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Physical Motivation: Resurgence and Quantum Field Theory

• non-perturbative definition of QFT

• Minkowski vs. Euclidean QFT

• "sign problem" in finite density QFT

• dynamical & non-equilibrium physics in path integrals

• phase transitions (Lee-Yang and Fisher zeroes)

• common thread: analytic continuation of path integrals

• question: does resurgence give (useful) new insight?



The Big Question

• Can we make physical, mathematical and computational sense
of a Lefschetz thimble expansion of a path integral?
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• Z(~) → Z(~,masses, couplings, µ, T,B, ...)

• Z(~) → Z(~, N), and N →∞ for a phase transition

• since we need complex analysis and contour deformation to
make sense of oscillatory ordinary integrals, it is natural to
explore similar methods for path integrals

• resurgence and Stokes transitions: transmutation of
trans-series structures across phase transitions



Resurgence: Implications for QFT

• the physics message from Écalle’s resurgence theory: different
critical points are related in subtle and powerful ways



Borel summation: extracting physics from asymptotic series

Borel transform of series, where cn ∼ n! , n→∞

f(g) ∼
∞∑
n=0

cn g
n −→ B[f ](t) =

∞∑
n=0

cn
n!
tn

new series typically has a finite radius of convergence

Borel summation of original asymptotic series:

Sf(g) =
1

g

∫ ∞
0
B[f ](t)e−t/gdt

• the singularities of B[f ](t) provide a physical encoding of the
global asymptotic behavior of f(g), which is also much more
mathematically efficient than the asymptotic series

• Borel singularities ↔ non-perturbative physical objects

• resurgence: isolated poles, algebraic & logarithmic cuts
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Mathieu Equation Spectrum: −~2
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all non-perturbative effects encoded in perturbative expansion

GD & Ünsal (2013); Başar, GD & Ünsal (2017): applies to bands & gaps
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• phase transition at ~N = 8
π : narrow bands vs. narrow gaps

• real vs. complex instantons (Dykhne, 1961; Başar/GD)

• phase transition = "instanton condensation"

• maps to N = 2 SUSY QFT (Nekrasov et al, Mironov et al; Başar/GD)



Physical Motivation: QCD phase diagram
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Figure 1: The QCD phase diagram, as depicted in the NSAC 2015 Long Range Plan. [1]
One of the Plan’s major goals is the discovery of the critical point. Currently, due to the
sign problem, lattice QCD calculations only give access to the region away from the critical
point denoted in yellow.

ordinary stationary phase integrals into quantum field theory path integrals. While the
initial results are promising, many improvements are still necessary to tackle more realistic
systems. In particular, the PI aims to develop a Hamiltonian Monte Carlo method tailored for
this framework which will significantly improve the Monte Carlo sampling. Other sampling
methods such as those utilizing machine learning will also be explored. In addition to finite
density systems, the PI also aims to advance the study of dynamical problems, such as
computation of transport coefficients on the lattice, through this framework.

2) Relativistic hydrodynamics and fluctuations: One of the major discoveries of the Rel-
ativistic Heavy Ion Collider (RHIC) was that QGP behaves like a fluid and is very well
described by relativistic hydrodynamics. The PI aims to advance the hydrodynamic frame-
work by deepening our current understanding of thermal fluctuations in hydrodynamics.
In more detail, the major goals of this direction are to formulate and study the dynamics
of higher order correlation functions in a deterministic framework, expand this framework
to encompass critical fluctuations near the critical point, address the issue of “multiplica-
tive noise” within the deterministic framework, make connections with “effective action”
approaches where hydrodynamics and fluctuations are formulated through an effective ac-
tion, and finally, to develop tools to analyze the asymptotic nature of the all-orders gradient
expansion.

It is worth noting that even though both of these directions are motivated by QCD, the
versatile nature of the theoretical tools that will be developed and the universality of the
problems that will be addressed, means that the applicability of the results will extend far
beyond nuclear physics and is expected to have implications for a broad range of fields, from
high energy to condensed matter physics.

The proposed grant will support the PI along with two graduate students and a postdoc.

3

• sign problem: "complex probability" at finite baryon
density? ∫

DAe−SY M [A]+ln det(D/+m+i µγ0)



Phase Transition in 1+1 dim. Gross-Neveu Model

L = ψ̄ai∂/ψa +
g2

2

(
ψ̄aψa

)2
• asymptotically free; dynamical mass; chiral symmetry

• large Nf chiral symmetry breaking phase transition

• physics = (relativistic) Peierls instability in 1 dimension

• saddles from inhomogeneous gap eqn. (Basar, GD, Thies, 2011)

σ(x;T, µ) =
δ

δσ(x;T, µ)
ln det (i ∂/− σ(x;T, µ))



Phase Transition in 1+1 dim. Gross-Neveu Model

• thermodynamic potential

Ψ[σ;T, µ] = −T
∫
dE ρ(E) ln

(
1 + e−(E−µ)/T

)
=

∑
n

αn(T, µ)fn[σ(x;T, µ)]

• (divergent) Ginzburg-Landau expansion = mKdV

• saddles: σ(x) = λ sn(λx; ν)

• successive orders of GL expansion reveal the full crystal phase
(Basar, GD, Thies, 2011; Ahmed, 2018)



Phase Transition in 1+1 dim. Gross-Neveu Model

• most difficult point: µc = 2
π , T = 0

• high density expansion at T = 0: (convergent !)

E(ρ) ∼ π

2
ρ2
(

1− 1

32(πρ)4
+

3

8192(πρ)8
− . . .

)
• low density expansion at T = 0: (non-perturbative !)

E(ρ) ∼ − 1

4π
+

2ρ

π
+

1

π

∞∑
k=1

e−k/ρ

ρk−2
Fk−1(ρ) (Thies; 2004; GD, 2018)

• resurgent trans-series

• analogous expansions at fixed T/µ



Phase Transition in 2d Lattice Ising Model

• diagonal correlation function: C(s,N) = 〈σ0,0 σN,N 〉(s)

• C(s,N) = tau function for Painlevé VI (Jimbo, Miwa, 1980)

• simple Toeplitz det representation ("linearizes")

• scaling limit: N →∞ & T → Tc: PVI → PIII (McCoy et al)

• convergent and resurgent (!) conformal block expansions at
high and low T (Jimbo; Lisovyy et al; Bonelli et al; GD)

τ(t) ∼
∞∑

n=−∞
snC(~θ, σ+n)B(~θ, σ+n; t)

B(~θ, σ; t) ∝ tσ2
∑
λ,µ∈Y

Bλ,µ(~θ, σ)t|λ|+|µ|

• resurgence applies also to convergent expansions (!)
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Other Examples: Phase Transitions

• particle-on-circle: sum over spectrum versus sum over winding
(saddles) (Schulman, 1968)

• Bose gas (Cristoforetti et al, Alexandru et al)

• Thirring model (Alexandru et al)

• Hubbard model (Tanizaki et al; ...)

• Hydrodynamics: short/late-time (Heller et al; Aniceto et al;

Basar/GD)

• Large N matrix models (Mariño, Schiappa, Couso, Putrov, Russo, ...)

• Painlevé (Jimbo et al; Its et al; Lisovyy et al; Litvinov et al; Costin, GD)

• Gross-Witten-Wadia model (Mariño; Ahmed, GD)

• resurgence and superconductors (Mariño, Reis)

• . . .



Resurgence in Matrix Models: Mariño: 0805.3033, Ahmed & GD: 1710.01812

Gross-Witten-Wadia Unitary Matrix Model

Z(g2, N) =

∫
U(N)

DU exp

[
1

g2
tr
(
U + U †

)]
• one-plaquette matrix model for 2d lattice Yang-Mills

• two variables: g2 and N (’t Hooft coupling: t ≡ g2N/2)

• 3rd order phase transition at N =∞, t = 1 (universal!)

• double-scaling limit: Painlevé II

• physics of phase transition = condensation of instantons

• random matrix theory/orthogonal polynomials result:

Z(g2, N) = det (Ij−k(x))j,k=1,...N , x ≡ 2

g2

http://inspirehep.net/record/1628838
http://inspirehep.net/record/894974?ln=en


Gross-Witten-Wadia N =∞ Phase Transition

3rd order transition: kink in the specific heat

D. Gross, E. Witten, 1980

• what about non-perturbative large N effects?



Resurgence in Gross-Witten-Wadia Model:
Transmutation of the Trans-series Ahmed & GD: 1710.01812

• “order parameter”: with ’t Hooft coupling t ≡ 1
2 N g2

∆(t,N) ≡ 〈detU〉 =
det
[
Ij−k+1

(
N
t

)]
j,k=1,...,N

det
[
Ij−k

(
N
t

)]
j,k=1,...,N

• for any N , ∆(t,N) satisfies a Painlevé III equation:

t2∆′′ + t∆′ +
N2∆

t2
(
1−∆2

)
=

∆

1−∆2

(
N2 − t2

(
∆′
)2)

• weak-coupling expansion is a divergent series:
→ trans-series non-perturbative completion

• strong-coupling expansion is a convergent series:
but it still has a non-perturbative completion !

• N is now a parameter, not necessarily integer !

http://inspirehep.net/record/894974?ln=en


Resurgence: Large N ’t Hooft limit at Weak Coupling

• large N trans-series at weak-coupling (t ≡ N/x < 1)

∆(t,N) ∼
√

1− t
∞∑
n=0

d
(0)
n (t)

N2n
− i

2
√

2πN
σweak

t e−NSweak(t)

(1− t)1/4
∞∑
n=0

d
(1)
n (t)

Nn
+. . .

• large N weak-coupling action

Sweak(t) =
2
√

1− t
t

− 2 arctanh
(√

1− t
)

• large-order growth of perturbative coefficients (∀ t < 1):

d(0)n (t) ∼ −1√
2(1− t)3/4π3/2

Γ(2n− 5
2)

(Sweak(t))2n−
5
2

[
1 +

(3t2 − 12t− 8)

96(1− t)3/2
Sweak(t)

(2n− 7
2)

+ . . .

]
• (parametric) resurgence relations, for all t:

∞∑
n=0

d
(1)
n (t)

Nn
= 1 +

(3t2 − 12t− 8)

96(1− t)3/2
1

N
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Resurgence: Large N ’t Hooft limit at Strong Coupling

• large N transseries at strong-coupling: ∆(t,N) ≈ σJN
(
N
t

)
∆(t,N) =

∞∑
k=1,3,5,...

(σstrong)k∆(k)(t,N)

• "Debye expansion" for Bessel function: JN (N/t)

∆(t,N) ∼
√
t e−NSstrong(t)

√
2πN (t2 − 1)1/4

∞∑
n=0

Un (t)

Nn

+
1

4(t2 − 1)

( √
te−NSstrong(t)

√
2πN (t2 − 1)1/4

)3 ∞∑
n=0

U
(1)
n (t)

Nn
+ . . .

• large N strong-coupling action: Sst(t) = arccosh(t)−
√

1− 1
t2

• large-order/low-order (parametric) resurgence relations:

Un (t) ∼ (−1)n (n− 1)!

2π(2Sstrong(t))n

(
1 + U1 (t)

(2Sstrong(t))

(n− 1)
+ U2 (t)

(2Sstrong(t))2

(n− 1)(n− 2)
+ . . .

)
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Gross-Witten-Wadia Phase Transition and Lee-Yang zeros

Lee-Yang: complex zeros of Z pinch the real axis at the phase
transition point in the thermodynamic limit

GWW zeros (Kolbig) Painlevé II (Novokshenov; Huang)



Resurgent Extrapolation O.Costin & GD, 1904.11593, ...

• resurgence suggests that local analysis of perturbation theory
encodes global information

• Questions:
How much global information can be decoded from a FINITE
number of perturbative coefficients ?
How much information is needed to see and to probe phase
transitions ?

• resurgent functions have orderly structure in Borel plane
⇒ develop extrapolation and summation methods that take
advantage of this!

• high precision test for Painlevé I (but integrability is not
important for the method)

• general & explicit large N estimates (Costin, GD; to appear)

http://inspirehep.net/record/1731578


Perturbative Expansion of Painlevé I Equation

• Painlevé I equation (double-scaling limit of 2d quantum
gravity)

y′′(x) = 6 y2(x)− x

• large x expansion:

y(x) ∼ −
√
x

6

1 +

∞∑
n=1

an

(
30

(24x)5/4

)2n
 , x→ +∞

• perturbative input data: {a1, a2, . . . , aN}

{ 4

25
,−392

625
,
6 272

625
,−141 196 832

390 625
,
9 039 055 872

390 625
, . . . , aN}

• this expansion defines the tritronquée solution to PI



Reconstruct global behavior from limited x→ +∞ data?

• Painlevé I equation has inherent five-fold symmetry

����-������

����-������

����-������

������

������

Re[x]

Im[x]

• do our input coefficients (from x = +∞) “know” this ?

• most interesting/difficult directions: phase transitions



High Precision at the Origin O.Costin & GD, 1904.11593

• resurgence & Padé-Conformal-Borel transform

• “weak coupling to strong coupling” extrapolation

• N = 50 terms and Padé-Conformal-Borel input:

y(0) ≈ −0.18755430834049489383868175759583299323116090976213899693337265167...

y
′
(0) ≈ −0.30490556026122885653410412498848967640319991342112833650059344290...

y
′′
(0) ≈ 0.21105971146248859499298968451861337073253247206264082468899143841...

[
y′′(x)− 6y2(x) + x

]
x=0

= O(10−65)

• best numerical integration algorithms → ≈ O(10−15)

• WHY?

• Resurgent extrapolation method encodes global information
about the function throughout the entire complex plane, not
just along the positive real axis

http://inspirehep.net/record/1731578


Nonlinear Stokes Transition: the Tritronquée Pole Region

• Boutroux (1913): asymptotically, general Painlevé I solution
has poles with 5-fold symmetry

• Dubrovin conjecture (2009): this asymptotic solution to
Painlevé I only has poles in a 2π

5 wedge

����-������
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����-������
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������

Re[x]

Im[x]

• proof: Costin-Huang-Tanveer (2012)



Stokes Transition: Mapping the Tritronquée Pole Region

• non-linear Stokes transitions crossing arg(x) = ±4π
5

O.Costin & GD, 1904.11593
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Figure: Complex poles: N = 10 (blue); N = 50 (red).

http://inspirehep.net/record/1731578


Metamorphosis: Asymptotic Series to Meromorphic Function

y(x) ≈ 1

(x− xpole)2
+
xpole
10

(x− xpole)2 +
1

6
(x− xpole)3

+hpole(x− xpole)4 +
x2pole
300

(x− xpole)6 + . . .

• our extrapolation (yN (x) with N = 50) near 1st pole:

y(x) ≈ 0.9999999999999999999999999999999999997886

(x− x1)2

+3.5× 10−35 − 2.4× 10−34(x− x1)
−0.238416876956881663929914585244923803(x− x1)2

+0.166666666666666666666666666666657864(x− x1)3

−0.06213573922617764089649014164005140(x− x1)4

+4× 10−31(x− x1)5

+0.0189475357392909503157755851627665(x− x1)6 + . . .

• estimate approx 30 digit precision for x1 and h1



Conclusions

• Resurgence systematically unifies perturbative and
non-perturbative analysis, via trans-series, which ‘encode’
analytic continuation information

• phase transitions ↔ Stokes phenomenon

• QM, matrix models, differential/integral eqns

• numerical Lefschetz thimbles

• non-perturbative effects exist even for convergent series (e.g.
periodic potential; Ising model; unitary matrix model; ...)

• resurgent extrapolation: non-perturbative information can be
decoded from surprisingly little perturbative data




