KEK-KIAS-NCTS Theory Workshop, Dec 4 - 7, 2018

## Group Theoretic Approach to Theory of Fermion Production

#### Minho Son Korea Advanced Institute of Science and Technology (KAIST)

Based on Min, SON, Suh 1808.00939

## Particle Production



Adshead, Pearce, Peloso, Roberts, Sorbo 18'

• Gravitational waves from preheating

Many literature (hard to list all here)

List goes on .....

### Particle Production



We are going to '**Reformulate**' of theory of fermion production in a completely new manner

# Traditional Approach To Theory of Fermion Production

called technique of 'Bogoliubov' coefficient

#### The model

$$S = \int d^4x \sqrt{-g} \left[ \bar{\psi} \left( i e^{\mu}_{\ a} \gamma^a D_{\mu} - m + g(\phi) \right) \psi + \frac{1}{2} \left( \partial_{\mu} \phi \right)^2 - V(\phi) \right]$$

On the metric:

$$ds^{2} = dt^{2} - a(t)^{2} d\mathbf{x}^{2} = a(t)^{2} (d\tau^{2} - d\mathbf{x}^{2})$$

Under rescaling  $\psi \rightarrow a^{-3/2}\psi$ 

$$\mathcal{L} = \bar{\psi} \left( i \gamma^{\mu} \partial_{\mu} - ma + \underline{g(\phi)} \right) \psi + \frac{1}{2} a^{2} \eta^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - a^{4} V(\phi)$$

Common Interaction  
type in literature 
$$g(\phi) = \begin{cases} h\phi & : \text{Yukawa-type coupling} \\ \frac{1}{f}\gamma^{\mu}\gamma^{5}\partial_{\mu}\phi & : \text{ derivative coupling} \end{cases}$$
  
will assume spatially homogenous scalar field :  $\partial_{\tau}\phi = \dot{\phi}$ 

We will assume spatially homogenous scalar field :  $\partial_\mu \phi \,= \dot{\phi}$ 

We will not distinguish t and  $\tau$ unless it is necessary

### Fermion Production is formulated in Hamiltonian formalism

$$\mathcal{L} = \bar{\psi} \left( i \gamma^{\mu} \partial_{\mu} - ma - \frac{1}{f} \gamma^{0} \gamma^{5} \dot{\phi} \right) \psi + \frac{1}{2} a^{2} \eta^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - a^{4} V(\phi)$$

A subtlety with derivative coupling

$$\Pi_{\psi} = \frac{\delta \mathcal{L}}{\delta \dot{\psi}} = i\psi^{+} \qquad \Pi_{\phi} = \frac{\delta \mathcal{L}}{\delta \dot{\phi}} = a^{2}\dot{\phi} - \frac{1}{f}\bar{\psi}\gamma^{0}\gamma^{5}\psi$$

$$\begin{aligned} \mathcal{H} &= \Pi_{\psi} \dot{\psi} + \Pi_{\phi} \dot{\phi} - \mathcal{L} \\ &= \bar{\psi} \left( -i \gamma^{i} \partial_{i} + ma + \frac{1}{f} \gamma^{0} \gamma^{5} \dot{\phi} \right) \psi - \frac{1}{2a^{2}} \frac{(\bar{\psi} \gamma^{0} \gamma^{5} \psi)^{2}}{f^{2}} + \frac{1}{2a^{2}} \Pi_{\phi}^{2} + a^{5} V(\phi) \end{aligned}$$

Definition of particle number is ambiguous Massless limit is not manifest

Adshead, Sfakianakis 15'

A way out: field redefinition

$$\mathcal{L} = \bar{\psi} \left( i \gamma^{\mu} \partial_{\mu} - ma - \frac{1}{f} \gamma^{0} \gamma^{5} \dot{\phi} \right) \psi + \frac{1}{2} a^{2} \eta^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - a^{4} V(\phi)$$
Adshead. Sfakianakis 15'

$$\psi \to e^{-i\gamma^5 \phi/f} \psi$$

$$\mathcal{L} = \bar{\psi} \left( i \gamma^{\mu} \partial_{\mu} - ma \cos \frac{2\phi}{f} + i ma \sin \frac{2\phi}{f} \gamma^{5} \right) \psi + \frac{1}{2} a^{2} \eta^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - a^{4} V(\phi)$$

$$= m_{R} = m_{I}$$
Adshead, Pearce, Peloso,  
Roberts, Sorbo 18'

Hamiltonian formalism

$$\Pi_{\psi} = \frac{\delta \mathcal{L}}{\delta \dot{\psi}} = i\psi^{+} \qquad \Pi_{\phi} = \frac{\delta \mathcal{L}}{\delta \dot{\phi}} = a^{2}\dot{\phi}$$
$$\mathcal{H} = \bar{\psi} \Big( -i\gamma^{i}\partial_{i} + m_{R} - im_{I}\gamma^{5} \Big)\psi + \frac{1}{2a^{2}}\Pi_{\phi}^{2} + a^{4}V(\phi)$$

No  $\psi$  - dependence in conjugate momentum  $\Pi_{\phi}$ 

Entire fermion sector is quadratic in  $\psi$ 

: particle number is unambiguously defined Massless limit is manifest

#### Fermion production

$$\mathcal{H} = \bar{\psi} \Big( -i \gamma^i \partial_i + m_R - i m_I \gamma^5 \Big) \psi + \frac{1}{2a^2} \Pi_{\phi}^2 + a^4 V(\phi)$$

Garbrecht, Prokopec, Schmidt 02' for generic complex mass

To estimate Fermion Production, we quantize  $\psi$  while keeping pseudo-scalar as a classical field

Quantum field  $\psi$ 

We follow notation and convention in Adshead, Pearce, Peloso, Roberts, Sorbo 18'

$$\psi = \int \frac{d^3k}{(2\pi)^{3/2}} e^{i\mathbf{k}\cdot\mathbf{x}} \sum_{r=\pm} \left[ U_r(\mathbf{k},t) a_r(\mathbf{k}) + V_r(-\mathbf{k},t) b_r^+(-\mathbf{k}) \right]$$
$$U_r = \begin{pmatrix} u_r(\mathbf{k},t) \chi_r(\mathbf{k}) \\ r v_r(\mathbf{k},t) \chi_r(\mathbf{k}) \end{pmatrix}$$

$$\chi_r(\mathbf{k}) = \frac{k + r \,\vec{\sigma} \cdot \mathbf{k}}{\sqrt{2k(k + k_3)}} \bar{\chi}_r \quad \text{where } \bar{\chi}_+ = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \quad \bar{\chi}_- = \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

\*\* helicity basis for an arbitrary k

$$\begin{aligned} \mathcal{H}_{\psi} &= \sum_{r=\pm} \int dk^{3} \left( a_{r}^{+}(\mathbf{k}), b_{r}(-\mathbf{k}) \right) \begin{pmatrix} A_{r} & B_{r}^{*} \\ B_{r} & -A_{r} \end{pmatrix} \begin{pmatrix} a_{r}(\mathbf{k}) \\ b_{r}^{+}(-\mathbf{k}) \end{pmatrix} \\ & A_{r} = \frac{1}{2} - \frac{m_{R}}{4\omega} (|u_{r}|^{2} - |v_{r}|^{2}) - \frac{k}{2\omega} Re(u_{r}^{*}v_{r}) - \frac{rm_{I}}{2\omega} Im(u_{r}^{*}v_{r}) \\ & B_{r} = \frac{r e^{ir\varphi_{k}}}{2} [2 m_{R}u_{r}v_{r} - k(u_{r}^{2} - v_{r}^{2}) - irm_{I}(u_{r}^{2} + v_{r}^{2})] \end{aligned}$$

Fermion number density for a particle with helicity r

$$n_{r,k} = \langle 0 | a_r^+(\mathbf{k}; t) a_r(\mathbf{k}; t) | 0 \rangle$$
  
w/  $a_r(\mathbf{k}; t), a_r^+(\mathbf{k}; t)$  are diagonalized  $a_r(\mathbf{k}), a_r^+(\mathbf{k})$  at  $t \neq 0$ 



$$\begin{aligned} \mathcal{H}_{\psi} &= \sum_{r=\pm} \int dk^{3} \left( a_{r}^{+}(\mathbf{k}), b_{r}(-\mathbf{k}) \right) \begin{pmatrix} A_{r} & B_{r}^{*} \\ B_{r} & -A_{r} \end{pmatrix} \begin{pmatrix} a_{r}(\mathbf{k}) \\ b_{r}^{+}(-\mathbf{k}) \end{pmatrix} \\ & A_{r} = \frac{1}{2} - \frac{m_{R}}{4\omega} (|u_{r}|^{2} - |v_{r}|^{2}) - \frac{k}{2\omega} Re(u_{r}^{*}v_{r}) - \frac{rm_{I}}{2\omega} Im(u_{r}^{*}v_{r}) \\ & B_{r} = \frac{r e^{ir\varphi_{k}}}{2} [2 m_{R}u_{r}v_{r} - k(u_{r}^{2} - v_{r}^{2}) - irm_{I}(u_{r}^{2} + v_{r}^{2})] \end{aligned}$$

Fermion number density for a particle with helicity r

$$n_{r,k} = \langle 0 | a_r^+(\mathbf{k}; t) a_r(\mathbf{k}; t) | 0 \rangle = |\beta_r|^2$$
  

$$w/a_r(\mathbf{k}; t), a_r^+(\mathbf{k}; t) \text{ are diagonalized } a_r(\mathbf{k}), a_r^+(\mathbf{k}) \text{ at } t \neq 0$$
  

$$= \frac{1}{2} - \frac{m_R}{4\omega} (|u_r|^2 - |v_r|^2) - \frac{k}{2\omega} Re(u_r^* v_r) - \frac{rm_I}{2\omega} Im(u_r^* v_r)$$
  
Bogoliubov  
coeff.  

$$a_r(\mathbf{k}; t) = \alpha_r a_r(\mathbf{k}) - \beta_r^* b_r^+(\mathbf{k})$$
  

$$b_r^+(\mathbf{k}; t) = \beta_r a_r(\mathbf{k}) + \alpha_r^* b_r^+(\mathbf{k})$$
  
Diag. ops  
at  $t \neq 0$   
In terms of diag.  
ops at  $t = 0$ 

#### looks too technical ... Any simplication?

$$n_{r,k} = \langle 0 | a_r^+(\mathbf{k}; t) a_r(\mathbf{k}; t) | 0 \rangle$$
  
=  $\frac{1}{2} - \frac{m_R}{4\omega} (|u_r|^2 - |v_r|^2) - \frac{k}{2\omega} Re(u_r^* v_r) - \frac{r m_I}{2\omega} Im(u_r^* v_r)$ 

Solving EOM of  $u_r$ ,  $v_r$  with correct initial condition is another source of confusion

#### looks too technical ... Any simplication?

is

Recall a Fourier mode in 'helicity' basis

$$\psi \sim U_r(\mathbf{k}, t) a_r(\mathbf{k}) + V_r(-\mathbf{k}, t) b_r^+(-\mathbf{k})$$
$$U_r = \begin{pmatrix} u_r(\mathbf{k}, t) \ \chi_r(\mathbf{k}) \\ r \ \nu_r(\mathbf{k}, t) \chi_r(\mathbf{k}) \end{pmatrix} = \begin{pmatrix} u_r \\ r \nu_r \end{pmatrix} \otimes \chi_r \equiv \xi_r \otimes \chi_r$$

#### looks too technical ... Any simplication?

$$\begin{split} n_{r,k} &= \langle 0 | a_r^+(\mathbf{k};t) a_r(\mathbf{k};t) | 0 \rangle \\ &= \frac{1}{2} - \frac{m_R}{4\omega} (|u_r|^2 - |v_r|^2) - \frac{k}{2\omega} Re(u_r^* v_r) - \frac{r m_I}{2\omega} Im(u_r^* v_r) \\ &\quad \text{Solving EOM of } u_r, v_r \text{ with correct initial condition is} \\ &\quad \text{another source of confusion} \end{split}$$

Recall a Fourier mode in 'helicity' basis

$$\psi \sim U_r(\mathbf{k}, t) a_r(\mathbf{k}) + V_r(-\mathbf{k}, t) b_r^+(-\mathbf{k})$$
$$U_r = \begin{pmatrix} u_r(\mathbf{k}, t) \ \chi_r(\mathbf{k}) \\ r \ \nu_r(\mathbf{k}, t) \chi_r(\mathbf{k}) \end{pmatrix} = \begin{pmatrix} u_r \\ r \nu_r \end{pmatrix} \otimes \chi_r \equiv \xi_r \otimes \chi_r$$

Then we realize that

$$\zeta_{r\,1} = \frac{1}{2}r(u_r^*v_r + u_rv_r^*) = r \operatorname{Re}(u_r^*v_r)$$
  
$$\zeta_{r\,2} = -\frac{i}{2}r(u_r^*v_r - u_rv_r^*) = r \operatorname{Im}(u_r^*v_r)$$
  
$$\zeta_{r\,3} = \frac{1}{2}(|u_r|^2 - |v_r|^2)$$



collapses into one vector

$$n_{r,k} = \langle 0 | a_r^+(\mathbf{k};t) a_r(\mathbf{k};t) | 0 \rangle$$
  
=  $\frac{1}{2} - \frac{m_R}{4\omega} (|u_r|^2 - |v_r|^2) - \frac{k}{2\omega} Re(u_r^* v_r) - \frac{r m_I}{2\omega} Im(u_r^* v_r)$ 

$$\mathbf{q} = rk\,\hat{x}_1 + m_I\,\hat{x}_2 + m_R\,\hat{x}_3$$

\* We will see the origin of this vector later

$$\vec{\zeta}_{r} = \xi_{r}^{+} \vec{\sigma} \, \xi_{r} \qquad \text{w/} \, \xi_{r} \equiv \begin{pmatrix} u_{r} \\ r v_{r} \end{pmatrix}$$

$$\zeta_{r\,1} = \frac{1}{2} r(u_{r}^{*} v_{r} + u_{r} v_{r}^{*}) = r \, Re(u_{r}^{*} v_{r})$$

$$\zeta_{r\,2} = -\frac{i}{2} r(u_{r}^{*} v_{r} - u_{r} v_{r}^{*}) = r \, Im(u_{r}^{*} v_{r})$$

$$\zeta_{r\,3} = \frac{1}{2} (|u_{r}|^{2} - |v_{r}|^{2})$$

$$n_{r,k} = \langle 0 | a_r^+(\mathbf{k}; t) a_r(\mathbf{k}; t) | 0 \rangle$$

$$= \frac{1}{2} - \frac{m_R}{4\omega} (|u_r|^2 - |v_r|^2) - \frac{k}{2\omega} Re(u_r^* v_r) - \frac{r m_I}{2\omega} Im(u_r^* v_r)$$

$$rk \ \hat{x}_1 + m_I \ \hat{x}_2 + m_R \ \hat{x}_3 \qquad \vec{\zeta}_r = \xi_r^+ \vec{\sigma} \ \xi_r \qquad w/ \ \xi_r \equiv {u_r \choose r v_r}$$
\* We will see the origin  
of this vector later
$$\zeta_{r1} = \frac{1}{2} r(u_r^* v_r + u_r v_r^*) = r \ Re(u_r^* v_r)$$

$$\zeta_{r2} = -\frac{i}{2} r(u_r^* v_r - u_r v_r^*) = r \ Im(u_r^* v_r)$$

$$n_{r,k}(t) = \frac{1}{2} \left( 1 - \frac{\mathbf{q} \cdot \vec{\zeta}_r}{|\mathbf{q}|} \right) = \frac{1}{2} (1 - \cos \theta)$$

 $\mathbf{q} =$ 

 $\vec{\zeta}_r$ , **q** behave like vector reps of SO(3) What is this mysterious SO(3)?

#### 'Reparametrization' Group

While  $\gamma^{\mu}$  is fixed and only  $\psi$  transforms in the Lorentz group,

 $\gamma^{\mu} \rightarrow \gamma^{\mu}, \ \psi \rightarrow \Lambda_{1/2} \psi$ ,

there is a freedom in choosing a representation of the gamma matrices. This freedom is totally unphysical.

**Clifford Algebra** 

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2 \eta^{\mu\nu} 1_4$$
$$\gamma^{\mu} \to U \gamma^{\mu} U^{-1} \quad : \quad GL(4,C)$$

**Dirac Theory** 

We assign the transformation of  $\psi, \ \psi \rightarrow U \psi$ 

$$\mathcal{L} = \psi^{+} \gamma^{0} (i \gamma^{\mu} \partial_{\mu} - m) \psi$$
  

$$\rightarrow \mathcal{L} = \psi^{+} U^{+} U \gamma^{0} U^{-1} (i U \gamma^{\mu} U^{-1} \partial_{\mu} - m) U \psi$$
  

$$U^{+} U = U U^{+} = 1 \qquad : \quad U(4)$$

We consider the following subgroup of U(4)

 $SU(2)_1 \times SU(2)_2 \times U(1) \subset U(4)$ 

The rep of subgroup is constructed as a 'tensor product' of two SU(2)'s and phase rotation, e.g.  $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \otimes U_2 = \begin{pmatrix} a_{11}U_2 & a_{12}U_2 \\ a_{21}U_2 & a_{22}U_2 \end{pmatrix}$   $= U_1$ 

Under  $SU(2)_1 \otimes SU(2)_2$  transformation (we associate U(1) with  $\xi_r$ )

$$\psi \sim \xi_r \otimes \chi_r \rightarrow (U_1 \otimes U_2)(\xi_r \otimes \chi_r) = (U_1\xi_r) \otimes (U_2\chi_r)$$
  
This is what we  
are looking for



$$\bar{\psi}\gamma^{\mu}\psi \rightarrow \bar{\psi} \Lambda_{1/2}^{-1}\gamma^{\mu}\Lambda_{1/2}\psi = \Lambda^{\mu}_{\nu} \overline{\psi}\gamma^{\mu}\psi$$

### A well-known example of $SU(2)_1$

Weyl Representation 
$$\psi_{Weyl} = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$$
  
 $\gamma^0 = \begin{pmatrix} 0 & I_2 \\ I_2 & 0 \end{pmatrix} = \sigma_1 \otimes I_2$   $\gamma^i = \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix} = i \sigma_2 \otimes \sigma_i$   $\gamma^5 = \begin{pmatrix} -I_2 & 0 \\ 0 & I_2 \end{pmatrix} = -\sigma_3 \otimes I_2$   
Dirac Representation  $\psi_{Dirac} = \frac{1}{\sqrt{2}} \begin{pmatrix} \psi_L + \psi_R \\ -\psi_L + \psi_R \end{pmatrix}$   
 $\gamma^0 = \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix} = \sigma_3 \otimes I_2$   $\gamma^i = \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix} = i \sigma_2 \otimes \sigma_i$   $\gamma^5 = \begin{pmatrix} 0 & I_2 \\ I_2 & 0 \end{pmatrix} = -\sigma_1 \otimes I_2$ 

Two representations are related via a similarity transformation

$$\begin{split} \gamma_{\text{Weyl}}^{\mu} &\to U_1 \gamma_{\text{Weyl}}^{\mu} U_1^{-1} = \gamma_{\text{Dirac}}^{\mu} \\ \psi_{\text{Weyl}} &\to U_1 \psi_{\text{Weyl}} = \psi_{\text{Dirac}} \\ & w/U_1(\pi/2) = e^{i\frac{\pi}{2}\frac{\sigma_y}{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \end{split}$$

 $SU(2)_1 \times U(1)_{we will drop subscript}$ from now on

is what our group theoretic approach is based on

 $SU(2)_2$  does not play any important role.

Dirac equation in inertial frame

$$(i \gamma^{\mu} \partial_{\mu} - m_R + i m_I \gamma^5) \psi = 0$$

EOM in tensor form for a Fourier mode can be written as (using  $(\vec{\sigma} \cdot \mathbf{k})\chi_r = rk\chi_r$ )

$$[(i \sigma_3 \partial_t - irk\sigma_2 - m_R I_2 + im_I \sigma_1) \otimes I_2](\xi_r \otimes \chi_r) = 0$$

Gives rise to EOM of fundamental rep.

✓ Fundamental rep. of SU(2)

$$\xi_r \equiv \begin{pmatrix} u_r \\ rv_r \end{pmatrix}$$

• EOM of fundamental rep.

$$\partial_t \xi_r = -i(\mathbf{q} \cdot \vec{\sigma})\xi_r$$
  
SU(2) embedding  
of SO(3) vector

w/ 
$$\mathbf{q} = rk\,\hat{x}_1 + m_I\,\hat{x}_2 + m_R\,\hat{x}_3$$

✓ Fundamental rep. of SU(2)

 $\xi_r \equiv \begin{pmatrix} u_r \\ rv_r \end{pmatrix}$ 

• EOM of fundamental rep.

 $\partial_t \xi_r = -i(\mathbf{q} \cdot \vec{\sigma})\xi_r$ SU(2) embedding of SO(3) vector

w/ 
$$\mathbf{q} = rk \ \hat{x}_1 + m_I \ \hat{x}_2 + m_R \ \hat{x}_3$$

✓ In terms of SO(3) ~ SU(2) reps Bilinear of  $\xi_r$ :  $\xi_r^+ A \xi_r$ w/A = arbitrary 2×2 complex matrix  $\xi^+ \xi$  (= 1) : scalar  $\vec{\zeta}_r = \xi^+ \vec{\sigma} \xi$  : vector the only non-trivial rep.

• EOM of vector rep.

$$\partial_t \zeta_{r\,i} = \frac{1}{2} \xi_r^+ [i\mathbf{q} \cdot \vec{\sigma}, \sigma_i] \xi_r = 2\epsilon_{ijk} q_j \zeta_{r\,k}$$
$$\frac{1}{2} \partial_t \vec{\zeta}_r = \mathbf{q} \times \vec{\zeta}_r$$

### Analog to classical precession motion





#### Particle number density

$$\begin{aligned} \mathcal{H}_{\psi} &= \sum_{r=\pm} \int dk^{3} \left( a_{r}^{+}(\mathbf{k}), b_{r}(-\mathbf{k}) \right) \begin{pmatrix} A_{r} & B_{r}^{*} \\ B_{r} & -A_{r} \end{pmatrix} \begin{pmatrix} a_{r}(\mathbf{k}) \\ b_{r}^{+}(-\mathbf{k}) \end{pmatrix} \\ & A_{r} &= \frac{1}{2} - \frac{m_{R}}{4\omega} (|u_{r}|^{2} - |v_{r}|^{2}) - \frac{k}{2\omega} Re(u_{r}^{*}v_{r}) - \frac{rm_{I}}{2\omega} Im(u_{r}^{*}v_{r}) \\ & B_{r} &= \frac{r \ e^{ir\varphi_{k}}}{2} [2 \ m_{R}u_{r}v_{r} - k(u_{r}^{2} - v_{r}^{2}) - irm_{I}(u_{r}^{2} + v_{r}^{2})] \end{aligned}$$

Now it is clear that each matrix element should be a function of  $\mathbf{q}$  and  $\vec{\zeta}_r$  in our group theoretic approach

**Diagonal element** 

Off-diagonal element

$$A_r = \mathbf{q} \cdot \vec{\zeta}_r \qquad |B_r| = |\mathbf{q} \times \vec{\zeta}_r| \\= \omega \cos \theta \qquad = \omega \sin \theta$$

One can easily see why eigenvalues are  $\pm \omega = \pm |\mathbf{q}|$ 

$$\mathbf{q}| = \omega = \sqrt{k^2 + m^2}$$

#### Particle number density

$$\begin{aligned} \mathcal{H}_{\psi} &= \sum_{r=\pm} \int dk^3 \left( a_r^+(\mathbf{k}), b_r(-\mathbf{k}) \right) \begin{pmatrix} A_r & B_r^* \\ B_r & -A_r \end{pmatrix} \begin{pmatrix} a_r(\mathbf{k}) \\ b_r^+(-\mathbf{k}) \end{pmatrix} \\ A_r &= \mathbf{q} \cdot \vec{\zeta}_r , \ |B_r| = \left| \mathbf{q} \times \vec{\zeta}_r \right| \end{aligned}$$

In our approach, a few group properties can uniquely determine fermion number density

$$n_{r,k} = \langle 0 | a_r^+(\mathbf{k}; t) a_r(\mathbf{k}; t) | 0 \rangle = |\beta_r|^2 = f(\mathbf{q} \cdot \vec{\zeta_r}, |\mathbf{q}|)$$

1. It should be at most linear in  $\vec{\zeta}_r$  (note  $|\vec{\zeta}_r| = 1$ )

$$n_{r,k} = A \pm B \frac{\mathbf{q} \cdot \vec{\zeta}_r}{|\mathbf{q}|} \qquad 2. \text{ Pauli-blocking} \\ 0 \le n_{r,k} \le 1$$

which gives rise to inequality,

$$A - B \le n_{r,k} \le A + B$$

auli-blocking

$$n_{r,k} = \frac{1}{2} \left( 1 - \frac{\mathbf{q} \cdot \vec{\zeta}_r}{|\mathbf{q}|} \right)$$

' - ' sign chosen for the consistency with the form of  $A_r$ 

(\*\* agrees with our explicit computation)

#### Solution of EOM

Closed form of solution is available

$$\frac{1}{2}\partial_t \vec{\zeta}_r = \mathbf{q} \times \vec{\zeta}_r = (\mathbf{q} \cdot \mathbf{L})\vec{\zeta}_r \qquad n_{r,k} = \frac{1}{2} \left(1 - \frac{\mathbf{q} \cdot \vec{\zeta}_r}{|\mathbf{q}|}\right)$$
  
w/  $\mathbf{q} = rk \ \hat{x}_1 + m_I \ \hat{x}_2 + m_R \ \hat{x}_3$ 

• Initial condition ( $\leftrightarrow$  zero particle number) at  $t = t_0$  is straightforward than other approach  $\mathbf{q}(t_0)$ 

$$\vec{\zeta}_r(t_0, t_0) = \frac{\mathbf{q}(t_0)}{|\mathbf{q}(t_0)|}$$

• Just like solving Schrödinger eq. for the unitary op., EOM can be iteratively solved

$$\vec{\zeta}_r(t, t_0) = T \exp\left(\int_{t_0}^t dt' \left(\mathbf{q} \cdot \mathbf{L}\right)(t')\right) \frac{\mathbf{q}(t_0)}{|\mathbf{q}(t_0)|}$$

Expanding involves commutators of  $\mathbf{q} \cdot \mathbf{L}$ 

WKB solution might be the case with vanishing commutators

### Numerical example

$$\frac{1}{2}\partial_t \vec{\zeta}_r = \mathbf{q} \times \vec{\zeta}_r \quad \text{with } \vec{\zeta}_r(0) = \frac{\mathbf{q}(0)}{|\mathbf{q}(0)|}$$

$$\phi(t) = \phi_0 \sin(t)$$
 for chaotic potential,  $V(\phi) \sim m^2 \phi^2$ 



### `Inertial Frame' vs `Rotating Frame'

**Transformation from** 

$$\mathcal{L} = \bar{\psi} \left( i \gamma^{\mu} \partial_{\mu} - m_{R} + i m_{I} \gamma^{5} \right) \psi + \cdots$$
  
To, via  $\psi \to e^{+i\gamma^{5} \phi/f} \psi$ ,  
$$\mathcal{L} = \bar{\psi} \left( i \gamma^{\mu} \partial_{\mu} - ma - \frac{1}{f} \gamma^{0} \gamma^{5} \dot{\phi} \right) \psi + \cdots$$

is equivalent to, in terms of  $\vec{\zeta}_r$ ,

$$\vec{\zeta}_r \to R(t)\vec{\zeta}_r$$
, where  $R(t) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos 2\phi/f & -\sin 2\phi/f\\ 0 & \sin 2\phi/f & \cos 2\phi/f \end{pmatrix}$ 

### `Inertial Frame' vs `Rotating Frame'

**Transformation from** 

$$\mathcal{L} = \overline{\psi} \left( i \gamma^{\mu} \partial_{\mu} - m_{R} + i m_{I} \gamma^{5} \right) \psi + \cdots$$
  
in `Inertial Frame'  
To, via  $\psi \to e^{+i\gamma^{5} \phi/f} \psi$ ,  
$$\mathcal{L} = \overline{\psi} \left( i \gamma^{\mu} \partial_{\mu} - ma - \frac{1}{f} \gamma^{0} \gamma^{5} \phi \right) \psi + \cdots$$
  
in `Rotating Frame'

is equivalent to, in terms of  $\vec{\zeta}_r$ ,

$$\vec{\zeta}_r \to R(t)\vec{\zeta}_r$$
, where  $R(t) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos 2\phi/f & -\sin 2\phi/f\\ 0 & \sin 2\phi/f & \cos 2\phi/f \end{pmatrix}$ 

This rotating frame is non-inertial frame

Needs to supplement extra terms, e.g. Coriolis , centrifugal forces etc, to keep physics independent

### EOM in 'Rotating Frame'

Under 
$$\vec{\zeta_r} \rightarrow R(t)\vec{\zeta_r}$$
 ,

Similarly to the classical mechanics, EOM transforms like

$$\frac{1}{2}\partial_t \vec{\zeta}_r = \mathbf{q} \times \vec{\zeta}_r = (\mathbf{q} \cdot \mathbf{L})\vec{\zeta}_r \qquad \rightarrow \quad \frac{1}{2}\partial_t (R\vec{\zeta}_r) = (\mathbf{q} \cdot \mathbf{L})(R\vec{\zeta}_r)$$
$$\frac{1}{2}\partial_t \vec{\zeta}_r = R^T (\mathbf{q} \cdot \mathbf{L})R \ \vec{\zeta}_r - \frac{1}{2}R^T \dot{R}\vec{\zeta}_r$$
$$w/ \left(R^T \dot{R}\right)_{ij} \equiv \epsilon_{ijk} \omega_{\zeta_r k}$$

### EOM in `Rotating Frame'

Under 
$$\vec{\zeta_r} \to R(t)\vec{\zeta_r}$$
 ,

Similarly to the classical mechanics, EOM transforms like

$$\frac{1}{2}\partial_t \vec{\zeta}_r = \mathbf{q} \times \vec{\zeta}_r = (\mathbf{q} \cdot \mathbf{L})\vec{\zeta}_r \qquad \rightarrow \quad \frac{1}{2}\partial_t (R\vec{\zeta}_r) = (\mathbf{q} \cdot \mathbf{L})(R\vec{\zeta}_r)$$
$$\frac{1}{2}\partial_t \vec{\zeta}_r = R^T (\mathbf{q} \cdot \mathbf{L})R \ \vec{\zeta}_r - \frac{1}{2}R^T \dot{R} \vec{\zeta}_r$$

EOM can be brought back to the universal form

 $\mathsf{w}/\left(R^{T}\dot{R}\right)_{ij} \equiv \epsilon_{ijk}\omega_{\zeta_{r}k}$ 

$$\frac{1}{2}\partial_t \vec{\zeta}_r = R\mathbf{q} \times \vec{\zeta}_r + \frac{1}{2}\vec{\omega}_{\zeta_r} \times \vec{\zeta}_r = (R\mathbf{q} + \vec{\omega}_{\zeta_r}) \times \vec{\zeta}_r = \mathbf{q}' \times \vec{\zeta}_r$$

$$\mathbf{q}' = \left(rk + \frac{\dot{\phi}}{f}\right)\hat{x}_1 + ma \ \hat{x}_3$$

: different basis amounts to choose different angular velocity

#### Particle number density in `Rotating (non-inertial) Frame'

Particle number density in rotating frame

$$n_{r,k} = \langle 0 | a_r^+(\mathbf{k}; t) a_r(\mathbf{k}; t) | 0 \rangle = f(\mathbf{q}' \cdot \vec{\zeta}_r, |\mathbf{q}'|)$$

It should be at most linear in  $\vec{\zeta_r}$ .

Higher order terms should vanish to match to the one in inertial frame in  $\dot{\phi} 
ightarrow 0$  limit



- 1. It looks like particle numbers are different in two different frames.
- 2. Establishing the 'final' particle number as a basis-independent quantity seems very non-trivial, e.g. Inertial frame vs. Non-inertial frame

### Summary

We proposed a new group theoretic approach to theory of fermion production

#### 1. Based on the 'Reparametrization' group of gamma matrcies

a. Totally unphysical symmetry (that we never cared) provides us with totally different viewpoint of a very complicated process such as fermion production

#### 2. Insightful visualization of quantum mechanical fermion production dynamics.

- a. Dynamics is analogous to the classical precession.
- b. Crystal clear initial condition unlike the traditional approach.
- c. Systematic comparison between Exact solution vs WKB solution.

#### 3. This approach applies to any fermion system

- a. Possible extension is gravitino production, fermion production from gravitational background, fermion production in extra-dim. Spacetime
- b. Application to relaxation scenario
- c. Group theoretic approach for both fermion- and gauge boson production

## Backup slides

#### Lorentz Group

Weyl Representation

$$\gamma^{0} = \begin{pmatrix} 0 & I_{2} \\ I_{2} & 0 \end{pmatrix} = \sigma_{1} \otimes I_{2} \qquad \gamma^{i} = \begin{pmatrix} 0 & \sigma_{i} \\ -\sigma_{i} & 0 \end{pmatrix} = i \ \sigma_{2} \otimes \sigma_{i} \qquad \gamma^{5} = \begin{pmatrix} -I_{2} & 0 \\ 0 & I_{2} \end{pmatrix} = -\sigma_{3} \otimes I_{2}$$

Spinor rep. satisfying Lorentz algebra

$$S^{\mu\nu} = \frac{i}{4} [\gamma^{\mu}, \gamma^{\nu}]$$

$$J_{i} \equiv \frac{1}{2} \epsilon_{ijk} S^{jk} = \frac{1}{2} I_{2} \otimes \sigma_{i} \text{ (space rotation)}, \qquad K_{i} \equiv S^{i0} = \frac{i}{2} \sigma_{3} \otimes \sigma_{i} \text{ (boost)}$$

$$\psi \sim \xi_{r} \otimes \chi_{r} \rightarrow e^{-i\vec{\theta}\cdot\vec{j}} \psi = \xi \otimes e^{-i\vec{\theta}\cdot\frac{\vec{\sigma}}{2}} \chi_{r} \qquad \text{Universally acts}$$
on  $\psi_{L}$  and  $\psi_{R}$ 

On the other hand

$$(J_{L,R})_i = \frac{J_i \mp i K_i}{\sqrt{2}} = \frac{1}{2} (I_2 \pm \sigma_3) \otimes \frac{\sigma_i}{2} : SU(2)_L \times SU(2)_R \\ : \text{Rep. of } SU(2)_L \times SU(2)_R \text{ is constructed as a 'tensor sum'}$$