Quantum dissipation of quarkonium in quark-gluon plasma: Lindblad equation approach

Takahiro Miura(Osaka)

with Y.Akamatsu, M.Asakawa(Osaka) and A.Rothkopf(Stavanger)

Data from heavy ion collisions

[CMS collaboration(19)]

Comparing pp collision data, yields are relatively suppressed

Data reflect interactions between a quarkonium and QGP We need to understand the dynamics of a quarkonium in QGP

<u>Quarkonium in QGP</u>

How to describe?

- Two interacting Brownian particles \rightarrow Langevin eq. $\frac{dp}{dt} = -\eta p - \nabla V(x) + \xi(t)$ White noise
- Quantum mechanical bound state

Quantum Brownian motion

Open quantum system

We would like to describe a quarkonium in quantum way

Lindblad master equation

- Positivity of density matrix We would like to interpret quarkonium state as a mixed state \rightarrow Is positivity satisfied? $\forall |\alpha\rangle, \ \langle \alpha | \rho_{Q\bar{Q}} |\alpha\rangle \ge 0$
- Lindblad form [Lindblad(76)] $\frac{d}{dt}\rho_{Q\bar{Q}} = -i[H'_{Q\bar{Q}}, \rho_{Q\bar{Q}}] + \int dk \{2L_k \rho_{Q\bar{Q}} L_k^{\dagger} - L_k^{\dagger} L_k \rho_{Q\bar{Q}} - \rho_{Q\bar{Q}} L_k^{\dagger} L_k\}$ L : Lindblad operator

 \rightarrow interactinf forces

Important properties

$$\begin{split} &\operatorname{Tr}[\rho_{Q\bar{Q}}] \equiv 1 \\ &\rho_{Q\bar{Q}} = \rho^{\dagger}_{Q\bar{Q}} \\ &^{\forall} \left| \alpha \right\rangle, \ \left\langle \alpha \right| \rho_{Q\bar{Q}} \left| \alpha \right\rangle \geq 0 \end{split}$$

Quantum State Diffusion(QSD) method

Stochastic unravelling

[Gisin, Persival (92)]

Lindblad master eq.

density matrix ensemble

nonlinear stochastic Schrödinger eq.

wave function individual

nonlinear stochastic Schrödinger eq. form

$$\begin{split} d\psi \rangle &= -iH'_{Q\bar{Q}} \left| \psi(t) \right\rangle dt + \int d\vec{k} \left(2 \langle L^{\dagger}_{\vec{k}} \rangle_{\psi} L_{\vec{k}} - L^{\dagger}_{\vec{k}} L_{\vec{k}} - \langle L^{\dagger}_{\vec{k}} \rangle_{\psi} \langle L_{\vec{k}} \rangle_{\psi} \right) \left| \psi(t) \right\rangle dt \\ &+ \int d\vec{k} \left(L_{\vec{k}} - \langle L_{\vec{k}} \rangle_{\psi} \right) \left| \psi(t) \right\rangle d\xi_{\vec{k}} \\ & \langle \ \rangle_{\psi} \quad \text{expectation value} \\ & \text{with respect to wave function} \\ &\to \text{nonlinearity} \end{split}$$

Apply QSD method to Lindblad master equation

Caldeira Leggett model for quarkonium?

Caldeira Legette model [Caldeira-Leggett(83)]

• Prototype of quantum Brownian particle with potential V(x)

- quantum Brownian particle
 - \leftarrow localized wave packet

smaller than QGP correlation length $~l_{
m corr} \sim m_{
m D}^{-1}$

In our case, NOT the case \rightarrow improve the model based on QCD [Akamatsu(15)]

Lindblad operator for quarkonium in QGP

Solve Lindblad eq. for relative motion with this Lindblad operator(NOT model) $\frac{d}{dt}\rho_{Q\bar{Q}} = -i[H'_{Q\bar{Q}}, \rho_{Q\bar{Q}}] + \int dk \{2L_k \rho_{Q\bar{Q}} L_k^{\dagger} - L_k^{\dagger} L_k \rho_{Q\bar{Q}} - \rho_{Q\bar{Q}} L_k^{\dagger} L_k\}$

NUMERICAL ANALYSIS

QSD simulation for quarkonium relative motion

For simplicity, in one spatial dimension, with heavy quark color ignored

Parameter setups in terms of heavy quark mass M

Δx	Δt	N_x	T	γ	$l_{\rm corr}$	α	m_D	$r_{\mathbf{c}}$
1/M	$0.1M(\Delta x)^2$	254	0.1M	T/π	1/T	0.3	T	1/M

Noise correlation function

$$D(r) = \gamma \exp(-r^2/l_{\rm corr}^2)$$

> More realistic setup (Bjorken expanding QGP)

QGP temperature decreases in time

$$T(t) = T_0 \left(\frac{t_0}{t+t_0}\right)^{1/3} \quad T_0/M_b = 0.1, \, M_b t_0 = 20$$

QSD simulation for quarkonium relative motion

For simplicity, in one spatial dimension, with heavy quark color ignored

Outline of the numerical calculation

> More realistic setup (Bjorken expanding QGP)

Eigenstate
projection
Vacuum eigenstate
$$\phi_i(x)$$

 $H = \frac{p^2}{M_b} - \frac{\alpha}{r} + \sigma r$ $\sigma = 0.01 M_b^2$

12/18

Results - equilibration

• Time evolution of occupation number of eigenstates $H = \frac{p^2}{M} - \frac{\alpha}{r} e^{-m_D r}$

Eigenstate occupation respectively approaches the static value

Results - equilibration

Eigenstate distribution approches the Boltzmann distribution

Results - In Bjorken expanding QGP

Time evolution of occupation number of eigenstates $H = \frac{p^2}{M_b} - \frac{\alpha}{r} + \sigma r$

Evolution becomes milder in Bjorken expanding QGP

Results - Dissipative effect

■ Time evolution of occupation number of eigenstates $H = \frac{p^2}{M} - \frac{\alpha}{r} e^{-m_D r}$

Results - In Bjorken expanding QGP

Time evolution of occupation number of eigenstates $H = \frac{p^2}{M_b} - \frac{\alpha}{r} + \sigma r$

17/18

<u>Summary</u>

- Quarkonium is treated as a open quantum system
- Simulation for Lindblad master equation in Quantum State Diffusion method
 - We numerically confirm a quarkonium is thermalized under dissipation
 - We simulate effects of dissipation
 - Localized bound state is affected more, non negligible effect

Outlook

3D analysis

Color effect

Comparison with experimental results

BACK UP

Nonlinear stochastic Schoroedinger equation

Nonlinear stochastic Schoroedinger eq. in QSD

$$\begin{split} d\psi(x) &= -idt \left[-\frac{\nabla^2}{M} + V(x) \right] \psi(x) - dt \Big[D(0) - D(x) \Big] \psi(x) \\ &+ \frac{2dt}{\langle \psi | \psi \rangle} \int dy \Big[D\Big(\frac{x-y}{2} \Big) - D\Big(\frac{x+y}{2} \Big) \Big] [\psi^{\dagger}(y)\psi(y)]\psi(x) \\ &+ \Big[d\xi \Big(\frac{x}{2} \Big) - d\xi \Big(\frac{-x}{2} \Big) \Big] \psi(x) + \mathcal{O}(T/M), \end{split}$$

Noise correlation of complex noise

$$\langle d\xi(x)d\xi^*(y)\rangle = D(x-y)dt, \quad \langle d\xi(x)d\xi(y)\rangle = 0,$$

Density matrix

$$\rho_{Q\bar{Q}}(x,y) = \left\langle \frac{\psi(x)\psi^*(y)}{||\psi||^2} \right\rangle$$

Results - localized wave function

Wave function is typically solitonic from nonlinearlity Each sample shows similar behavior