Group Theoretic Approach to
 Theory of Fermion Production

Minho Son
Korea Advanced Institute of Science and Technology (KAIST)

Based on
Min, SON, Suh 1808.00939

Particle Production

- Preheating via parametric resonance or excitation in post-inflationary era

Kofman, Linde, Starobinsky 97’

- Axion-inflation via gauge boson ($\phi F \tilde{F}$) or fermion $\left(\partial_{\mu} \phi j^{\mu 5}\right)$ production Anbor, Sorbo 10'

Adshead, Pearce, Peloso, Roberts, Sorbo 18'

- Gravitational waves from preheating

Particle Production

We are going to 'Reformulate' of theory of fermion production in a completely new manner

Traditional Approach
 To

 Theory of Fermion Production

 Theory of Fermion Production}
called technique of 'Bogoliubov’ coefficient

The model

$$
\mathcal{S}=\int d^{4} x \sqrt{-g}\left[\bar{\psi}\left(i e_{a}^{\mu} \gamma^{a} D_{\mu}-m+g(\phi)\right) \psi+\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-V(\phi)\right]
$$

On the metric:

$$
d s^{2}=d t^{2}-a(t)^{2} d \mathbf{x}^{2}=a(t)^{2}\left(d \tau^{2}-d \mathbf{x}^{2}\right)
$$

Under rescaling $\psi \rightarrow a^{-3 / 2} \psi$

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m a+\underline{g(\phi)}\right) \psi+\frac{1}{2} a^{2} \eta^{\mu v} \partial_{\mu} \phi \partial_{v} \phi-a^{4} V(\phi)
$$

Common Interaction type in literature

$$
\begin{aligned}
& g(\phi)=\left\{\begin{array}{cc}
h \phi & \text { : Yukawa-type coupling } \\
\begin{array}{|l}
\frac{1}{f} \gamma^{\mu} \gamma^{5} \partial_{\mu} \phi \\
\text { : derivative coupling }
\end{array} \\
\text { more stufto }
\end{array}\right. \\
& \text { omogenous scalar field : } \partial_{\mu} \phi=\dot{\phi} \quad \begin{array}{l}
\text { Norlk about } \\
\text { talk }
\end{array}
\end{aligned}
$$

We will assume spatially homogenous scalar field : $\partial_{\mu} \phi=\dot{\phi}$
We will not distinguish t and τ unless it is necessary

Fermion Production is formulated in Hamiltonian formalism

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m a-\frac{1}{f} \gamma^{0} \gamma^{5} \dot{\phi}\right) \psi+\frac{1}{2} a^{2} \eta^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-a^{4} V(\phi)
$$

A subtlety with derivative coupling

$$
\begin{aligned}
& \Pi_{\psi}=\frac{\delta \mathcal{L}}{\delta \dot{\psi}}=i \psi^{+} \quad \Pi_{\phi}=\frac{\delta \mathcal{L}}{\delta \dot{\phi}}=a^{2} \dot{\phi}-\frac{1}{f} \bar{\psi} \gamma^{0} \gamma^{5} \psi \\
& \mathcal{H}=\Pi_{\psi} \dot{\psi}+\Pi_{\phi} \dot{\phi}-\mathcal{L} \\
&= \bar{\psi}\left(-i \gamma^{i} \partial_{i}+m a+\frac{1}{f} \gamma^{0} \gamma^{5} \dot{\phi}\right) \psi-\frac{1}{2 a^{2}} \frac{\left(\bar{\psi} \gamma^{0} \gamma^{5} \psi\right)^{2}}{f^{2}}+\frac{1}{2 a^{2}} \Pi_{\phi}^{2}+a^{5} V(\phi) \\
& \quad \text { Adshead, Sfakianakis 15' }
\end{aligned}
$$

Definition of particle number is ambiguous
Massless limit is not manifest

A way out: field redefinition

$$
\begin{aligned}
& \mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m a-\frac{1}{f} \gamma^{0} \gamma^{5} \dot{\phi}\right) \psi+\frac{1}{2} a^{2} \eta^{\mu v} \partial_{\mu} \phi \partial_{v} \phi-a^{4} V(\phi) \\
& \psi \rightarrow e^{-i \gamma^{5} \phi / f} \psi \\
& \quad \mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m a \cos \frac{2 \phi}{f}+i m a \sin \frac{2 \phi}{f} \gamma^{5}\right) \psi+\frac{1}{2} a^{2} \eta^{\mu v} \partial_{\mu} \phi \partial_{v} \phi-a^{4} V(\phi) \\
& =m_{R} \\
& \begin{array}{c}
\text { Adshead, Sfakianakis 15, Pearce, Peloso, } \\
\text { Roberts, Sorbo 18' }
\end{array}
\end{aligned}
$$

Hamiltonian formalism

$$
\begin{aligned}
\Pi_{\psi} & =\frac{\delta \mathcal{L}}{\delta \dot{\psi}}=i \psi^{+} \quad \Pi_{\phi}=\frac{\delta \mathcal{L}}{\delta \dot{\phi}}=a^{2} \dot{\phi} \\
\mathcal{H} & =\bar{\psi}\left(-i \gamma^{i} \partial_{i}+m_{R}-i m_{I} \gamma^{5}\right) \psi+\frac{1}{2 a^{2}} \Pi_{\phi}^{2}+a^{4} V(\phi)
\end{aligned}
$$

No ψ - dependence in conjugate momentum Π_{ϕ}
Entire fermion sector is quadratic in ψ
: particle number is unambiguously defined
Massless limit is manifest

Fermion production

$$
\mathcal{H}=\bar{\psi}\left(-i \gamma^{i} \partial_{i}+m_{R}-i m_{I} \gamma^{5}\right) \psi+\frac{1}{2 a^{2}} \Pi_{\phi}^{2}+a^{4} V(\phi)
$$

Garbrecht, Prokopec, Schmidt 02’ for generic complex mass

To estimate Fermion Production, we quantize ψ while keeping pseudo-scalar as a classical field

Quantum field ψ

We follow notation and convention in
Adshead, Pearce, Peloso, Roberts, Sorbo 18'

$$
\begin{array}{r}
\psi=\int \frac{d^{3} k}{(2 \pi)^{3 / 2}} e^{i \mathbf{k} \cdot \mathbf{x}} \sum_{r= \pm}\left[U_{r}(\mathbf{k}, t) a_{r}(\mathbf{k})+V_{r}(-\mathbf{k}, t) b_{r}^{+}(-\mathbf{k})\right] \\
U_{r}=\binom{u_{r}(\mathbf{k}, t) \chi_{r}(\mathbf{k})}{r v_{r}(\mathbf{k}, t) \chi_{r}(\mathbf{k})} \\
\chi_{r}(\mathbf{k})=\frac{k+r \vec{\sigma} \cdot \mathbf{k}}{\sqrt{2 k\left(k+k_{3}\right)}} \bar{\chi}_{r} \quad \text { where } \bar{\chi}_{+}=\binom{1}{0}, \quad \bar{\chi}=\binom{0}{1}
\end{array}
$$

** helicity basis for an arbitrary \mathbf{k}

$$
\begin{aligned}
\mathcal{H}_{\psi}=\sum_{r= \pm} \int d k^{3}\left(a_{r}^{+}(\mathbf{k}), b_{r}(-\mathbf{k})\right) & \left(\begin{array}{cc}
A_{r} & B_{r}^{*} \\
B_{r} & -A_{r}
\end{array}\right)\binom{a_{r}(\mathbf{k})}{b_{r}^{+}(-\mathbf{k})} \\
A_{r} & =\frac{1}{2}-\frac{m_{R}}{4 \omega}\left(\left|u_{r}\right|^{2}-\left|v_{r}\right|^{2}\right)-\frac{k}{2 \omega} \operatorname{Re}\left(u_{r}^{*} v_{r}\right)-\frac{r m_{I}}{2 \omega} \operatorname{Im}\left(u_{r}^{*} v_{r}\right) \\
B_{r} & =\frac{r e^{i r \varphi_{k}}}{2}\left[2 m_{R} u_{r} v_{r}-k\left(u_{r}^{2}-v_{r}^{2}\right)-i r m_{I}\left(u_{r}^{2}+v_{r}^{2}\right)\right]
\end{aligned}
$$

Fermion number density for a particle with helicity r

$$
\begin{aligned}
& n_{r, k}=\langle 0| a_{r}^{+}(\mathbf{k} ; t) a_{r}(\mathbf{k} ; t)|0\rangle \\
& \\
& \qquad \mathrm{w} / a_{r}(\mathbf{k} ; t), a_{r}^{+}(\mathbf{k} ; t) \text { are diagonalized } a_{r}(\mathbf{k}), a_{r}^{+}(\mathbf{k}) \text { at } t \neq 0
\end{aligned}
$$

$a_{r}(\mathbf{k}), a_{r}^{+}(\mathbf{k})$
\leftrightarrow one-particle state due to $B_{r}=0$

$a_{r}(\mathbf{k}), a_{r}^{+}(\mathbf{k})$
\leftrightarrow one-particle state anymore due to $B_{r} \neq 0$

$$
\begin{aligned}
\mathcal{H}_{\psi}=\sum_{r= \pm} \int d k^{3}\left(a_{r}^{+}(\mathbf{k}), b_{r}(-\mathbf{k})\right) & \left(\begin{array}{cc}
A_{r} & B_{r}^{*} \\
B_{r} & -A_{r}
\end{array}\right)\binom{a_{r}(\mathbf{k})}{b_{r}^{+}(-\mathbf{k})} \\
A_{r} & =\frac{1}{2}-\frac{m_{R}}{4 \omega}\left(\left|u_{r}\right|^{2}-\left|v_{r}\right|^{2}\right)-\frac{k}{2 \omega} \operatorname{Re}\left(u_{r}^{*} v_{r}\right)-\frac{r m_{I}}{2 \omega} \operatorname{Im}\left(u_{r}^{*} v_{r}\right) \\
B_{r} & =\frac{r e^{i r \varphi_{k}}}{2}\left[2 m_{R} u_{r} v_{r}-k\left(u_{r}^{2}-v_{r}^{2}\right)-i r m_{I}\left(u_{r}^{2}+v_{r}^{2}\right)\right]
\end{aligned}
$$

Fermion number density for a particle with helicity r

$$
\begin{aligned}
n_{r, k}=\langle 0| a_{r}^{+}(\mathbf{k} ; t) & a_{r}(\mathbf{k} ; t)|0\rangle=\left|\beta_{r}\right|^{2} \\
& \text { w/ } a_{r}(\mathbf{k} ; t), a_{r}^{+}(\mathbf{k} ; t) \text { are diagonalized } a_{r}(\mathbf{k}), a_{r}^{+}(\mathbf{k}) \text { at } t \neq 0
\end{aligned}
$$

$$
=\frac{1}{2}-\frac{m_{R}}{4 \omega}\left(\left|u_{r}\right|^{2}-\left|v_{r}\right|^{2}\right)-\frac{k}{2 \omega} \operatorname{Re}\left(u_{r}^{*} v_{r}\right)-\frac{r m_{I}}{2 \omega} \operatorname{Im}\left(u_{r}^{*} v_{r}\right)
$$

$$
a_{r}(\mathbf{k} ; t)=\alpha_{r} a_{r}(\mathbf{k})-\beta_{r}^{*} b_{r}^{+}(\mathbf{k})
$$

$$
b_{r}^{+}(\mathbf{k} ; t)=\beta_{r} a_{r}(\mathbf{k})+\alpha_{r}^{*} b_{r}^{+}(\mathbf{k})
$$

Diag. ops at $t \neq 0$

In terms of diag. ops at $t=0$

looks too technical ... Any simplication?

$$
\begin{aligned}
n_{r, k} & =\langle 0| a_{r}^{+}(\mathbf{k} ; t) a_{r}(\mathbf{k} ; t)|0\rangle \\
= & \frac{1}{2}-\frac{m_{R}}{4 \omega}\left(\left|u_{r}\right|^{2}-\left|v_{r}\right|^{2}\right)-\frac{k}{2 \omega} \operatorname{Re}\left(u_{r}^{*} v_{r}\right)-\frac{r m_{I}}{2 \omega} \operatorname{Im}\left(u_{r}^{*} v_{r}\right) \\
& \begin{array}{l}
\text { Solving EOM of } u_{r}, v_{r} \text { with correct initial condition is } \\
\text { another source of confusion }
\end{array}
\end{aligned}
$$

looks too technical ... Any simplication?

$$
\begin{aligned}
n_{r, k} & =\langle 0| a_{r}^{+}(\mathbf{k} ; t) a_{r}(\mathbf{k} ; t)|0\rangle \\
& =\frac{1}{2}-\frac{m_{R}}{4 \omega}\left(\left|u_{r}\right|^{2}-\left|v_{r}\right|^{2}\right)-\frac{k}{2 \omega} \operatorname{Re}\left(u_{r}^{*} v_{r}\right)-\frac{r m_{I}}{2 \omega} \operatorname{Im}\left(u_{r}^{*} v_{r}\right) \\
& \begin{array}{l}
\text { Solving EOM of } u_{r}, v_{r} \text { with correct initial condition is } \\
\text { another source of confusion }
\end{array}
\end{aligned}
$$

Recall a Fourier mode in 'helicity' basis

$$
\begin{aligned}
& \psi \sim U_{r}(\mathbf{k}, t) a_{r}(\mathbf{k})+V_{r}(-\mathbf{k}, t) b_{r}^{+}(-\mathbf{k}) \\
& U_{r}=\binom{u_{r}(\mathbf{k}, t) \chi_{r}(\mathbf{k})}{r v_{r}(\mathbf{k}, t) \chi_{r}(\mathbf{k})}=\binom{u_{r}}{r v_{r}} \otimes \chi_{r} \equiv \xi_{r} \otimes \chi_{r}
\end{aligned}
$$

looks too technical ... Any simplication?

$$
\begin{aligned}
n_{r, k} & =\langle 0| a_{r}^{+}(\mathbf{k} ; t) a_{r}(\mathbf{k} ; t)|0\rangle \\
& =\frac{1}{2}-\frac{m_{R}}{4 \omega}\left(\left|u_{r}\right|^{2}-\left|v_{r}\right|^{2}\right)-\frac{k}{2 \omega} \operatorname{Re}\left(u_{r}^{*} v_{r}\right)-\frac{r m_{I}}{2 \omega} \operatorname{Im}\left(u_{r}^{*} v_{r}\right) \\
& \begin{array}{l}
\text { Solving EOM of } u_{r}, v_{r} \text { with correct initial condition is } \\
\text { another source of confusion }
\end{array}
\end{aligned}
$$

Recall a Fourier mode in 'helicity' basis

$$
\begin{aligned}
& \psi \sim U_{r}(\mathbf{k}, t) a_{r}(\mathbf{k})+V_{r}(-\mathbf{k}, t) b_{r}^{+}(-\mathbf{k}) \\
& U_{r}=\binom{u_{r}(\mathbf{k}, t) \chi_{r}(\mathbf{k})}{r v_{r}(\mathbf{k}, t) \chi_{r}(\mathbf{k})}=\binom{u_{r}}{r v_{r}} \otimes \chi_{r} \equiv \xi_{r} \otimes \chi_{r}
\end{aligned}
$$

Then we realize that

$$
\begin{aligned}
& \zeta_{r 1}=\frac{1}{2} r\left(u_{r}^{*} v_{r}+u_{r} v_{r}^{*}\right)=r \operatorname{Re}\left(u_{r}^{*} v_{r}\right) \\
& \zeta_{r 2}=-\frac{i}{2} r\left(u_{r}^{*} v_{r}-u_{r} v_{r}^{*}\right)=r \operatorname{Im}\left(u_{r}^{*} v_{r}\right) \\
& \zeta_{r 3}=\frac{1}{2}\left(\left|u_{r}\right|^{2}-\left|v_{r}\right|^{2}\right)
\end{aligned}
$$

$$
\vec{\zeta}_{r}=\xi_{r}^{+} \vec{\sigma} \xi_{r}
$$

collapses into one vector

$$
\begin{aligned}
n_{r, k} & =\langle 0| a_{r}^{+}(\mathbf{k} ; t) a_{r}(\mathbf{k} ; t)|0\rangle \\
& =\frac{1}{2}-\frac{m_{R}}{4 \omega}\left(\left|u_{r}\right|^{2}-\left|v_{r}\right|^{2}\right)-\frac{k}{2 \omega} \operatorname{Re}\left(u_{r}^{*} v_{r}\right)-\frac{r m_{I}}{2 \omega} \operatorname{Im}\left(u_{r}^{*} v_{r}\right)
\end{aligned}
$$

$\mathbf{q}=r k \hat{x}_{1}+m_{I} \hat{x}_{2}+m_{R} \hat{x}_{3}$

$$
\vec{\zeta}_{r}=\xi_{r}^{+} \vec{\sigma} \xi_{r} \quad \mathrm{w} / \xi_{r} \equiv\binom{u_{r}}{r v_{r}}
$$

* We will see the origin of this vector later

$$
\begin{aligned}
& \zeta_{r 1}=\frac{1}{2} r\left(u_{r}^{*} v_{r}+u_{r} v_{r}^{*}\right)=r \operatorname{Re}\left(u_{r}^{*} v_{r}\right) \\
& \zeta_{r 2}=-\frac{i}{2} r\left(u_{r}^{*} v_{r}-u_{r} v_{r}^{*}\right)=r \operatorname{Im}\left(u_{r}^{*} v_{r}\right) \\
& \zeta_{r 3}=\frac{1}{2}\left(\left|u_{r}\right|^{2}-\left|v_{r}\right|^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
n_{r, k} & =\langle 0| a_{r}^{+}(\mathbf{k} ; t) a_{r}(\mathbf{k} ; t)|0\rangle \\
& =\frac{1}{2}-\frac{m_{R}}{4 \omega}\left(\left|u_{r}\right|^{2}-\left|v_{r}\right|^{2}\right)-\frac{k}{2 \omega} \operatorname{Re}\left(u_{r}^{*} v_{r}\right)-\frac{r m_{I}}{2 \omega} \operatorname{Im}\left(u_{r}^{*} v_{r}\right)
\end{aligned}
$$

$$
\mathbf{q}=r k \hat{x}_{1}+m_{I} \hat{x}_{2}+m_{R} \hat{x}_{3} \quad \vec{\zeta}_{r}=\xi_{r}^{+} \vec{\sigma} \xi_{r} \quad \mathrm{w} / \xi_{r} \equiv\binom{u_{r}}{r v_{r}}
$$

* We will see the origin of this vector later

$$
\begin{aligned}
& \zeta_{r 1}=\frac{1}{2} r\left(u_{r}^{*} v_{r}+u_{r} v_{r}^{*}\right)=r \operatorname{Re}\left(u_{r}^{*} v_{r}\right) \\
& \zeta_{r 2}=-\frac{i}{2} r\left(u_{r}^{*} v_{r}-u_{r} v_{r}^{*}\right)=r \operatorname{Im}\left(u_{r}^{*} v_{r}\right)
\end{aligned}
$$

$$
n_{r, k}(t)=\frac{1}{2}\left(1-\frac{\mathbf{q} \cdot \vec{\zeta}_{r}}{|\mathbf{q}|}\right)=\frac{1}{2}(1-\cos \theta)
$$

$\vec{\zeta}_{r}, \mathbf{q}$ behave like vector reps of SO (3)
What is this mysterious $\mathrm{SO}(3)$?

Group Theoretic Approach

'Reparametrization' Group

While γ^{μ} is fixed and only ψ transforms in the Lorentz group,

$$
\gamma^{\mu} \rightarrow \gamma^{\mu}, \quad \psi \rightarrow \Lambda_{1 / 2} \psi
$$

there is a freedom in choosing a representation of the gamma matrices. This freedom is totally unphysical.

Clifford Algebra

$$
\begin{gathered}
\left\{\gamma^{\mu}, \gamma^{v}\right\}=2 \eta^{\mu \nu} 1_{4} \\
\gamma^{\mu} \rightarrow U \gamma^{\mu} U^{-1} \quad: \quad \mathrm{GL}(4, \mathrm{C})
\end{gathered}
$$

Dirac Theory

We assign the transformation of $\psi, \psi \rightarrow U \psi$

$$
\begin{aligned}
& \mathcal{L}=\psi^{+} \gamma^{0}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi \\
& \rightarrow \mathcal{L}=\psi^{+} U^{+} U \gamma^{0} U^{-1}\left(i U \gamma^{\mu} U^{-1} \partial_{\mu}-m\right) U \psi \\
& \quad U^{+} U=U U^{+}=1 \quad: \quad U(4)
\end{aligned}
$$

We consider the following subgroup of $U(4)$
$S U(2)_{1} \times S U(2)_{2} \times U(1) \subset U(4)$
The rep of subgroup is constructed as a 'tensor product' of two $S U(2)$'s and phase rotation, e.g.

$$
\begin{aligned}
& \left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \otimes U_{2}=\left(\begin{array}{ll}
a_{11} U_{2} & a_{12} U_{2} \\
a_{21} U_{2} & a_{22} U_{2}
\end{array}\right) \\
& \quad=U_{1}
\end{aligned}
$$

Under $S U(2)_{1} \otimes S U(2)_{2}$ transformation (we associate $U(1)$ with ξ_{r})

$$
\psi \sim \xi_{r} \otimes \chi_{r} \rightarrow\left(U_{1} \otimes U_{2}\right)\left(\xi_{r} \otimes \chi_{r}\right)=\left(U_{1} \xi_{r}\right) \otimes\left(U_{2} \chi_{r}\right)
$$

This is what we are looking for

We considerthefolloy Lorentz Group

$S U(2){ }_{1} \times S U(2$
The rep of and phase

\[

\]

Under $S U(2)_{1} \otimes S U(2$

$$
\psi \sim \xi_{r} \otimes \chi_{r} \rightarrow e^{-i \vec{\theta} \cdot \vec{J}} \psi=\xi \otimes e^{-i \vec{\theta} \cdot \frac{\vec{\sigma}}{2}} \chi_{r}
$$

$$
\begin{array}{r}
\psi \sim \xi_{r} \otimes \chi_{r} \rightarrow\left(U_{1} \otimes U_{2}\right)\left(\xi_{r} \otimes \chi_{r}\right)=\left(U_{1} \xi_{r}\right) \otimes
\end{array} \begin{aligned}
& \text { Uniyersally acts } \\
& \text { on } \psi_{L} \text { and } \psi_{R}
\end{aligned}
$$

$$
\begin{gathered}
\text { E.g. } \bar{\psi} \gamma^{\mu} \psi \rightarrow \psi^{+} U^{+} U \gamma^{0} U^{-1} U \gamma^{\mu} U^{-1} U \psi=\bar{\psi} \gamma^{\mu} \psi \\
\bar{\psi} \gamma^{\mu} \psi \rightarrow \bar{\psi} \Lambda_{1 / 2}^{-1} \gamma^{\mu} \Lambda_{1 / 2} \psi=\Lambda_{v}^{\mu} \bar{\psi} \gamma^{\mu} \psi
\end{gathered}
$$

A well-known example of $S U(2)_{1}$

Weyl Representation $\quad \psi_{\text {Weyl }}=\binom{\psi_{L}}{\psi_{R}}$

$$
\begin{aligned}
& \gamma^{0}=\left(\begin{array}{cc}
0 & I_{2} \\
I_{2} & 0
\end{array}\right)=\sigma_{1}(\begin{array}{ll}
\sigma_{1} & \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)=i \sigma_{2} \otimes \sigma_{i} \\
\gamma^{5}=\left(\begin{array}{cc}
-I_{2} & 0 \\
0 & I_{2}
\end{array}\right)=-\sigma_{3}\left(\otimes I_{2}\right. \\
\text { c Representation } \\
\psi_{\text {Dirac }}=\frac{1}{\sqrt{2}}\binom{\psi_{L}+\psi_{R}}{-\psi_{L}+\psi_{R}} \\
\gamma^{0}=\left(\begin{array}{cc}
I_{2} & 0 \\
0 & -I_{2}
\end{array}\right)=\sigma_{3} \otimes I_{2} & \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)=i \sigma_{2} \otimes \sigma_{i}
\end{array} \gamma^{5}=\left(\begin{array}{cc}
0 & I_{2} \\
I_{2} & 0
\end{array}\right)=\underbrace{}_{\sigma_{1} \otimes I_{2}}
\end{aligned}
$$

Two representations are related via a similarity transformation

$$
\begin{aligned}
& \gamma_{\text {Weyl }}^{\mu} \rightarrow U_{1} \gamma_{\text {Weyl }}^{\mu} U_{1}^{-1}=\gamma_{\text {Dirac }}^{\mu} \\
& \psi_{\text {Weyl }} \rightarrow U_{1} \psi_{\text {Weyl }}=\psi_{\text {Dirac }}
\end{aligned}
$$

$$
\mathrm{w} / U_{1}(\pi / 2)=e^{i \frac{\pi}{2} \frac{\sigma_{y}}{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)
$$

$S U(2)_{1} \times U(1)_{\text {we will drop subscript }}$ from now on

is what our group theoretic approach is based on
$S U(2)_{2}$ does not play any important role.

Group Theoretic Approach

Dirac equation in inertial frame

$$
\left(i \gamma^{\mu} \partial_{\mu}-m_{R}+i m_{I} \gamma^{5}\right) \psi=0
$$

EOM in tensor form for a Fourier mode can be written as (using $\left.(\vec{\sigma} \cdot \mathbf{k}) \chi_{r}=r k \chi_{r}\right)$

$$
\left[\left(i \sigma_{3} \partial_{t}-i r k \sigma_{2}-m_{R} I_{2}+i m_{I} \sigma_{1}\right) \otimes I_{2}\right]\left(\xi_{r} \otimes \chi_{r}\right)=0
$$

Gives rise to EOM of fundamental rep.

$$
\begin{aligned}
& \quad \partial_{t} \xi_{r}=-i\left(\underline{\mathbf{q} \cdot \vec{\sigma}) \xi_{r}} \quad \begin{array}{l}
\downarrow \\
\mathrm{SU}(2) \text { embedding is called Weyl equation in condensed matter physics } \\
\text { of } \mathrm{SO}(3) \text { vector } \mathbf{q}
\end{array}\right. \\
& \mathrm{SU}(2) \quad \operatorname{q}=r k \hat{x}_{1}+m_{I} \hat{x}_{2}+m_{R} \hat{x}_{3} \\
& \text { fundamental }
\end{aligned}
$$

SU(2)

Group Theoretic Approach

\checkmark Fundamental rep. of $S U(2)$

$$
\xi_{r} \equiv\binom{u_{r}}{r v_{r}}
$$

- EOM of fundamental rep.

$$
\begin{aligned}
\partial_{t} \xi_{r} & =\frac{-i(\mathbf{q} \cdot \vec{\sigma}) \xi_{r}}{\substack{\text { SU(2) embedding } \\
\text { of SO(3) vector }}} \\
\mathrm{w} / \mathbf{q} & =r k \hat{x}_{1}+m_{I} \hat{x}_{2}+m_{R} \hat{x}_{3}
\end{aligned}
$$

Group Theoretic Approach

\checkmark Fundamental rep. of $\mathrm{SU}(2)$

$$
\xi_{r} \equiv\binom{u_{r}}{r v_{r}}
$$

- EOM of fundamental rep.

$$
\partial_{t} \xi_{r}=-\underbrace{i(\mathbf{q} \cdot \vec{\sigma}) \xi_{r}}_{\substack{\text { SU(2) embedding } \\ \text { of } \mathrm{SO}(3) \text { vector }}}
$$

$\mathrm{w} / \mathbf{q}=r k \hat{x}_{1}+m_{I} \hat{x}_{2}+m_{R} \hat{x}_{3}$
\checkmark In terms of $\mathrm{SO}(3) \sim \mathrm{SU}(2)$ reps
Bilinear of $\xi_{r}: \quad \xi_{r}^{+} A \xi_{r}$
w/ $A=$ arbitrary 2×2 complex matrix

$$
\begin{aligned}
& \xi^{+} \xi(=1): \text { scalar } \\
& \vec{\zeta}_{r}=\xi^{+} \vec{\sigma} \xi: \text { vector }
\end{aligned}
$$

the only non-trivial rep.

- EOM of vector rep.
$\partial_{t} \zeta_{r i}=\frac{1}{2} \xi_{r}^{+}\left[i \mathbf{q} \cdot \vec{\sigma}, \sigma_{i}\right] \xi_{r}=2 \epsilon_{i j k} q_{j} \zeta_{r k}$

$$
\frac{1}{2} \partial_{t} \vec{\zeta}_{r}=\mathbf{q} \times \vec{\zeta}_{r}
$$

Analog to classical precession motion

Quantum mechanical fermion production

$$
\frac{1}{2} \frac{d \vec{\zeta}_{r}}{d t}=\mathbf{q} \times \vec{\zeta}_{r}
$$

$$
\mathbf{q} \text { as angular velocity }
$$

Classical precession of a vector \vec{r} with angular velocity $\vec{\omega}$

$$
\frac{d \vec{r}}{d t}=\vec{\omega} \times \vec{r}
$$

E.g. when $\vec{r}=\mathbf{M}$ (magnetization),

$$
\vec{\omega}=\vec{\omega}_{\mathbf{B}}=-\gamma \mathbf{B}
$$

$$
\frac{d \mathbf{M}}{d t}=\vec{\omega}_{\mathbf{B}} \times \mathbf{M}: \text { called block eq. }
$$

$$
E=\vec{\omega}_{\mathbf{B}} \cdot \mathbf{M}
$$

Particle number density

$$
\begin{aligned}
\mathcal{H}_{\psi}=\sum_{r= \pm} \int d k^{3}\left(a_{r}^{+}(\mathbf{k}), b_{r}(-\mathbf{k})\right) & \left(\begin{array}{cc}
A_{r} & B_{r}^{*} \\
B_{r} & -A_{r}
\end{array}\right)\binom{a_{r}(\mathbf{k})}{b_{r}^{+}(-\mathbf{k})} \\
A_{r} & =\frac{1}{2}-\frac{m_{R}}{4 \omega}\left(\left|u_{r}\right|^{2}-\left|v_{r}\right|^{2}\right)-\frac{k}{2 \omega} \operatorname{Re}\left(u_{r}^{*} v_{r}\right)-\frac{r m_{I}}{2 \omega} \operatorname{Im}\left(u_{r}^{*} v_{r}\right) \\
B_{r} & =\frac{r e^{i r \varphi_{k}}}{2}\left[2 m_{R} u_{r} v_{r}-k\left(u_{r}^{2}-v_{r}^{2}\right)-\operatorname{irm}_{I}\left(u_{r}^{2}+v_{r}^{2}\right)\right]
\end{aligned}
$$

Now it is clear that each matrix element should be a function of \mathbf{q} and $\vec{\zeta}_{r}$ in our group theoretic approach

Diagonal element

$$
\begin{aligned}
A_{r} & =\mathbf{q} \cdot \vec{\zeta}_{r} \\
& =\omega \cos \theta
\end{aligned}
$$

Off-diagonal element

$$
\begin{aligned}
\left|B_{r}\right| & =\left|\mathbf{q} \times \vec{\zeta}_{r}\right| \\
& =\omega \sin \theta
\end{aligned}
$$

One can easily see why
eigenvalues are $\pm \omega= \pm|\mathbf{q}|$

$$
|\mathbf{q}|=\omega=\sqrt{k^{2}+m^{2}}
$$

Particle number density

$$
\begin{aligned}
\mathcal{H}_{\psi}=\sum_{r= \pm} \int d k^{3}\left(a_{r}^{+}(\mathbf{k}), b_{r}(-\mathbf{k})\right)\left(\begin{array}{cc}
A_{r} & B_{r}^{*} \\
B_{r} & -A_{r}
\end{array}\right)\binom{a_{r}(\mathbf{k})}{b_{r}^{+}(-\mathbf{k})} \\
A_{r}=\mathbf{q} \cdot \vec{\zeta}_{r}, \quad\left|B_{r}\right|=\left|\mathbf{q} \times \vec{\zeta}_{r}\right|
\end{aligned}
$$

In our approach, a few group properties can uniquely determine fermion number density

$$
n_{r, k}=\langle 0| a_{r}^{+}(\mathbf{k} ; t) a_{r}(\mathbf{k} ; t)|0\rangle=\left|\beta_{r}\right|^{2}=f\left(\mathbf{q} \cdot \vec{\zeta}_{r},|\mathbf{q}|\right)
$$

1. It should be at most linear in $\vec{\zeta}_{r}$ (note $\left.\left|\vec{\zeta}_{r}\right|=1\right)$

$$
n_{r, k}=A \pm B \frac{\mathbf{q} \cdot \vec{弓}_{r}}{|\mathbf{q}|} \quad \text { 2. Pauli-blocking }
$$

$$
\xrightarrow{0 \leq n_{r, k} \leq 1} \quad n_{r, k}=\frac{1}{2}\left(1-\frac{\mathbf{q} \cdot \vec{\zeta}_{r}}{|\mathbf{q}|}\right)
$$

$$
A-B \leq n_{r, k} \leq A+B
$$

' - ' sign chosen for the consistency with the form of A_{r}

Solution of EOM

Closed form of solution is available

$$
\begin{gathered}
\frac{1}{2} \partial_{t} \vec{弓}_{r}=\mathbf{q} \times \vec{弓}_{r}=\left(\mathbf{q} \cdot \frac{3 \times 3 \text { rep. of } \mathbf{L O})}{\xi_{r}}\right. \\
\\
\mathrm{w} / \mathbf{q}=r k \hat{x}_{1}+m_{I} \hat{x}_{2}+m_{R} \hat{x}_{3}
\end{gathered} \quad n_{r, k}=\frac{1}{2}\left(1-\frac{\mathbf{q} \cdot \vec{\zeta}_{r}}{|\mathbf{q}|}\right)
$$

- Initial condition (\leftrightarrow zero particle number) at $t=t_{0}$ is straightforward than other approach

$$
\vec{\zeta}_{r}\left(t_{0}, t_{0}\right)=\frac{\mathbf{q}\left(t_{0}\right)}{\left|\mathbf{q}\left(t_{0}\right)\right|}
$$

- Just like solving Schrödinger eq. for the unitary op., EOM can be iteratively solved

$$
\vec{\zeta}_{r}\left(t, t_{0}\right)=T \exp \left(\int_{t_{0}}^{t} d t^{\prime}(\mathbf{q} \cdot \mathbf{L})\left(t^{\prime}\right)\right) \frac{\mathbf{q}\left(t_{0}\right)}{\left|\mathbf{q}\left(t_{0}\right)\right|}
$$

Expanding involves commutators of $\mathbf{q} \cdot \mathbf{L}$
WKB solution might be the case with vanishing commutators

Numerical example $\quad \frac{1}{2} \partial_{t} \vec{\zeta}_{r}=\mathbf{q} \times \vec{\zeta}_{r} \quad$ with $\vec{\zeta}_{r}(0)=\frac{\mathbf{q}(0)}{|\mathbf{q}(0)|}$
$\phi(t)=\phi_{0} \sin (t)$ for chaotic potential, $V(\phi) \sim m^{2} \phi^{2}$

$$
k=1
$$

Case where WKB approx. is not valid

$m=1, \frac{\phi_{0}}{f}=10$
chosen for all plots

$$
k=10
$$

Region where WKB approx. is valid

$k=12$

'Inertial Frame' vs 'Rotating Frame'

Transformation from

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m_{R}+i m_{I} \gamma^{5}\right) \psi+\cdots
$$

To, via $\psi \rightarrow e^{+i \gamma^{5} \phi / f} \psi$,

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m a-\frac{1}{f} \gamma^{0} \gamma^{5} \dot{\phi}\right) \psi+\cdots
$$

is equivalent to, in terms of $\vec{\zeta}_{r}$,

$$
\vec{\zeta}_{r} \rightarrow R(t) \vec{\zeta}_{r}, \quad \text { where } R(t)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos 2 \phi / f & -\sin 2 \phi / f \\
0 & \sin 2 \phi / f & \cos 2 \phi / f
\end{array}\right)
$$

'Inertial Frame' vs 'Rotating Frame'

Transformation from

$$
\begin{aligned}
& \mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m_{R}+i m_{I} \gamma^{5}\right) \psi+\cdots \\
& \text { To, via } \psi \rightarrow e^{+i \gamma^{5} \phi / f} \psi, \\
& \quad \mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m a-\frac{1}{f} \gamma^{0} \gamma^{5} \dot{\phi}\right) \psi+\cdots \\
& \quad \text { in `Rotating Frame' }
\end{aligned}
$$

is equivalent to, in terms of $\vec{\zeta}_{r}$,

$$
\vec{\zeta}_{r} \rightarrow R(t) \vec{\zeta}_{r}, \quad \text { where } R(t)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos 2 \phi / f & -\sin 2 \phi / f \\
0 & \sin 2 \phi / f & \cos 2 \phi / f
\end{array}\right)
$$

This rotating frame is non-inertial frame
Needs to supplement extra terms, e.g. Coriolis, centrifugal forces etc, to keep physics independent

EOM in 'Rotating Frame'

Under $\vec{\zeta}_{r} \rightarrow R(t) \vec{\zeta}_{r}$,

Similarly to the classical mechanics, EOM transforms like

$$
\begin{aligned}
& \frac{1}{2} \partial_{t} \vec{\zeta}_{r}=\mathbf{q} \times \vec{\zeta}_{r}=(\mathbf{q} \cdot \mathbf{L}) \vec{\zeta}_{r} \quad \rightarrow \frac{1}{2} \partial_{t}\left(R \vec{\zeta}_{r}\right)=(\mathbf{q} \cdot \mathbf{L})\left(R \vec{\zeta}_{r}\right) \\
& \frac{1}{2} \partial_{t} \vec{\zeta}_{r}=R^{T}(\mathbf{q} \cdot \mathbf{L}) R \vec{\zeta}_{r}-\frac{1}{2} R^{T} \dot{R} \vec{\zeta}_{r} \\
& \quad \mathrm{w} /\left(R^{T} \dot{R}\right)_{i j} \equiv \epsilon_{i j k} \omega_{\zeta_{r} k}
\end{aligned}
$$

EOM in 'Rotating Frame'

Under $\vec{\zeta}_{r} \rightarrow R(t) \vec{\zeta}_{r}$,

Similarly to the classical mechanics, EOM transforms like

$$
\begin{aligned}
\frac{1}{2} \partial_{t} \vec{\zeta}_{r}=\mathbf{q} \times \vec{\zeta}_{r}=(\mathbf{q} \cdot \mathbf{L}) \vec{\zeta}_{r} \rightarrow & \frac{1}{2} \partial_{t}\left(R \vec{\zeta}_{r}\right)=(\mathbf{q} \cdot \mathbf{L})\left(R \vec{\zeta}_{r}\right) \\
& \frac{1}{2} \partial_{t} \vec{\zeta}_{r}=R^{T}(\mathbf{q} \cdot \mathbf{L}) R \vec{\zeta}_{r}-\frac{1}{2} R^{T} \dot{R} \vec{\zeta}_{r}
\end{aligned}
$$

EOM can be brought back to the universal form

$$
\mathrm{w} /\left(R^{T} \dot{R}\right)_{i j} \equiv \epsilon_{i j k} \omega_{\zeta_{r} k}
$$

$$
\frac{1}{2} \partial_{t} \vec{\zeta}_{r}=R \mathbf{q} \times \vec{\zeta}_{r}+\frac{1}{2} \vec{\omega}_{\zeta_{r}} \times \vec{\zeta}_{r}=\left(R \mathbf{q}+\vec{\omega}_{\zeta_{r}}\right) \times \vec{\zeta}_{r}=\mathbf{q}^{\prime} \times \vec{\zeta}_{r}
$$

$$
\mathbf{q}^{\prime}=\left(r k+\frac{\dot{\phi}}{f}\right) \hat{x}_{1}+m a \hat{x}_{3}
$$

: different basis amounts to choose different angular velocity

Particle number density in 'Rotating (non-inertial) Frame'

Particle number density in rotating frame

$$
n_{r, k}=\langle 0| a_{r}^{+}(\mathbf{k} ; t) a_{r}(\mathbf{k} ; t)|0\rangle=f\left(\mathbf{q}^{\prime} \cdot \vec{\zeta}_{r},\left|\mathbf{q}^{\prime}\right|\right)
$$

It should be at most linear in $\vec{\zeta}_{r}$.
Higher order terms should vanish to match to the one in inertial frame in $\dot{\phi} \rightarrow 0$ limit

$$
n_{r, k}=\frac{1}{2}\left(1-\frac{\mathbf{q}^{\prime} \cdot \vec{\zeta}_{r}}{\left|\mathbf{q}^{\prime}\right|}\right) \quad \begin{aligned}
& \text { * does not take into account of } \\
& \text { quartic coupling etc.. }
\end{aligned}
$$

$$
\mathcal{H}_{\psi}=\bar{\psi}\left(-i \gamma^{i} \partial_{i}+m a+\frac{1}{f} \gamma^{0} \gamma^{5} \dot{\phi}\right) \psi-\frac{1}{2 a^{2}} \frac{\left(\bar{\psi} \gamma^{0} \gamma^{5} \psi\right)^{2}}{f^{2} \quad \begin{array}{c}
\text { See Adshead, Sfakianakis 15 } \\
\text { for a related discussion }
\end{array}}
$$

1. It looks like particle numbers are different in two different frames.
2. Establishing the 'final' particle number as a basis-independent quantity seems very non-trivial, e.g. Inertial frame vs. Non-inertial frame

Summary

We proposed a new group theoretic approach to theory of fermion production

1. Based on the 'Reparametrization' group of gamma matrcies
a. Totally unphysical symmetry (that we never cared) provides us with totally different viewpoint of a very complicated process such as fermion production
2. Insightful visualization of quantum mechanical fermion production dynamics.
a. Dynamics is analogous to the classical precession.
b. Crystal clear initial condition unlike the traditional approach.
c. Systematic comparison between Exact solution vs WKB solution.
3. This approach applies to any fermion system
a. Possible extension is gravitino production, fermion production from gravitational background, fermion production in extra-dim. Spacetime
b. Application to relaxation scenario
c. Group theoretic approach for both fermion- and gauge boson production

Backup slides

Lorentz Group

Weyl Representation

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & I_{2} \\
I_{2} & 0
\end{array}\right)=\sigma_{1} \otimes I_{2} \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)=i \sigma_{2} \otimes \sigma_{i} \quad \gamma^{5}=\left(\begin{array}{cc}
-I_{2} & 0 \\
0 & I_{2}
\end{array}\right)=-\sigma_{3} \otimes I_{2}
$$

Spinor rep. satisfying Lorentz algebra

$$
\begin{aligned}
& \qquad S^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] \\
& J_{i} \equiv \frac{1}{2} \epsilon_{i j k} S^{j k}=\frac{1}{2} I_{2} \otimes \sigma_{i} \text { (space rotation), } \quad K_{i} \equiv S^{i 0}=\frac{i}{2} \sigma_{3} \otimes \sigma_{i} \text { (boost) } \\
& \qquad \psi \sim \xi_{r} \otimes \chi_{r} \rightarrow e^{-i \vec{\theta} \cdot \vec{J}} \psi=\xi \otimes e^{-i \vec{\theta} \cdot \vec{\sigma}} \chi_{r} \begin{array}{l}
\text { Universally acts } \\
\text { on } \psi_{\mathrm{L}} \text { and } \psi_{\mathrm{R}}
\end{array} \\
& \text { On the other hand } \quad
\end{aligned}
$$

$$
\begin{aligned}
\left(J_{L, R}\right)_{i}=\frac{J_{i} \mp i K_{i}}{\sqrt{2}}=\frac{1}{2}\left(I_{2} \pm \sigma_{3}\right) \otimes \frac{\sigma_{i}}{2} & : \\
\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right) \quad \psi=\binom{\psi_{L}}{\psi_{R}} & \text { :Rep. of } S U(2)_{L} \times S U(2)_{R} \times S U(2)_{R} \text { is } \\
& \text { constructed as a 'tensor sur }
\end{aligned}
$$

