Development of the StrECal System for COMET Phase-I

Kazuki Ueno, for the COMET collaboration

High Energy Accelerator Research Organization (KEK),

Introduction

Lepton Flavor Violation (LFV)	COMET experiment		StrECal system	
$v_e \leftrightarrow v_\mu \leftrightarrow v_\tau$ Experimentally verified => neutrino oscillation	(COherent Muon to Electron Transition) [2] Search for μ-e conversion @ J-PA Staging approach Pion Capture	RC se-II (final setup)	Requirements Detector should be operational in vacuu	um and B-field of 1 T.
$e \leftrightarrow \mu \leftrightarrow \tau$ Never observed yet !!	8 GeV Proton Beam		 Detection of particle track in B-field > momentum Momen resolution: 	 Detection of timing, position, and energy of particles -> trigger, energy, and particle identification
Standard Model (SM) + v mass: Branching ratio (BR) ~ $O(-54)$	Muon Transport Solenoid -> low p muon	Electron transport Solenoid -> high p electron	• Moment resolution: $\sigma_{p} < 200 \text{ keV/c for 105 MeV/c e}^{-}$ • Spatial resolution : < 200 µm	with tracker Energy resolution : σ_E < 5% for 105 MeV/c e⁻ Position resolution : < 1 cm

Rate : < 100 kHz

Time response : < 100 ns

On the basis of the requirements, we adopted "StrECal" system for detection and identification of charged particles.

StrECal= Straw tube tracker + Electro-magnetic Calorimeter

Straw tube tracker

ECal

- Straw tube tracker consists of 5 stations.
 5 stations consist of 4 layers of straw tube.
 2 layers for x-coordinate and 2 layers for y-coordinate,
- each layer is staggered by half a cell to solve the left-right ambiguity.

optical fibre-link feedthrough

All tracker modules are installed in vacuum.
Trigger is provided by the ECal.

Status on tracker construction

Traditional method New method "doubly-wound" "straight adhesion"

New adhesion style developed by JINR group for NA62 exp. at CERN, which was enabled by ultrasonic welding method, was adopted for COMET.
 Optimization of Phase-I Straw (20 μm thickness + 70 nm Al deposition) was successfully done.

• Outer structure

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$

Parameter	Specifications		
Straw tube diameter	9.75 mm		
Straw tube length	0.6 – 1.2 m		
Straw tube thickness	<mark>20</mark> μm		
Cathode	Al 70 nm		
Number of channels	24000 ch		
Position resolution	~100 μm		
Drift velocity (Ar:C ₂ H ₆ =50:50)	4.8 cm/μs		

Schematic view of ECal

ECal prototype

- ECal is installed in vacuum at downstream side of straw tracker.
- Crystal calorimeter, LYSO, is adopted, which has high density and high light yield.
- Crystal size is 2 x 2 x 12 cm³.
- APD (10 x 10 mm², Hamamatsu S8664-1010) is used for photon-readout, which is operational in B-field.
- Prototypes with 7 x 7 crystals of LYSO were developed and evaluation was almost done.

Status on ECal construction

- Design of the module were completed except for minor part.
- Performance evaluation of the module was
- almost done.
- QA system is now being constructed.
- Mass production is ongoing.

• All the straws for Phase-I (>2400) were already constructed.

Straw station

Frontend electronics

ROESTI semi-final version

- Inner structure
 All parts were prepared.
- All parts were prepared.Glueing test is ongoing.

Straw end-plugs

• Final design is ongoing. Assembly work will start soon!

ROESTI : Read Out Electronics for Straw Tube Instrument

Pileup identification -> WD
Timing resolution -> < 1 ns
Gain -> 1 V/pC
of feedthrough

-> Daisy chain

- Radiation hardness
 -> n:10¹² n/cm² gamma:1kGy
- Semi-final version was developed and evaluated, which satisfied our requirements [3,4].
- Design of final version is ongoing.

Support structure

- Design of support structure for ECal is ongoing.
- Construction for installation and integration scheme is also ongoing.

Frontend electronics

Preamplifier board by BINP group

To EROS, PI

To EROS 3M-MDR-10250

To Pretrigger 3M-MDR-102

S04B-XASS-1N-BN

EROS : Ecal Read Out System

EROS semi-final version

- EROS has the same function as ROESTI except for preamplification.
- It was confirmed using prototypes that performance satisfied our requirements.
- Design of final versions are ongoing.

Summary & Future work

. . . .

Summary

- New charged LFV search at J-PARC, COMET, is planned.
- COMET has staging approach, phase-I and II.
- Developments and constructions of StrECal system for COMET phase-I is ongoing.

Future work

- Assembly work for straw tracker will start soon.
- Construction of ECal will start soon.
- Integration will be done.

Acknowledgment

This work was supported by JSPS KAKENHI, Japan, Grant Numbers JP17H04841, JP25000004, and JP17H06135.

HARTING D-sub 37 09 65 462 681 1

[References]

.

[1] W. Burtl et al., Eur. Phys. J. C 47 337 (2006)
[2] Y. Kuno et al., Prog. Theor. Exp. Phys. 2013 022C01
[3] K. Ueno et al. Nucl. Instl. Meth A, In Press. (2018)
[4] Y. Nakazawa et al., Nucl. Instl. Meth. A, In Press. (2018)

E-mail address: kazuueno@post.kek.jp