

ラゲールガウシアン光子とエルミー トガウシアン光子のコンプトン散乱

量研・LCSガンマ線プロジェクト (羽島グループ)

早川岳人

ILCの多角的活用を考える会II 2018年7月6日 京大宇 治キャンパス

L. Allen, et al. Phys. Rev. A, 45, 8185 (1992) Laguerre-Gaussian mode の光は、同軸近似にお いてヘルムホイツ方程式の解。

$$\mathbf{A} = \mathbf{x}u(x, y, z)e^{-ikz}$$

$$u_{pl}(r, \phi, z) = \frac{C}{(1+z^2/z_R^2)^{1/2}} \left[\frac{r\sqrt{2}}{w(z)} \right]^l L_p^l \left[\frac{2r^2}{w^2(z)} \right]$$

$$\times \exp\left[\frac{-r^2}{w^2(z)} \right] \exp\frac{-ikr^2z}{2(z^2+z_R^2)} \exp(-il\phi)$$

$$\times \exp\left[i(2p+l+1)\tan^{-1}\frac{z}{z_R} \right],$$

エネルギーと角運動量の比を求めた。 *L*/c*P* = *l*/ω

量子力学と光学のアナロジーから、この結果 は個々の光子が *l* hの角運動量を持つことに 対応することを指摘した。

M. Padgett et al., Phys. Today 57 (2004) 35

光の波動関数

ラゲールガウシアン波

軌道角運動量のZ軸への射 影成分の固有状態

角運動量の固有状態

運動量の固有状態

吉村信次, 荒巻光利 J. Plasma Fusion Res. Vol.94, No.3 (2018)121

ラゲールガウシアンとエリミートガウシアン

自由空間の光の波動方程式

$$\boldsymbol{\nabla}^2 \boldsymbol{E} - \frac{1}{c^2} \frac{\partial^2 \boldsymbol{E}}{\partial t^2} = 0$$

同軸近似の場合の波動方程式

$$\left(\nabla_T^2 + 2ik\frac{\partial}{\partial z}\right)u = 0$$

発散角度が非常に小さい。 ほとんど平行ビーム

https://www.dataray.com/blog-m2-highorder-modes.html

HGとLGの関係

円偏光と直線偏光は互いに表記可能

エルミートガウシアン波動関数と、ラゲールガ ウシアンもお互いに表記可能

吉村信次, 荒巻光利 J. Plasma Fusion Res. Vol.94, No.3 (2018)121

エルミートガウシアンも、顕わではないが角運動量に対して制限を持つ。 高い角運動量を持つ条件がある。

渦光における物質制御

Coincidence measurements of two diffracted photons divided from photon vortex

渦ガンマ線によるGDRの禁止

巨大共鳴(Giant Dipole Resonance)は、陽子を除く、 ほぼ全ての原子核で観測されている普遍的な現象

角運動量保存則

 $| Ji-Ip | \le Jf \le |Ji+Ip |$

入射したガンマ線の全角運動量が2以上ならば、 GDRの励起は禁止される。

渦ガンマ線では、GDRが禁止されるはず。

渦ガンマ線(Ipが2以上)が主なガンマ線の場合、光核反応が原則禁止される。 Y. Taira, T. Hayakawa, M. Katoh, Scientific Reports, 7, 5018 (2017).

1個の光子がラゲールガウシアン の波動関数を持ちうるのか?

渦ガンマ線の生成

ガンマ線領域で渦光を作れば、既存の実 験手法で検証可能では。

渦レーザーと電子のコンプトン散乱

渦ガンマ線の生成法

-20

-10

10

0 x(mm) 20

U. D. Jentschura, V. G. Serbo PRL 106, 013001 (2011)

FIG. 4. *y* component of the electric field \underline{E} of the radiation at different times. (a) t = 0.2, (b) t = 0.4, (c) t = 0.6 ps. (d) average intensity for m = 1, $\varepsilon = 1$.

非線形コンプトン散乱では1個の光子(ガンマ線)に変換される

古典電磁学による計算

Y. Taira, T. Hayakawa, M. Katoh, Scientific Reports, 7, 5018 (2017).

非線形コンプトン散乱の実験例

Observation of red shifting and harmonic radiation in inverse Compton scattering

Y. Sakai, et al. Phys. Rev. STAB, 18, 060702 (2015) BNL ATF

Observation of 2nd harmonics

円環状の形状 ← 渦光の特徴

アンジュレーターによる生成

PRL 100, 124801 (2008)

PHYSICAL REVIEW LETTERS

week ending 28 MARCH 2008

Proposal for Generating Brilliant X-Ray Beams Carrying Orbital Angular Momentum

ヘリカルアンジュレーターによるラゲールガウシアンの生成と干渉による確認

T. Kaneyasu et al., J. Synchrotron Rad. 24, 934 (2017)

どうやって渦ガンマ線を実証するか?

ラゲールガウシアンの波動関数はZ軸に対して対称

散乱電子との同時計数を考える。

入射する渦ガンマ線のエネルギーは分かっているとする(500keVを仮定)。 散乱した電子の散乱角度と、ガンマ線の散乱角度を同時計数する。

相対論的量子力学の枠組みで計算

T. Maruyama, T. Hayakawa, T. Kajino, hep-ph, arXiv:1710.09369.

Laguerre-Gaussian wave function

Initial : Laguerre-Gauss Photon with Energy k

$$\boldsymbol{A}_{i}(\boldsymbol{r}) = \frac{\boldsymbol{\epsilon}_{i}(h_{i})}{\sqrt{2k}} u(\boldsymbol{r}) e^{-ikt}$$

$$u(r) = \sqrt{\frac{2}{\pi R_z}} \frac{1}{w(z)} G\left[|L|, p, \frac{r}{w(z)} \right] \exp\left\{ i \left[L\phi + kz + \frac{zr^2}{z_R w^2(z)} - (2p + |L| + 1)\theta_G \right] \right\}$$

with

Formula by T. Maruyama

(3) Cross Sections

$$\frac{d^4\sigma}{dp_e^3 d\sin\theta_y} = \frac{\alpha^2 w_0^2 |\boldsymbol{q}|}{4\pi m E_p \left| (k - q_z) q_x - q_z |\boldsymbol{p}_T| \right|} \bar{W}_{if} \left[G(L, p; w_0 |\boldsymbol{p}_T + \boldsymbol{q}_T)| \right) \right]^2$$

Distribution of Cross sections

丸山智幸(日大)による計算

Distribution of Cross sections

丸山智幸(日大)による計算 通常のコンプトン散乱からのエネルギーのずれ

散乱角度の分布

丸山智幸(日大)による計算

丸山智幸(日大)による計算

エネルギー分布

ラゲールガウシアンの波動関数はZ軸に対して対称

散乱電子との同時計数を考える。

入射する渦ガンマ線のエネルギーは分かっているとする(500keVを仮定)。 散乱した電子の散乱角度と、ガンマ線の散乱角度を同時計数する。

相対論的量子力学の枠組みで計算

T. Maruyama, T. Hayakawa, T. Kajino, hep-ph, arXiv:1710.09369.

電子軌跡追跡型コンプトンカメラ

最初のコンプトン散乱にガス検出器を用いることで、 電子の軌跡を測定。 T. Tanimori, et al. Sci. Rep. 7:41511 (2017)

ガンマ線天文学のために開発中

D. Tomono, et al. Sci. Rep. 7:41972 (2017)

ラゲールガウシアンガンマ線の測定が可能

同時計数はちょっと難しい。 もう少し簡単な方法はないか?

コンプトン散乱による直線偏光の測定

Integral

http://www.isdc.unige.ch/integral/outreach/integral 人工衛星INTEGALに搭載されたSPI検出器

ガンマ線バーストの直線偏光計測

https://hesperia.gsfc.nasa.gov/hessi/hessi_show_image.htm

W. Coburn & S. E. Boggs, 423, 415 (2003).

Polarization of the prompt gamma-ray emission from the g-ray burst of 6 December 2002

80%の直線偏光度 (9個のGe検出器でコンプトン 散乱を計測した)

強磁場中のシンクロトロン放射 と推測される。

磁場がガンマ線バーストのメカニ ズムか?

この後、複数のガンマ線バースト時の直線偏光度が計測される。

高次高調波によるエルミートガウシアン生成

PRL 100, 124801 (2008)

PHYSICAL REVIEW LETTERS

week ending 28 MARCH 2008

Proposal for Generating Brilliant X-Ray Beams Carrying Orbital Angular Momentum

Shigemi Sasaki and Ian McNulty

プラナーアンジュレーター:直線偏光 高次高調波:エルミートガウシアン

直線偏光度が非常に大き いMeV領域の直線偏光γ 線の観測

高磁場中の電子シンクロト ロン放射と考えられる

ガンマ線バーストでも、高磁場のシンクロトロン高次高調波でエルミートガウシアンガンマ線 が生成されているはず。

エルミートガウシアン光のコンプトン散乱

X軸とY軸に対して調和振動している波(Z軸に進行)

直線偏光γ線: 特異な面は1つ

エルミートガウシアン光: 特異な面は2つ

エルミートガウシアン

エルミートガウシアン関数

$$u() = \sqrt{\frac{2}{R_z}} \frac{1}{w(z)} f_{n_x}\left(\frac{\sqrt{2}x}{w(z)}\right) f_{n_y}\left(\frac{\sqrt{2}y}{w(z)}\right) \exp\left[ikz + \frac{ikr^2}{2R(z)} - i(n_x + n_y + 1)\theta_z\right]$$

with

$$f_n(x) = (2^n \sqrt{\pi n!})^{-1/2} H_n(x) e^{-x^2/2}, \qquad Hn: \text{IUS} - \mathbb{k} \otimes \mathbb{Q}$$
$$w(z) = w_0 \sqrt{1 + \frac{z^2}{z_R^2}}, \qquad R(z) = (z^2 + z_R^2)/z, \qquad z_R = k w_0^2/2. \quad \theta_z = \tan^{-1}\left(\frac{z}{z_R}\right)$$

微分反応断面積

$$\begin{split} \frac{d^3\sigma}{d\Omega dE_q} &= \frac{\alpha^2 w_0^2 E_q}{2mk} \int \frac{dp_f}{E_f} \delta(E_f + E_q - m - k) \delta\left(Q_z - \sqrt{k^2 - (Q_x^2 + Q_y^2)}\right) W_{if} \\ & \times \left[f_{n_x} \left(\frac{w_0 Q_x}{\sqrt{2}}\right) f_{n_y} \left(\frac{w_0 Q_y}{\sqrt{2}}\right) \right]^2, \\ W_{if} &= \frac{4|q|}{k} + \frac{4k}{|q|} - \frac{4}{k^2} \left[|p_f|^2 - \frac{(p_f \cdot q)^2}{|q|^2} \right] \qquad E_q = |q| \text{ and } Q = p_f + q \end{split}$$

丸山智幸(日大)による計算: T.Maruayam, T. Hayakawa, T.Kajino, arXiv:1806.01271 (2018).

コンプトン散乱の微分反応断面積

特定の角度によるエネルギースペクトル

エルミートガウシアンでは、エネルギーがユニークに決まらない。

そのスペクトルには、その面におけるノードの数だけ谷が現れる。

丸山智幸(日大)による計算: T.Maruayam, T. Hayakawa, T.Kajino, arXiv:1806.01271 (2018).

ラゲールガウシアン光、エルミートガウシアン光は、 高い角運動量を運ぶことができる。

従来とは異なる、原子核・素粒子との反応が予想される(理論計算も始まったばかり)。

生成に有効な手法の一つは、10GeV以上の電子の アンジュレーターの高次高調波である。

新しい分野が開かれようとしている。