-PH Winter 2018 Workshop December 5, 2018

Introduction

The need for Effective Field Theories (EFTs)

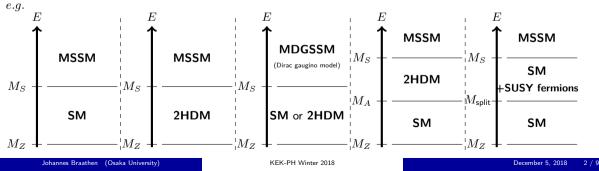
- \blacktriangleright Scale of New Physics $M_{\rm NP}$ is driven higher by experimental searches
 - \rightarrow fixed-order calculations become plagued by large logarithmic terms $\propto \log M_{
 m MP}/m_{
 m EW}$
 - \longrightarrow accuracy of the calculation, or even perturbativity, can be spoilt when the logarithms grow!
- \blacktriangleright The perturbative expansion must be reorganised \rightarrow EFT calculation

Effective Field Theory calculations

- \blacktriangleright Integrate out heavy fields at some scale $\Lambda \sim M_{\rm NP}$ and work in a low-energy EFT below Λ
- ▶ Couplings in the EFT computed by matching effective actions between UV theory and EFT at scale $\Lambda \longrightarrow$ threshold corrections
- Use **RGEs** to run the couplings from the high input scale, to the low scale ($< M_{NP}$) at which the calculation is performed
- \Rightarrow Matching + RGE running \rightarrow large logs are resummed!

Scalar couplings and Effective Field Theories

- In the context of Higgs mass calculations in SUSY models, heavy SUSY scenarios have been extensively investigated
 - \rightarrow Important matching conditions: scalar quartic couplings needed to compute m_h in the EFT!
 - → UV theory has usually been the MSSM, and EFT is the SM
 see *e.g* [Bernal, Djouadi, Slavich '07], [Draper, Lee, Wagner '13], [Bagnaschi, Giudice, Slavich, Strumia '14], [Pardo Vega, Villadoro '15], [Bagnaschi, Pardo Vega, Slavich '17], [Athron et al. '17], [Harlander, Klappert, Ochoa Franco, Voigt '18]
 but more and more scenarios are now being investigated!
 see *e.g* [Benakli, Darmé, Goodsell, Slavich '13], [Bagnaschi, Giudice, Slavich, Strumia '14], [Lee, Wagner '15], [Benakli, Goodsell, Williamson '18], [Bahl, Hollik '18], etc.



Matching of scalar couplings between generic theories

▶ Many possible scenarios → huge amount of work to compute all RGEs and matching conditions for each scenario!

⇒ Automation

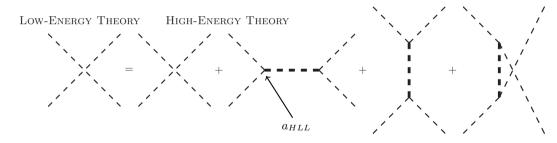
i.e. compute RGEs and threshold corrections for general models, then apply the results to the scenario at hand.

- Two-loop RGEs are known for general QFTs, but for the thresholds, generic results have been obtained only at one-loop and mostly for the case of matching onto the SM or are difficult to implement in automated codes
- ▶ Our objective: provide all necessary results to compute threshold corrections to scalar quartic (and Yukawa) couplings, when matching any high-energy model *A* onto any low-energy model *B*, and with the idea of going beyond one loop
- \rightarrow however there are challenges to address already from **one-loop order**!

[JB, Goodsell, Slavich 1810.09388]

Matching of scalar couplings at tree-level

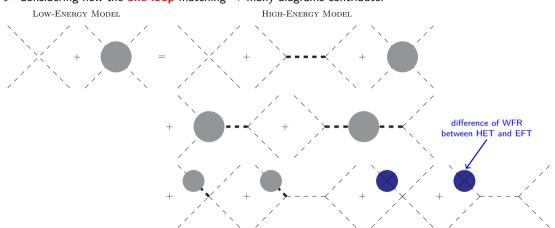
- Consider a general theory of scalars, fermions, and gauge bosons, with two mass scales: one light m_L and one heavy m_H
- ▶ Integrating out heavy fields (*i.e.* of mass $\geq m_H$), one finds at tree-level



thin line: light state; thick line: heavy state

- \blacktriangleright Trilinear couplings between light states a_{LLL} receive no threshold correction at tree-level
- \blacktriangleright In any case, we will consider the limit $m_L \to 0$ in the following and then we must also take $a_{LLL} \to 0$

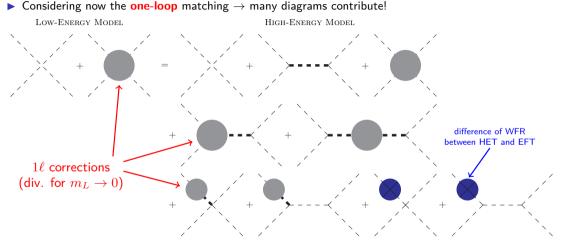
Matching of scalar couplings in a toy model at one loop



► Considering now the **one-loop** matching → many diagrams contribute!

thin line: light state; thick line: heavy state

Matching of scalar couplings in a toy model at one loop

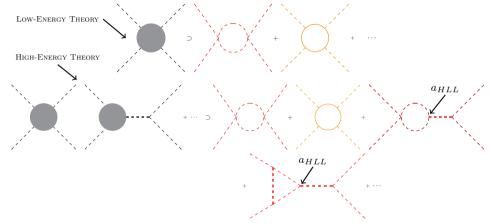


thin line: light state; thick line: heavy state

▶ Several diagrams are IR divergent in limit $m_L \rightarrow 0$, because of terms $\propto \log m_H/m_L$

Matching of scalar couplings at one loop

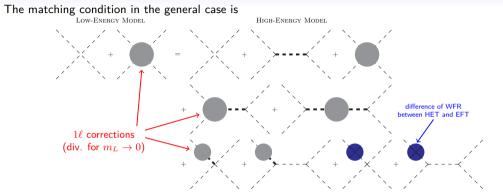
▶ IR parts in low and high energy theory must exactly cancel out, but because of a_{HLL} , divergent scalar diagrams are not in 1 to 1 correspondence \rightarrow automation impossible as is!



⇒ We have derived complete expressions for the matching of scalar couplings, at one-loop order, between two generic models*, and eliminating the IR divergent logs

* however without heavy gauge bosons

Matching quartic couplings between generic theories

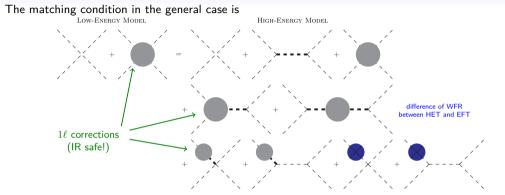


Expressions can be regularised by using modified (Passarino-Veltmann) loop functions

$$\begin{split} B_0(0,0) \to 0, \quad C_0(0,0,X) \to -\frac{1}{X} B_0(0,X) = \frac{1}{X^2} A(X), \quad D_0(0,0,X,Y) \to -\frac{1}{X-Y} \left(\frac{1}{X^2} A(X) - \frac{1}{Y^2} A(Y) \right) \\ \text{where } A(x) \equiv x (\log x/Q^2 - 1). \end{split}$$

In the absence of heavy gauge bosons, threshold corrections can be shown to be independent of the gauge couplings

Matching quartic couplings between generic theories

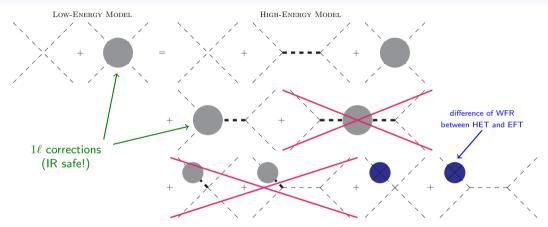


▷ Expressions can be regularised by using modified (Passarino-Veltmann) loop functions

$$\begin{split} B_0(0,0) \to 0, \quad C_0(0,0,X) \to -\frac{1}{X} B_0(0,X) = \frac{1}{X^2} A(X), \quad D_0(0,0,X,Y) \to -\frac{1}{X-Y} \left(\frac{1}{X^2} A(X) - \frac{1}{Y^2} A(Y) \right) \\ \text{where } A(x) \equiv x (\log x/Q^2 - 1). \end{split}$$

In the absence of heavy gauge bosons, threshold corrections can be shown to be independent of the gauge couplings

Matching quartic couplings between generic theories



▷ Redefinition of (finite part of) mass counter-terms can allow eliminating δm_{KL}^2 and δm_{iK}^2 (generalises a scheme devised in [Bagnaschi, Giudice, Slavich, Strumia '14] for models with 2 doublets) \rightarrow mixing between heavy and light states eliminated from the matching condition!

Johannes Braathen (Osaka University)

KEK-PH Winter 2018

A simple approach to matching using two-point functions

Pole-mass matching (see e.g. [Athron et al. '16])

 \blacktriangleright Extracting the threshold corrections to λ_{SM} from

$$\begin{split} \underbrace{2\lambda_{\mathrm{SM}}v_{\mathrm{SM}}^2 + \Delta m_{\mathrm{SM}}^2(p^2 = m_h^2)}_{\mathrm{Higgs pole mass in EFT (SM)}} = \underbrace{(m_{\mathrm{HET}}^2)^{\mathrm{tree}} + \Delta m_{\mathrm{HET}}^2(p^2 = m_h^2)}_{\mathrm{Higgs pole mass in UV theory}} \\ \Rightarrow \lambda_{\mathrm{SM}} = \frac{2}{v_{\mathrm{HET}}^2} \Bigg[m_{\mathrm{HET}}^2 \bigg(1 + [\Pi_{hh}^{\mathrm{HET}\,\prime}(0) - \Pi_{hh}^{\mathrm{SM}\,\prime}(0)] \bigg) - \frac{m_{\mathrm{HET}}^2}{m_Z^2} \bigg(\Pi_{ZZ}^{\mathrm{HET}}(0) - \Pi_{ZZ}^{\mathrm{SM}}(0) \bigg) + \bigg(\Delta m_{\mathrm{HET}}^2(0) - \Delta m_{\mathrm{SM}}^2(0) \bigg) \Bigg] \end{split}$$

 $\Pi_{hh}(0)$, $\Pi_{ZZ}(0)$: Higgs and Z-boson self-energies at $p^2 = 0$, Δm^2 : corrections to the Higgs mass

- ▷ easier to extend beyond one-loop (as 2-point functions are easier to deal with)
- > only really tractable when EFT model does not have mixing in Higgs sector
- > as is, requires cancellation of large logs (as was our problem earlier)
- ▶ Formally equivalent to using the modified mass counterterms (*c.f. previous slide*)
- \blacktriangleright We obtain an efficient way to compute the threshold corrections to $\lambda_{\rm SM}$ as

$$\lambda_{\rm SM} = \frac{2}{v_{\rm HET}^2} \left[m_{\rm HET}^2 \left(1 + 2 \underbrace{\left[\Pi_{hh}^{\rm HET}{}'(0) - \Pi_{hh}^{\rm SM}{}'(0) \right]}_{\text{w. light masses} \to 0} \right) + \underbrace{\hat{\Delta} m_{HET}^2(0)}_{\substack{\text{logs of light masses} \to 0 \\ (\text{gauge contributions} \to 0)}} \right]$$

Summary

- ► Use of Effective Field Theories becomes increasingly necessary as M_{NP} is driven higher by experimental searches
- When considering the calculation of a given observable in a wide range of scenarios or models
 - \longrightarrow Automation can provide fast and accurate predictions
- Modified loop functions and renormalisation scheme choices now allow simple matching of scalar quartic (and Yukawa) couplings between generic theories (similar results implemented in SARAH in [Gabelmann, Mühlleitner, Staub 1810.12326])
- Efficient approach for pole mass matching, that will be easier to extend beyond one-loop
- ► Next: going beyond one-loop → use of modified scheme expected to become more important, consider pole-mass matching, ...

THANK YOU FOR YOUR ATTENTION!

BACKUP

Previous results for the matching of scalar couplings between generic theories

- Two-loop RGEs known for general QFTs [Machacek, Vaughn '83,'84,'85], [Luo, Wang, Xiao '02], [Schienbein, Staub, Steudner, Svirina '18], [Sperling, Stöckinger, Voigt '13].
- General results (at one loop) exist for the matching of couplings in SMEFT studies with functional methods, but difficult to implement in automated codes
 see *e.g.* [Henning, Lu, Murayama '14,'16], [Drozd, Ellis, Quevillon, You '15], [Ellis, Quevillon, You, Zhang '16,'17], [Fuentes-Martin, Portoles, Ruiz-Femenia '16], [Zhang '16], [Bumm, Voigt '18]
- \triangleright Efforts ongoing on the matching of a generic model onto the SM at one loop, by the FlexibleSUSY collaboration [Athron et al. '17] and in SARAH [Staub, Porod '17], via *pole mass matching i.e.* extracting the threshold corrections to λ_{SM} from

$$2\lambda_{\rm SM}v_{\rm SM}^2 + \Delta m_{\rm SM}^2(m_h^2) = (m_{\rm HET}^2)^{\rm tree} + \Delta m_{\rm HET}^2(m_h^2)$$