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Group Theoretic Approach 
to

Theory of Fermion Production



Particle Production

• Preheating	via	parametric	resonance	or	
excitation	in	post-inflationary	era

• Gravitational	waves	from	preheating

• Axion-inflation	via	gauge	boson	(𝜙𝐹𝐹# )	or	
fermion	(𝜕%𝜙	𝑗%()	production Anbor, Sorbo 10’

Adshead, Pearce, Peloso, Roberts, Sorbo 18’

Many literature (hard to list all here) 

Kofman, Linde, Starobinsky 97’ 

List	goes	on	…..

Relaxation with particle production

• Relaxation	with	particle	production
Hook, Marques-Tavares 15’
SON, Ye, You 18’
Fonseca, Morgante, Servant 18’
…

+ Leptogenesis
SON, Ye, You 18’



Particle Production

Relaxation with particle production

+ Leptogenesis
SON, Ye, You 18’

We	are	going	to	‘Reformulate’	of	theory	of	fermion	production
in	a	completely	new	manner



Traditional Approach
To 

Theory of Fermion Production
called	technique	of	‘Bogoliubov’	coefficient



𝒮 = +𝑑-𝑥	 −𝑔	 𝜓2 	 𝑖	𝑒			5
% 	𝛾5𝐷% − 𝑚+ 𝑔 𝜙 𝜓+

1
2 𝜕%𝜙

<
− 𝑉(𝜙) 	

𝑑𝑠< = 𝑑𝑡< − 𝑎 𝑡 <𝑑𝐱< = 𝑎 𝑡 <(𝑑𝜏< − 𝑑𝐱<)

Under	rescaling	𝜓 → 𝑎FG/<𝜓

ℒ = 𝜓2 	 𝑖	𝛾%𝜕% −𝑚𝑎 + 𝑔 𝜙 𝜓 +
1
2𝑎

<𝜂%K𝜕%𝜙𝜕K𝜙 − 𝑎-𝑉(𝜙)

𝑔 𝜙 =
:		Yukawa-type	coupling

:		derivative	coupling

Common	Interaction	
type	in	literature

The model 

On	the	metric:

L
ℎ𝜙

					
1
𝑓 𝛾

%𝛾(𝜕%𝜙

We	will	assume	spatially	homogenous	 scalar	field	:	 𝜕%𝜙	 = �̇�

We will not distinguish 𝑡 and 𝜏
unless it is necessary



ℒ = 𝜓2 	 𝑖	𝛾%𝜕% − 𝑚𝑎 −
1
𝑓 𝛾

P𝛾(�̇� 𝜓+
1
2𝑎

<𝜂%K𝜕%𝜙𝜕K𝜙 − 𝑎-𝑉(𝜙)

A	subtlety	with	derivative	coupling

ΠR =
𝛿ℒ
𝛿�̇�

= 𝑖𝜓T ΠU =
𝛿ℒ
𝛿�̇�

= 𝑎<�̇� −
1
𝑓 𝜓
2𝛾P𝛾(𝜓

ℋ = ΠR�̇� + ΠU�̇� − ℒ

= 𝜓2 	−𝑖	𝛾W𝜕W + 𝑚𝑎 +	
1
𝑓 𝛾

P𝛾(�̇� 𝜓 −
1
2𝑎<

𝜓2𝛾P𝛾(𝜓 <

𝑓< +	
1
2𝑎< ΠU

< + 𝑎(𝑉(𝜙)

Definition	of	particle	number	 is	ambiguous

Massless	limit	is	not	manifest

Fermion Production is formulated 
in Hamiltonian formalism 

Adshead, Sfakianakis 15’



ℒ = 𝜓2 	 𝑖	𝛾%𝜕% − 𝑚𝑎 −
1
𝑓 𝛾

P𝛾(�̇� 𝜓+
1
2𝑎

<𝜂%K𝜕%𝜙𝜕K𝜙 − 𝑎-𝑉(𝜙)

Hamiltonian	 formalism

ΠR =
𝛿ℒ
𝛿�̇�

= 𝑖𝜓T ΠU =
𝛿ℒ
𝛿�̇�

= 𝑎<�̇�

ℋ = 𝜓2 	−𝑖	𝛾W𝜕W + 𝑚X − 𝑖	𝑚Y𝛾( 𝜓 +	
1
2𝑎< ΠU

< + 𝑎-𝑉(𝜙)

A way out: field redefinition

𝜓 → 𝑒FWZ[U/\𝜓

ℒ = 𝜓2 	 𝑖	𝛾%𝜕% −𝑚𝑎 cos
2𝜙
𝑓 + 𝑖	𝑚𝑎 sin

2𝜙
𝑓 𝛾( 𝜓 +

1
2𝑎

<𝜂%K𝜕%𝜙𝜕K𝜙 − 𝑎-𝑉(𝜙)

No	𝜓 - dependence	in	conjugate	momentum	ΠU

Entire	fermion	sector	is	quadratic	in	𝜓

= 𝑚X = 𝑚Y

Massless	limit	is	manifest
: particle number is unambiguously defined

Adshead, Pearce, Peloso, 
Roberts, Sorbo 18’

Adshead, Sfakianakis 15’



Fermion production

ℋ = 𝜓2 	−𝑖	𝛾W𝜕W + 𝑚X − 𝑖	𝑚Y𝛾( 𝜓 +	
1
2𝑎< ΠU

< + 𝑎-𝑉(𝜙)

Quantum	field𝜓

𝜓 = +
𝑑G𝑘
2𝜋 G/< 𝑒

W𝐤⋅𝐱 f 	𝑈h 𝐤,𝑡 	𝑎h 𝐤 + 𝑉h −𝐤,𝑡 	𝑏hT −𝐤 	
hk±

To	estimate	Fermion	Production,	 we	quantize	𝜓
while	keeping	pseudo-scalar	as	a	classical	field

𝑈h =	
𝑢h 𝐤,𝑡 	𝜒h(𝐤)
𝑟	𝑣h 𝐤,𝑡 𝜒h(𝐤)

𝜒h 𝐤 =
𝑘 + 𝑟	�⃗� ⋅ 𝐤
2𝑘 𝑘 + 𝑘G

�̅�h	 where	�̅�T =
1
0 , �̅�F =

0
1

Garbrecht, Prokopec, Schmidt 02’ 
for generic complex mass

** helicity basis for an arbitrary 𝐤

We follow notation and convention in
Adshead, Pearce, Peloso, Roberts, Sorbo 18’



ℋR =f +𝑑𝑘G
hk±

𝑎hT 𝐤 , 𝑏h −𝐤
𝐴h 𝐵h∗
𝐵h −𝐴h

𝑎h(𝐤)
𝑏hT(−𝐤)

𝑛h,y = 0 𝑎hT 𝐤; 𝑡 𝑎h(𝐤; 𝑡) 0

𝐴h =
1
2 −

𝑚X

4𝜔 𝑢h < − 𝑣h < −
𝑘
2𝜔 𝑅𝑒 𝑢h

∗𝑣h −
𝑟𝑚Y

2𝜔 𝐼𝑚(𝑢h∗𝑣h)

𝐵h =
𝑟	𝑒Wh��
2 2	𝑚X𝑢h𝑣h − 𝑘 𝑢h<− 𝑣h< − 𝑖𝑟𝑚Y(𝑢h<+ 𝑣h<)

Fermion	number	density	 for	a	particle	with	helicity	𝑟

𝑎h(𝐤) 0 = 0 𝑎h 𝐤; 𝑡 0 ≠ 0

𝑎h 𝐤 , 𝑎hT 𝐤
↔ one-particle	state	
due	to	𝐵h = 0

At 𝑡 = 0 At 𝑡 ≠ 0

w/	𝑎h(𝐤; 𝑡),	𝑎hT(𝐤;𝑡) are	diagonalized	𝑎h(𝐤),	𝑎hT(𝐤) at	𝑡 ≠ 0

𝑎h 𝐤 , 𝑎hT 𝐤
↮ one-particle	state	
anymore	due	to	𝐵h ≠ 0



ℋR =f +𝑑𝑘G
hk±

𝑎hT 𝐤 , 𝑏h −𝐤
𝐴h 𝐵h∗
𝐵h −𝐴h

𝑎h(𝐤)
𝑏hT(−𝐤)

=
1
2 −

𝑚X

4𝜔 𝑢h < − 𝑣h < −
𝑘
2𝜔𝑅𝑒 𝑢h∗𝑣h −

𝑟𝑚Y

2𝜔 𝐼𝑚(𝑢h∗𝑣h)

𝑛h,y = 0 𝑎hT 𝐤; 𝑡 𝑎h(𝐤; 𝑡) 0 = 𝛽h <

𝐴h =
1
2 −

𝑚X

4𝜔 𝑢h < − 𝑣h < −
𝑘
2𝜔 𝑅𝑒 𝑢h

∗𝑣h −
𝑟𝑚Y

2𝜔 𝐼𝑚(𝑢h∗𝑣h)

𝐵h =
𝑟	𝑒Wh��
2 2	𝑚X𝑢h𝑣h − 𝑘 𝑢h<− 𝑣h< − 𝑖𝑟𝑚Y(𝑢h<+ 𝑣h<)

Fermion	number	density	 for	a	particle	with	helicity	𝑟

𝑎h(𝐤; 𝑡) = 𝛼h	𝑎h(𝐤) − 𝛽h∗	𝑏hT(𝐤)

w/	𝑎h(𝐤; 𝑡),	𝑎hT(𝐤;𝑡) are	diagonalized	𝑎h(𝐤),	𝑎hT(𝐤) at	𝑡 ≠ 0

𝑏hT(𝐤; 𝑡) = 𝛽h	𝑎h(𝐤) + 𝛼h∗	𝑏hT(𝐤)

Bogoliubov
coeff.

Diag.	ops	
at		𝑡 ≠ 0

In	terms	of	diag.	
ops	at	𝑡 = 0



=
1
2 −

𝑚X

4𝜔 𝑢h < − 𝑣h < −
𝑘
2𝜔𝑅𝑒 𝑢h∗𝑣h −

𝑟	𝑚Y

2𝜔 𝐼𝑚(𝑢h∗𝑣h)

𝑛h,y = 0 𝑎hT 𝐤; 𝑡 𝑎h(𝐤; 𝑡) 0

looks too technical … Any simplication? 

Solving	EOM	of	𝑢h, 𝑣h with	correct	initial	condition	is	
another	source	of	confusion



=
1
2 −

𝑚X

4𝜔 𝑢h < − 𝑣h < −
𝑘
2𝜔𝑅𝑒 𝑢h∗𝑣h −

𝑟	𝑚Y

2𝜔 𝐼𝑚(𝑢h∗𝑣h)

𝑛h,y = 0 𝑎hT 𝐤; 𝑡 𝑎h(𝐤; 𝑡) 0

𝜓 ∼ 𝑈h 𝐤, 𝑡 𝑎h 𝐤 + 𝑉h −𝐤, 𝑡 𝑏hT(−𝐤)

𝑈h = 	
𝑢h 𝐤, 𝑡 	𝜒h(𝐤)
𝑟	𝑣h 𝐤, 𝑡 𝜒h(𝐤)

=
𝑢h
𝑟𝑣h ⊗ 𝜒h ≡ 𝜉h ⊗ 𝜒h

Recall	a	Fourier	mode	in	‘helicity’	basis

Solving	EOM	of	𝑢h, 𝑣h with	correct	initial	condition	is	
another	source	of	confusion

looks too technical … Any simplication? 



=
1
2 −

𝑚X

4𝜔 𝑢h < − 𝑣h < −
𝑘
2𝜔𝑅𝑒 𝑢h∗𝑣h −

𝑟	𝑚Y

2𝜔 𝐼𝑚(𝑢h∗𝑣h)

𝑛h,y = 0 𝑎hT 𝐤; 𝑡 𝑎h(𝐤; 𝑡) 0

𝜁h = 𝜉hT𝜎	𝜉h
𝜁h	� =

1
2
𝑟(𝑢h∗𝑣h + 𝑢h𝑣h∗) = 𝑟	𝑅𝑒(𝑢h∗𝑣h)

𝜁h	< = −
𝑖
2
𝑟(𝑢h∗𝑣h − 𝑢h𝑣h∗) = 𝑟	𝐼𝑚(𝑢h∗𝑣h)

𝜁h	G =
1
2

𝑢h < − 𝑣h <

𝜓 ∼ 𝑈h 𝐤, 𝑡 𝑎h 𝐤 + 𝑉h −𝐤, 𝑡 𝑏hT(−𝐤)

𝑈h = 	
𝑢h 𝐤, 𝑡 	𝜒h(𝐤)
𝑟	𝑣h 𝐤, 𝑡 𝜒h(𝐤)

=
𝑢h
𝑟𝑣h ⊗ 𝜒h ≡ 𝜉h ⊗ 𝜒h

Then	we	realize	that	

Recall	a	Fourier	mode	in	‘helicity’	basis

collapses	into	one	vector

Solving	EOM	of	𝑢h, 𝑣h with	correct	initial	condition	is	
another	source	of	confusion

looks too technical … Any simplication? 



=
1
2 −

𝑚X

4𝜔 𝑢h < − 𝑣h < −
𝑘
2𝜔𝑅𝑒 𝑢h∗𝑣h −

𝑟	𝑚Y

2𝜔 𝐼𝑚(𝑢h∗𝑣h)

𝑛h,y = 0 𝑎hT 𝐤; 𝑡 𝑎h(𝐤; 𝑡) 0

𝜁h = 𝜉hT�⃗�	𝜉h

𝜁h	� =
1
2
𝑟(𝑢h∗𝑣h + 𝑢h𝑣h∗) = 𝑟	𝑅𝑒(𝑢h∗𝑣h)

𝜁h	< = −
𝑖
2
𝑟(𝑢h∗𝑣h − 𝑢h𝑣h∗) = 𝑟	𝐼𝑚(𝑢h∗𝑣h)

𝜁h	G =
1
2

𝑢h < − 𝑣h <

𝐪 = 𝑟𝑘	𝑥�� +𝑚Y	𝑥�< +𝑚X	𝑥�G w/	𝜉h ≡
𝑢h
𝑟𝑣h

*	We	will	see	the	origin	
of	this	vector	later



=
1
2 −

𝑚X

4𝜔 𝑢h < − 𝑣h < −
𝑘
2𝜔𝑅𝑒 𝑢h∗𝑣h −

𝑟	𝑚Y

2𝜔 𝐼𝑚(𝑢h∗𝑣h)

𝑛h,y = 0 𝑎hT 𝐤; 𝑡 𝑎h(𝐤; 𝑡) 0

𝜁h = 𝜉hT�⃗�	𝜉h

𝜁h	� =
1
2
𝑟(𝑢h∗𝑣h + 𝑢h𝑣h∗) = 𝑟	𝑅𝑒(𝑢h∗𝑣h)

𝜁h	< = −
𝑖
2
𝑟(𝑢h∗𝑣h − 𝑢h𝑣h∗) = 𝑟	𝐼𝑚(𝑢h∗𝑣h)

𝜁h	G =
1
2

𝑢h < − 𝑣h <

𝐪 = 𝑟𝑘	𝑥�� +𝑚Y	𝑥�< +𝑚X	𝑥�G

𝜁𝑟, 𝐪 behave like vector reps of SO(3)

w/	𝜉h ≡
𝑢h
𝑟𝑣h

*	We	will	see	the	origin	
of	this	vector	later

What is this mysterious SO(3)?



Group Theoretic Approach



‘Reparametrization’ Group

𝛾%, 𝛾K = 2	𝜂%K1-
𝛾% → 𝑈𝛾%𝑈F� : GL(4,C)

ℒ = 𝜓T𝛾P 𝑖𝛾%𝜕% −𝑚 𝜓	
→ ℒ = 𝜓T 𝑈T𝑈𝛾P𝑈F� 𝑖𝑈𝛾%𝑈F�𝜕% −𝑚 𝑈𝜓	

𝑈T𝑈 = 𝑈𝑈T = 1 : U(4)

Clifford	Algebra

Dirac	Theory
We	assign	the	transformation	of	𝜓,		𝜓 → 𝑈𝜓

While	𝛾% is	fixed	and	only	𝜓 transforms	in	the	Lorentz	group,

𝛾% → 𝛾%, 𝜓 → Λ�/<𝜓	,

there	is	a	freedom	 in	choosing	 a	representation	of	the	gamma	matrices.	
This	freedom	 is	totally	unphysical.



We	consider	the	following	subgroup	of	𝑈(4)

𝑆𝑈 2 �×𝑆𝑈 2 <×𝑈(1) ⊂ 𝑈(4)
The	rep	of	subgroup	 is	constructed	as	a	‘tensor	product’	of	two	𝑆𝑈(2)’s	
and	phase	rotation,	e.g.	

Under	𝑆𝑈 2 � ⊗ 𝑆𝑈 2 < transformation	 (we	associate	𝑈(1) with	𝜉h)	

𝑎�� 𝑎�<
𝑎<� 𝑎<< ⊗ 𝑈< 	=

𝑎��𝑈< 𝑎�<𝑈<
𝑎<�𝑈< 𝑎<<𝑈<

= 𝑈�

𝜓 ∼	 𝜉h ⊗ 𝜒h	 → 		 𝑈� ⊗ 𝑈< 𝜉h ⊗	𝜒h = 𝑈�𝜉h ⊗ (𝑈<𝜒h)

This is what we 
are looking for



We	consider	the	following	subgroup	of	𝑈(4)

𝑆𝑈 2 �×𝑆𝑈 2 <×𝑈(1) ⊂ 𝑈(4)
The	rep	of	subgroup	 is	constructed	as	a	‘tensor	product’	of	two	𝑆𝑈(2)’s	
and	phase	rotation,	e.g.	

Under	𝑆𝑈 2 � ⊗ 𝑆𝑈 2 < transformation	 (we	associate	𝑈(1) with	𝜉h)	

𝑎�� 𝑎�<
𝑎<� 𝑎<< ⊗ 𝑈< 	=

𝑎��𝑈< 𝑎�<𝑈<
𝑎<�𝑈< 𝑎<<𝑈<

= 𝑈�

𝜓 ∼	 𝜉h ⊗ 𝜒h	 → 		 𝑈� ⊗ 𝑈< 𝜉h ⊗	𝜒h = 𝑈�𝜉h ⊗ (𝑈<𝜒h)

Looks	similar	to	space	
rotation	of	Lorentz	group.	

This is what we 
are looking for

But	it	can	not	be	identified	
with	SU(2)	space	rotation

𝜓2𝛾%𝜓 → 𝜓T𝑈T𝑈𝛾P𝑈F�𝑈𝛾%𝑈F�𝑈𝜓 = 𝜓2𝛾%𝜓

𝜓2𝛾%𝜓 → 𝜓2	Λ�/<F� 𝛾%Λ�/<𝜓 = Λ			K
% 	𝜓� 𝛾%𝜓

E.g.



𝛾P = 𝐼< 0
0 −𝐼<

= 𝜎G ⊗ 𝐼< 𝛾W = 0 𝜎W
−𝜎W 0 = 𝑖	𝜎<⊗ 𝜎W 𝛾( = 0 𝐼<

	𝐼< 0 =							𝜎�	⊗𝐼<

𝛾P = 0 𝐼<
𝐼< 0 = 	 𝜎� ⊗ 𝐼< 𝛾W = 0 𝜎W

−𝜎W 0 = 𝑖	𝜎<⊗ 𝜎W 𝛾( = −𝐼< 0
0 𝐼<

= −𝜎G ⊗ 𝐼<

Weyl	Representation

Dirac	Representation

𝜓���� =
𝜓�
𝜓X

𝜓����� =
1
2

𝜓� +𝜓X
−𝜓� +𝜓X

w/	𝑈�(𝜋/2) = 𝑒W	
�
�	
� 
� = �

<
1 1
−1 1

𝜓���� 		→ 𝑈�𝜓���� = 𝜓�����

𝛾����
% 		→ 		𝑈�𝛾����

% 𝑈�F� = 𝛾�����
%

Two	representations	are	related	via	a	similarity	transformation

A	well-known	example	of	𝑆𝑈(2)�



is	what	our	group	theoretic	approach	is	based	on

we	will	drop	subscript	
from	now	on

𝑆𝑈(2)< does	not	play	any	important	role.	

𝑆𝑈(2)�×𝑈(1)



w/ 𝐪 = 𝑟𝑘	𝑥�� +𝑚Y	𝑥�< +𝑚X	𝑥�G
𝜕¡𝜉h 	= 		−𝑖 𝐪 ⋅ �⃗� 𝜉h

Gives	rise	to	EOM	of	 fundamental	 rep.

SU(2)	embedding	
of	SO(3)	vector	𝐪

𝑖	𝛾%𝜕% −𝑚X + 𝑖	𝑚Y𝛾( 𝜓 = 0

𝑖	𝜎G𝜕¡ − 𝑖𝑟𝑘𝜎< − 𝑚X𝐼< + 𝑖𝑚Y𝜎� ⊗ 𝐼< (𝜉h ⊗ 𝜒h) = 0

Dirac	equation	in	inertial	frame

EOM	in	tensor	form	for	a	Fourier	mode	can	be	written	as	(using	 𝜎 ⋅ 𝐤 𝜒h = 𝑟𝑘𝜒h)

SU(2)	
fundamental

:	it	is	called	Weyl	 equation	in	condensed	matter	physics

Group Theoretic Approach



w/ 𝐪 = 𝑟𝑘	𝑥�� +𝑚Y	𝑥�< +𝑚X	𝑥�G

𝜉h ≡
𝑢h
𝑟𝑣h

𝜕¡𝜉h 	= 		−𝑖 𝐪 ⋅ �⃗� 𝜉h

ü Fundamental	rep.	of	SU(2)

• EOM	of	fundamental	rep.

SU(2)	embedding	
of	SO(3)	vector

Group Theoretic Approach



𝜁h = 𝜉T�⃗�	𝜉 :			vector

1
2 𝜕¡𝜁h 	= 𝐪×𝜁h

ü In	terms	of	SO(3)	∼ SU(2)	reps

𝜕¡𝜁h	W =
1
2 𝜉h

T 𝑖𝐪 ⋅ �⃗�,	𝜎W 𝜉h = 2𝜖W£y𝑞£𝜁h	y	

Bilinear	of	𝜉h :					𝜉hT𝐴	𝜉h

𝜉T	𝜉	(= 1) :			scalar

w/	𝐴 =	arbitrary	2×2
complex	matrix

• EOM	of	vector	rep.

the only non-trivial rep.

Group Theoretic Approach



Analog to classical precession motion

1
2
𝑑𝜁h
𝑑𝑡 	= 		𝐪×𝜁h

Classical	precession	of	a	vector	𝑟
with	angular	velocity	𝜔

𝜔
𝑟

𝑑𝑟
𝑑𝑡 = 𝜔×𝑟

torque

Quantum	mechanical	fermion	
production

𝑟 = 𝐌 (magnetization),
𝜔 = 𝜔𝐁 = −𝛾𝐁

:	called	block	eq.

𝐸 = 𝜔𝐁 ⋅ 𝐌

𝑑𝐌
𝑑𝑡 = 𝜔𝐁×𝐌

E.g.	when

?= 𝒒 ⋅ 𝜁h

𝐪 as	angular	velocity



ℋR =f +𝑑𝑘G
hk±

𝑎hT 𝐤 , 𝑏h −𝐤
𝐴h 𝐵h∗
𝐵h −𝐴h

𝑎h(𝐤)
𝑏hT(−𝐤)

𝐴h =
1
2
−
𝑚X
4𝜔

𝑢h < − 𝑣h < −
𝑘
2𝜔

𝑅𝑒 𝑢h∗𝑣h −
𝑟𝑚Y
2𝜔

𝐼𝑚(𝑢h∗𝑣h)

𝐵h =
𝑟	𝑒Wh��
2

2	𝑚X𝑢h𝑣h − 𝑘 𝑢h< − 𝑣h< − 𝑖𝑟𝑚Y(𝑢h< + 𝑣h<)

𝐴h = 𝐪 ⋅ 𝜁h
= 𝜔 cos𝜃

Now	it	is	clear	that	each	matrix	element	should	be	a	function	of	𝐪 and	𝜁h in	our	
group	theoretic	approach

𝐵h = 𝐪×𝜁h

Diagonal	element Off-diagonal	element

One	can	easily	see	why	
eigenvalues	are	±𝜔 = ±|𝐪|

Particle number density

= 𝜔 sin𝜃

𝐪 = 𝜔 = 𝑘< +𝑚<



Particle number density

ℋR = f +𝑑𝑘G

hk±

𝑎hT 𝐤 ,𝑏h −𝐤
𝐴h 𝐵h∗
𝐵h −𝐴h

𝑎h(𝐤)
𝑏hT(−𝐤)

𝑛h,y = 0 𝑎hT 𝐤; 𝑡 𝑎h(𝐤; 𝑡) 0 = 𝛽h <= 𝑓(𝐪 ⋅ 𝜁h, |𝐪|)

𝑛h,y = 𝐴 ± 𝐵
𝐪 ⋅ 𝜁h
|𝐪|

𝐴h = 𝐪 ⋅ 𝜁h , 𝐵h = 𝐪×𝜁h

1.	It	should	 be	at	most	linear	in	𝜁h (note	 	 𝜁h = 1)

𝐴 − 𝐵 ≤ 𝑛h,y ≤ 𝐴 + 𝐵

which	gives	rise	to	inequality, 𝑛h,y =
1
2 1 −

𝐪 ⋅ 𝜁h
|𝐪|

2.	Pauli-blocking

0 ≤ 𝑛h,y ≤ 1

′ − ′ sign	chosen	for	the	
consistency	with	the	form	of	𝐴h

(**	agrees	with	our	explicit	computation)

In	our	approach,	a few	group	properties	can	uniquely	
determine	fermion	number	density



w/ 𝐪 = 𝑟𝑘	𝑥�� +𝑚Y	𝑥�< + 𝑚X	𝑥�G

Solution	of	EOM

Closed	form	of	solution	 is	available

1
2 𝜕¡𝜁h 	= 𝐪×𝜁h = 𝐪 ⋅ 𝐋 𝜁h 𝑛h,y =

1
2 1 −

𝐪 ⋅ 𝜁h
|𝐪|

• Initial	condition	 (↔ zero	particle	number)	 at	𝑡 = 𝑡P is	straightforward	than	other	
approach

𝜁h(𝑡P,𝑡P) =
𝐪(𝑡P)
|𝐪(𝑡P)|

𝜁h 𝑡, 𝑡P = 𝑇 exp + 𝑑𝑡³	(𝐪 ⋅ 𝐋)(𝑡′)
¡

¡´

𝐪(𝑡P)
|𝐪(𝑡P)|

• Just	like	solving	Schrödinger	 eq.	for	the	unitary	op.,	EOM	can	be	iteratively	solved

Expanding	 involves	commutators	of	𝐪 ⋅ 𝐋
WKB	solution	might	be	the	case	with	vanishing	commutators



Numerical example

𝜙 𝑡 = 𝜙P	sin(𝑡) for	chaotic	potential,	𝑉 𝜙 ∼ 𝑚<𝜙<

𝑚 = 1, U´
\
= 10

chosen	for	all	plots

𝑘 = 1 𝑘 = 10

𝑘 = 12
Region	where	fermion	
production	happens,	 and	WKB	
approx.	is	not	valid

Region	where	WKB	
approx.	is	valid

Case	where	WKB	approx.	
is	not	valid

1
2𝜕¡𝜁h 	= 𝐪×𝜁h with	𝜁h(0) =

𝐪(P)
|𝐪(P)|



ℒ = 𝜓2 	 𝑖	𝛾%𝜕% − 𝑚𝑎 −
1
𝑓 𝛾

P𝛾(�̇� 𝜓 +⋯

To,	via	𝜓 → 𝑒TWZ[U/\𝜓,

𝜁h → 𝑅 𝑡 𝜁h	, where	𝑅 𝑡 =
1 0 0
0 cos2𝜙 𝑓⁄ −sin 2𝜙 𝑓⁄
0 sin2𝜙 𝑓⁄ cos2𝜙 𝑓⁄

is	equivalent	to,	in	terms	of		𝜁h,

ℒ = 𝜓2	 𝑖	𝛾%𝜕% −𝑚X + 𝑖	𝑚Y𝛾( 𝜓+⋯

Transformation	from

`Inertial Frame’	vs	`Rotating Frame’



in	`Rotating Frame’
ℒ = 𝜓2 	 𝑖	𝛾%𝜕% − 𝑚𝑎 −

1
𝑓 𝛾

P𝛾(�̇� 𝜓 +⋯

To,	via	𝜓 → 𝑒TWZ[U/\𝜓,

𝜁h → 𝑅 𝑡 𝜁h	, where	𝑅 𝑡 =
1 0 0
0 cos2𝜙 𝑓⁄ −sin 2𝜙 𝑓⁄
0 sin2𝜙 𝑓⁄ cos2𝜙 𝑓⁄

is	equivalent	to,	in	terms	of		𝜁h,

ℒ = 𝜓2	 𝑖	𝛾%𝜕% −𝑚X + 𝑖	𝑚Y𝛾( 𝜓+⋯

Transformation	from

in	`Inertial Frame’

`Inertial Frame’	vs	`Rotating Frame’

This rotating frame is non-inertial frame

Needs to supplement extra terms, e.g. Coriolis , centrifugal forces 
etc, to keep physics independent 



Under	𝜁h → 𝑅 𝑡 𝜁h	,

1
2 𝜕¡𝜁h 	 = 𝐪×𝜁h = 𝐪 ⋅ 𝐋 𝜁h → 			

1
2 𝜕¡(𝑅𝜁h) 	= 𝐪 ⋅ 𝐋 (𝑅𝜁h)

1
2 𝜕¡𝜁h 	 = 𝑅¸ 𝐪 ⋅ 𝐋 𝑅	𝜁h − 	

1
2𝑅

¸�̇�𝜁h

w/ 𝑅¸�̇� W£ ≡ 𝜖W£y𝜔¹º	y

Similarly	to	the	classical	mechanics,	EOM	transforms	like

EOM in `Rotating Frame’



Under	𝜁h → 𝑅 𝑡 𝜁h	,

1
2 𝜕¡𝜁h 	 = 𝐪×𝜁h = 𝐪 ⋅ 𝐋 𝜁h → 			

1
2 𝜕¡(𝑅𝜁h) 	= 𝐪 ⋅ 𝐋 (𝑅𝜁h)

1
2 𝜕¡𝜁h 	= 𝑅𝐪×𝜁h +	

1
2𝜔¹º×𝜁h = 𝑅𝐪 + 𝜔¹º ×𝜁h = 𝐪′×𝜁h

1
2 𝜕¡𝜁h 	 = 𝑅¸ 𝐪 ⋅ 𝐋 𝑅	𝜁h − 	

1
2𝑅

¸�̇�𝜁h

w/ 𝑅¸�̇� W£ ≡ 𝜖W£y𝜔¹º	y

Similarly	to	the	classical	mechanics,	EOM	transforms	like

𝐪³ = 𝑟𝑘 +
�̇�
𝑓 𝑥�� +𝑚𝑎	𝑥�G

: different basis amounts to choose 
different angular velocity

EOM in `Rotating Frame’

EOM	can	be	brought	 back	to	the	universal	form



Particle number density in `Rotating (non-inertial) Frame’

Particle	number	density	in	rotating	frame	

𝑛h,y = 0 𝑎hT 𝐤; 𝑡 𝑎h(𝐤; 𝑡) 0 = 𝑓(𝐪³ ⋅ 𝜁h, |𝐪′|)

It	should	be	at	most	linear	in	𝜁h.	
Higher	order	terms	should	vanish	to	match	to	the	one	in	inertial	frame	in	�̇� → 0 limit

𝑛h,y =
1
2 1 −

𝐪′ ⋅ 𝜁h
|𝐪′|

ℋR = 𝜓2 	−𝑖	𝛾W𝜕W + 𝑚𝑎 +	
1
𝑓 𝛾

P𝛾(�̇� 𝜓 −
1
2𝑎<

𝜓2𝛾P𝛾(𝜓 <

𝑓<

: matches to the quadratic term

1. It	looks	like	particle	numbers	are	different	in	two	different	 frames.	
2. Establishing	the	‘final’	particle	number	as	a	basis-independent	 quantity	seems	very	

non-trivial,	e.g.	Inertial	frame	vs.	Non-inertial	frame

See Adshead, Sfakianakis 15’ 
for a related discussion

*	does	 not	take	into	account	of	
quartic	coupling	 etc..	



Summary

We	proposed	a	new	group	theoretic	approach	to	theory	of	fermion	production	

3. This approach applies to any fermion system

1. Based on the ‘Reparametrization’ group of gamma matrcies

a. Possible	extension	is	gravitino production,	fermion	production	from	gravitational	
background,	fermion	production	in	extra-dim.	Spacetime

b. Application	to	relaxation	scenario
c. Group	theoretic	approach	for	both	 fermion- and	gauge	boson	production

2. Insightful visualization of quantum mechanical fermion production dynamics. 

a. Totally	unphysical	symmetry	(that	we	never	cared)	provides	us	with	totally	
different	viewpoint	of	a	very	complicated	process	such	as	fermion	production

a. Dynamics	is	analogous	to	the	classical	precession.	
b. Crystal	clear	initial	condition	unlike	the	traditional	approach.
c. Systematic	comparison	between	Exact	solution	vs	WKB	solution.



Backup slides



Lorentz Group

𝛾P = 0 𝐼<
𝐼< 0 = 𝜎�⊗ 𝐼< 𝛾W = 0 𝜎W

−𝜎W 0 = 𝑖	𝜎<⊗ 𝜎W 𝛾( = −𝐼< 0
0 𝐼<

= −𝜎G ⊗ 𝐼<

𝑆%K =
𝑖
4 [𝛾

%,𝛾K]

Weyl	Representation

𝐽W ≡
1
2
𝜖W£y𝑆£y =

1
2
𝐼< ⊗𝜎W 𝐾W ≡ 𝑆WP =

𝑖
2
𝜎G ⊗𝜎W

𝐽�,	X W
=
𝐽W ∓ 𝑖	𝐾W

2
= 	
1
2
𝐼< ± 𝜎G ⊗

𝜎W
2

𝜓 = 𝜓�
𝜓X

1
2
, 0 ⊕ 0,

1
2

Spinor	 rep.	satisfying	Lorentz	algebra

(space	rotation)	 , (boost)

:						𝑆𝑈 2 �×𝑆𝑈 2 X

:	Rep.	of	𝑆𝑈 2 �×𝑆𝑈 2 X is	
constructed	as	a	‘tensor sum’

𝜓 ∼ 	𝜉h ⊗ 𝜒h	 → 		𝑒FWÁ⋅Â⃗𝜓 = 𝜉 ⊗𝑒FWÁ⋅
Ã
< 	𝜒h

On	the	other	hand


