IR renormalon in a compactified spacetime: the case of the QCD(adj.) on $\mathbb{R}^{3} \times S^{1}$

Hiroshi Suzuki
Kyushu University

2019/12/04 @ KEK

- M. Ashie, O. Morikawa, H. Suzuki, H. Takaura and K. Takeuchi, arXiv:1909.05489 [hep-th], to appear in PTEP.
- K. Ishikawa, O. Morikawa, K. Shibata, H. Suzuki and H. Takaura, arXiv:1909.09579 [hep-th], to appear in PTEP.
- K. Ishikawa, O. Morikawa, A. Nakayama, K. Shibata, H. Suzuki and H. Takaura, arXiv:1908.00373 [hep-th].

Borel resummation of the perturbation series

- The coefficient in perturbative expansion,

$$
f(\lambda) \sim \lambda \sum_{k=0}^{\infty} f_{k}\left(\frac{\beta_{0} \lambda}{16 \pi^{2}}\right)^{k}
$$

typically grows factorially as $k \rightarrow \infty$ (Dyson, Bender-Wu, Lipatov, ...),

$$
f_{k} \sim b^{-k} k!
$$

- Perturbation series diverges and is an asymptotic series at best.
- Nevertheless, if the Borel transform,

$$
B(u):=\sum_{k=0}^{\infty} \frac{f_{k}}{k!} u^{k},
$$

does not possess singularities on the positive real axis ($b<0$),

$$
f(\lambda):=\frac{16 \pi^{2}}{\beta_{0}} \int_{0}^{\infty} d u B(u) e^{-16 \pi^{2} u /\left(\beta_{0} \lambda\right)}
$$

defines the Borel sum.

Semi-classical understanding of the Borel singularity

- Assuming that $f(\lambda)$ is given by the functional integral as

$$
f(\lambda)=\int \mathcal{D} \varphi e^{-\tilde{S}[\varphi] / \lambda}
$$

the Borel transform is given by

$$
B(u)=\frac{\beta_{0}}{16 \pi^{2}} \int \mathcal{D} \varphi \delta\left(u-\beta_{0} \tilde{S}[\varphi] / 16 \pi^{2}\right) \sim \sum_{\varphi_{i}}\left(\frac{\delta \tilde{S}[\varphi]}{\delta \varphi}\right)_{\tilde{S}[\varphi i]=16 \pi^{2} u / \beta_{0}}^{-1}
$$

Thus the Borel transform develops a singularity at

$$
u=\frac{\beta_{0}}{16 \pi^{2}} \tilde{S}\left[\varphi_{i}\right], \quad \varphi_{i}: \text { a solution of EoM. }
$$

- A pair of instanton/anti-instanton, whose action in the $\operatorname{SU}(N)$ gauge theory is

$$
\tilde{S}[\bar{I}] \sim 16 \pi^{2} N
$$

gives rise to Borel singularities at integer multiples of $u=\beta_{0} N$.

- k ! associated with $\bar{\Pi}$ is attributed to the proliferation of the number of Feynman diagrams. This is suppressed in $N \rightarrow \infty$.

(IR) renormalon: another source of the factorial growth

- 't Hooft (1979): a single diagram that grows $\sim k$!
- This emerges from a diagram such as

and, in \mathbb{R}^{4}, evaluated as (we assume $\alpha>-2$)

$$
\begin{aligned}
& \sim \lambda \int \frac{d^{4} p}{(2 \pi)^{4}}\left(p^{2}\right)^{\alpha}\left(-\ln p^{2}\right)^{k}\left(\frac{\beta_{0} \lambda}{16 \pi^{2}}\right)^{k} \quad\left(\beta_{0}=\frac{11}{3}-\frac{2}{3} n_{w}\right) \\
& =\lambda \frac{1}{16 \pi^{2}}(2+\alpha)^{-k-1} \int_{-\infty}^{\infty} d t e^{-t} t^{k}\left(\frac{\beta_{0} \lambda}{16 \pi^{2}}\right)^{k} \quad\left(t=-\ln p^{2}\right) \\
& \stackrel{t \sim k}{\sim} \lambda \frac{1}{16 \pi^{2}}(2+\alpha)^{-k-1} k!\left(\frac{\beta_{0} \lambda}{16 \pi^{2}}\right)^{k} .
\end{aligned}
$$

- This produces the Borel singularity at $u=2+\alpha$.
- In what follows, we consider a quantity with $\alpha=0$.

Semi-classical understanding of the renormalon?

- In \mathbb{R}^{4}, the IR renormalon produces a Borel singularity at $u=2$. The corresponding ambiguity in the Borel sum is

$$
\left[e^{-16 \pi^{2} /\left(\beta_{0} \lambda\right)}\right]^{2} \sim \Lambda^{4}
$$

- Corresponding semi-classical object???

$$
\tilde{S}\left[\varphi_{i}\right] \sim \frac{16 \pi^{2}}{\beta_{0}}=\frac{1}{\beta_{0} N} \tilde{S}[[\bar{I}]
$$

- Argyres-Ünsal (arXiv:1206.1860) and Dunne-Ünsal (arXiv:1210.2423) argued that the so-called bion is the corresponding object.
- Still remains a conjecture for 4D QCD(adj.), for which

$$
\tilde{S}[\text { bion }] \sim 16 \pi^{2}=\frac{1}{N} \tilde{S}[\bar{I}], \quad \beta_{0}=\frac{11}{3}-\frac{2}{3} n_{W} .
$$

- One may further push this picture in $2 \mathrm{D} \mathbb{C} P^{N-1}$ model, for which

$$
\beta_{0}=1 .
$$

IR renormalon and bion in compactified spaces

- The bion (pair of fractional instanton/anti-instanton) can exist only in compactified spaces with twisted boundary conditions (TBC).
- It is therefore important to study the IR renormalon in compactified spaces.
- Anber-Sulejmanpasic (arXiv:1410.0121), 4D $S U(2)$ and $S U(3)$ QCD (adj.) on $\mathbb{R}^{3} \times S^{1}$: vacuum polarization of the "photon" (see below) loses the $\ln p^{2}$ behavior. No IR renormalon!.
- Fujimori-Kamata-Misumi-Nitta-Sakai (arXiv:1810.03768), 2D SUSY $\mathbb{C} P^{N-1}$ model on $\mathbb{R} \times S^{1}$: very explicit bion calculus of the vacuum energy and observed the ambiguity corresponding to $u=2$.
- Fujimori-Kamata-Misumi-Nitta-Sakai (arXiv:1607.04205), 1D $\mathbb{C} P^{N-1}$ SUSY QM: observed the coincidence between the bion calculus and the large order behavior of perturbation theory for the vacuum energy.
- Yamazaki-Yonekura (arXiv:1911.06327), $\mathbb{C} P^{N-1}$ model on $\mathbb{R} \times S^{1}$ with periodic boundary conditions: for finite R, convergent series of the coupling and no renormalon.
- No unified picture yet?

IR renormalon in compactified spaces

- Large N might give a clue...
- Ishikawa-Morikawa-Nakayama-Shibata-H.S.-Takaura (arXiv:1908.00373), 2D SUSY $\mathbb{C} P^{N-1}$ model on $\mathbb{R} \times S^{1}$, IR renormalon, but at $u=3 / 2$, not $u=2!\Rightarrow$ Morikawa's poster
- Ishikawa-Morikawa-Shibata-H.S.-Takaura (arXiv:1909.09579), This shift of the Borel singularity $u=2 \rightarrow 3 / 2$ under the S^{1} compactification is a very general phenomenon \Rightarrow Takaura's talk
- Ashie-Morikawa-H.S.-Takaura-Takeuchi (arXiv:1909.05489), 4D SU(N) QCD(adj.) on $\mathbb{R}^{3} \times S^{1}$ with the large β_{0} approximation (see below): IR renormalon, but at $u=2$, not $u=3 / 2$!
- Unfortunately, we do not have yet a general picture...

$S U(N)$ QCD(adj.) on $\mathbb{R}^{3} \times S^{1}$ with TBC

- $\mathbb{R}^{3} \times S^{1}$:

$$
\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{R}^{3}, \quad 0 \leq x_{3}<2 \pi R .
$$

- Action ($\lambda_{0}=g_{0}^{2} N$: bare 't Hooft coupling)

$$
S=-\frac{N}{2 \lambda_{0}} \int d^{4} x \operatorname{tr}\left(\tilde{F}_{\mu \nu} \tilde{F}_{\mu \nu}\right)-2 \int d^{4} x \operatorname{tr}\left[\tilde{\bar{\psi}}(x) \gamma_{\mu}\left(\partial_{\mu} \tilde{\psi}+\left[\tilde{A}_{\mu}, \tilde{\psi}\right]\right)\right] .
$$

- \mathbb{Z}_{N} twisted boundary conditions (TBC):

$$
\begin{aligned}
\tilde{\psi}\left(x_{0}, x_{1}, x_{2}, x_{3}+2 \pi R\right) & =\Omega \tilde{\psi}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \Omega^{-1} \\
\tilde{\bar{\psi}}\left(x_{0}, x_{1}, x_{2}, x_{3}+2 \pi R\right) & =\Omega \tilde{\bar{\psi}}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \Omega^{-1} \\
\tilde{A}_{\mu}\left(x_{0}, x_{1}, x_{2}, x_{3}+2 \pi R\right) & =\Omega \tilde{A}_{\mu}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \Omega^{-1}
\end{aligned}
$$

where, denoting the Cartan generators by H_{m},

$$
\Omega=e^{i \frac{2 \pi}{N} \phi \cdot H}=e^{i \pi \frac{N+1}{N}} \operatorname{diag}\left(e^{-i \frac{2 \pi}{N}}\right)^{j}
$$

so that $\operatorname{tr}\left(e^{i \frac{2 \pi}{N}} \Omega\right)=\operatorname{tr} \Omega$.

SU(N) QCD(adj.) on $\mathbb{R}^{3} \times S^{1}$ with TBC

- Field variables in the Cartan-Weyl basis:

$$
\begin{gathered}
\tilde{\psi}(x)=-i \sum_{\ell=1}^{N-1} \tilde{\psi}^{\ell}(x) H_{\ell}-i \sum_{m \neq n} \tilde{\psi}^{m n}(x) E_{m n} \\
\tilde{\bar{\psi}}(x)=-i \sum_{\ell=1}^{N-1} \tilde{\psi}^{\ell}(x) H_{\ell}-i \sum_{m \neq n} \tilde{\bar{\psi}}^{m n}(x) E_{m n} \\
\tilde{A}_{\mu}(x)=-i \sum_{\ell=1}^{N-1} \tilde{A}_{\mu}^{\ell}(x) H_{\ell}-i \sum_{m \neq n} \tilde{A}_{\mu}^{m n}(x) E_{m n} .
\end{gathered}
$$

- We refer the Cartan part $\tilde{A}_{\mu}^{\ell}(x)$ to as the "photon", whereas the root part $\tilde{A}_{\mu}^{m n}(x)$ the "W-boson".

Gauge field propagators in the large β_{0}-approximation

- First, we extract a gauge-invariant set of diagrams, by considering the large flavor limit $n_{W} \rightarrow \infty$ (with $\lambda_{0} n_{W}$ kept fixed).
- In this limit, the vacuum polarization is dominated by the fermion one-loop diagram and we have

$$
\begin{aligned}
& \left\langle\tilde{A}_{\mu}^{\ell}(x) \tilde{A}_{\nu}^{r}(y)\right\rangle=\frac{\lambda}{N} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \pi R} \sum_{p_{3} \in \mathbb{Z} / R} \\
& \times e^{i p(x-y)} \frac{1}{\left(p^{2}\right)^{2}}\left\{\left[(1-L)^{-1}\right]^{\ell r} p^{2} \mathcal{P}_{\mu \nu}^{L}+\left[(1-T)^{-1}\right]^{\ell r} p^{2} \mathcal{P}_{\mu \nu}^{T}+\delta^{\ell r} \frac{1}{\xi} p_{\mu} p_{\nu}\right\}, \\
& \left\langle\tilde{A}_{\mu}^{m n}(x) \tilde{A}_{\nu}^{p q}(y)\right\rangle=\frac{\lambda}{N} \delta^{m q} \delta^{n p} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \pi R} \sum_{p_{3} \in \mathbb{Z} / R} \\
& \times\left\{e^{i p(x-y)} \frac{1}{\left(p^{2}\right)^{2}}\left[(1-L)^{-1} p^{2} \mathcal{P}_{\mu \nu}^{L}+(1-T)^{-1} p^{2} \mathcal{P}_{\mu \nu}^{T}+\frac{1}{\xi} p_{\mu} p_{\nu}\right]\right\}_{p \rightarrow p_{m n}}
\end{aligned}
$$

where $\mathcal{P}_{\mu \nu}^{L, T}$ are projection operators.

- It is important that the momentum for the W-boson is twisted as

$$
p_{m n, \mu} \equiv p_{\mu}-\delta_{\mu 3} \frac{m-n}{R N}
$$

Gauge field propagators in the large β_{0}-approximation

- ..., where λ and ξ are renormalized in the $\overline{\mathrm{MS}}$ scheme,

$$
\begin{aligned}
& L^{\ell r} \equiv \frac{\beta_{0} \lambda}{16 \pi^{2}}\left\{\delta^{\ell r} \ln \left(\frac{e^{5 / 3} \mu^{2}}{p^{2}}\right)+12 \sum_{j \neq 0}\left(\sigma_{j, N}\right)_{\ell r} \int_{0}^{1} d x e^{i \times \beta_{3} 2 \pi R j} x(1-x)\left[K_{0}(z)-K_{2}(z)\right]\right\} \\
& T^{\ell r} \equiv \frac{\beta_{0} \lambda}{16 \pi^{2}}\left\{\delta^{\ell r} \ln \left(\frac{e^{5 / 3} \mu^{2}}{p^{2}}\right)+12 \sum_{j \neq 0}\left(\sigma_{j, N}\right)_{\ell r} \int_{0}^{1} d x e^{i x \beta_{3} 2 \pi R j} x(1-x)\left[K_{0}(z)-\frac{p_{3}^{2}}{p^{2}} K_{2}(z)\right]\right\}, \\
& L \equiv \frac{\beta_{0} \lambda}{16 \pi^{2}}\left\{\ln \left(\frac{e^{5 / 3} \mu^{2}}{p^{2}}\right)+12 \sum_{j \neq 0, j=0 \bmod N} \int_{0}^{1} d x e^{i \times p_{3} 2 \pi R j} x(1-x)\left[K_{0}(z)-K_{2}(z)\right]\right\} \\
& T \equiv \frac{\beta_{0} \lambda}{16 \pi^{2}}\left\{\ln \left(\frac{e^{5 / 3} \mu^{2}}{p^{2}}\right)+12 \sum_{j \neq 0, j=0 \bmod N} \int_{0}^{1} d x e^{i \times p_{3} 2 \pi R j} x(1-x)\left[K_{0}(z)-\frac{p_{3}^{2}}{p^{2}} K_{2}(z)\right]\right\}, \\
& Z \equiv \sqrt{x(1-x) p^{2}} 2 \pi R|j| \text { and } \\
& \quad \beta_{0}=-\frac{2}{3} n_{W}
\end{aligned}
$$

is the one-loop coefficient of the beta function.

- Then, to include the effect of the gauge field partially, we set by hand,

$$
\beta_{0} \rightarrow \frac{11}{3}-\frac{2}{3} n_{w}
$$

Gluon condensate in $N \rightarrow \infty$

- In the large β_{0}-approximation, the gluon condensate is computed as

That is,

$$
\begin{aligned}
& \left\langle\operatorname{tr}\left(\tilde{F}_{\mu \nu} \tilde{F}_{\mu \nu}\right)\right\rangle \\
& =-\frac{1}{2}\left\langle\left(\partial_{\mu} \tilde{A}_{\nu}^{\ell}-\partial_{\nu} \tilde{A}_{\mu}^{\ell}\right)^{2}\right\rangle-\frac{1}{2}\left\langle\left(\partial_{\mu} \tilde{A}_{\nu}^{m n}-\partial_{\nu} \tilde{A}_{\mu}^{m n}\right)\left(\partial_{\mu} \tilde{A}_{\nu}^{n m}-\partial_{\nu} \tilde{A}_{\mu}^{n m}\right)\right\rangle \\
& =- \\
& -\frac{\lambda}{N} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \pi R} \sum_{p_{3} \in \mathbb{Z} / R} \sum_{\ell=1}^{N-1}\left\{\left[(1-L)^{-1}\right]^{\ell \ell}+2\left[(1-T)^{-1}\right]^{\ell \ell}\right\} \\
& \quad-\frac{\lambda}{N} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \pi R} \sum_{p_{3} \in \mathbb{Z} / R} \sum_{\substack{m \neq n \\
1 \leq m, n \leq N}}\left[(1-L)^{-1}+2(1-T)^{-1}\right]_{p \rightarrow p_{m n}} .
\end{aligned}
$$

- We consider $N \rightarrow \infty$. The parts containing the Bessel functions are then suppressed.

Borel singularity in the gluon condensate

- Perturbative expansion $\left\langle\operatorname{tr}\left(\tilde{F}_{\mu \nu} \tilde{F}_{\mu \nu}\right)\right\rangle \sim \lambda \sum_{k=0}^{\infty} f_{k}\left(\frac{\beta_{0} \lambda}{16 \pi^{2}}\right)^{k}$.
- Contribution from the photon

$$
\left(f_{k}\right)_{\text {photon }}=-3 \int \frac{d^{3} p}{(2 \pi)^{3}} \underbrace{\int \frac{d p_{3}}{2 \pi} \sum_{j=-\infty}^{\infty} e^{i \rho_{3} 2 \pi R j}}_{=1 /(2 \pi R) \sum_{p_{3} \in \mathbb{Z} / R}}\left[\ln \left(\frac{e^{5 / 3} \mu^{2}}{p^{2}}\right)\right]^{k} .
$$

- The Borel transform (q is the UV cutoff)

$$
\begin{aligned}
B(u)_{\text {photon }} & =-3 \sum_{j=-\infty}^{\infty} \int \frac{d^{4} p}{(2 \pi)^{4}} e^{i p_{3} 2 \pi R j}\left(\frac{e^{5 / 3} \mu^{2}}{p^{2}}\right)^{u} \\
& =\frac{3}{16 \pi^{2}}\left(e^{5 / 3} \mu^{2}\right)^{u}\left[\left(q^{2}\right)^{2-u} \frac{1}{u-2}-2\left(\pi^{2} R^{2}\right)^{u-2} \frac{\Gamma(2-u)}{\Gamma(u)} \zeta(4-2 u)\right] \\
& \stackrel{u \sim 3 / 2}{\sim} \frac{3}{16 \pi^{2}}\left(e^{5 / 3} \mu^{2}\right)^{3 / 2} 2\left(\pi^{2} R^{2}\right)^{-1 / 2} \frac{1}{u-3 / 2} .
\end{aligned}
$$

- Photon produces a singularity at $u=3 / 2$, but not $u=2$, similar to $\mathbb{C} P^{N-1}$.

Borel singularity in the gluon condensate

- Contribution of the W-boson,

$$
\left(f_{k}\right)_{W-\text { boson }}=-3 \int \frac{d^{4} p}{(2 \pi)^{4}} \sum_{j=-\infty}^{\infty} e^{i p_{3} 2 \pi R j} \frac{1}{N} \sum_{\substack{m \neq n \\ 1 \leq m, n \leq N}} e^{i(m-n) 2 \pi j / N}\left[\ln \left(\frac{e^{5 / 3} \mu^{2}}{p^{2}}\right)\right]^{k}
$$

- Noting the relation,

$$
\frac{1}{N} \sum_{\substack{m \neq n \\ 1 \leq m, n \leq N}} e^{i(m-n) 2 \pi j / N}= \begin{cases}N-1, & \text { for } j=0 \quad \bmod N, \\ -1, & \text { for } j \neq 0 \quad \bmod N,\end{cases}
$$

we have

$$
\begin{aligned}
\left(f_{k}\right)_{\text {w-boson }}= & -3 \int \frac{d^{4} p}{(2 \pi)^{4}} \sum_{j=-\infty}^{\infty} e^{i p_{3} 2 \pi R N j}[(N-1)-(-1)]\left[\ln \left(\frac{e^{5 / 3} \mu^{2}}{p^{2}}\right)\right]^{k} \\
& -3 \int \frac{d^{4} p}{(2 \pi)^{4}} \sum_{j=-\infty}^{\infty} e^{i p_{3} 2 \pi R j}(-1)\left[\ln \left(\frac{e^{5 / 3} \mu^{2}}{p^{2}}\right)\right]^{k} \Leftarrow \text { cancels photon }
\end{aligned}
$$

Borel singularity in the gluon condensate

- Contribution of the W-boson is thus

$$
\left(f_{k}\right)_{\text {w-boson }}=-3 N \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \pi R N} \sum_{p_{3} \in \mathbb{Z} /(R N)}\left[\ln \left(\frac{e^{5 / 3} \mu^{2}}{p^{2}}\right)\right]^{k}-\left(f_{k}\right)_{\text {photon }}
$$

- S^{1} is de-compactified in $N \rightarrow \infty$! (cf. Eguchi-Kawai, Gross-Kitazawa; Sulejmanpasic (arXiv:1610.04009)) and, for $N \rightarrow \infty$,

$$
\left(f_{k}\right)_{w-\text { boson }}=-3 N \int \frac{d^{4} p}{(2 \pi)^{4}}\left[\ln \left(\frac{e^{5 / 3} \mu^{2}}{p^{2}}\right)\right]^{k}-\left(f_{k}\right)_{\text {photon }}
$$

- Borel transform is the 4D one and

$$
\begin{aligned}
B(u)_{\mathrm{W}-\text { boson }} & =-3 N \int \frac{d^{4} p}{(2 \pi)^{4}}\left(\frac{e^{5 / 3} \mu^{2}}{p^{2}}\right)^{u}-B(u)_{\text {photon }} . \\
& =\frac{3 N}{16 \pi^{2}}\left(e^{5 / 3} \mu^{2}\right)^{u}\left(q^{2}\right)^{2-u} \frac{1}{u-2}-B(u)_{\text {photon }} .
\end{aligned}
$$

Summary

- In 4D QCD(adj.) on $\mathbb{R}^{3} \times S^{1}$, in the large β_{0}-approximation, for $N \rightarrow \infty$, the Borel transform of the gluon condensate is given by

$$
\begin{aligned}
B(u) & =B(u)_{\text {photon }}+B(u)_{\mathrm{w} \text {-boson }} \\
& =\frac{3 N}{16 \pi^{2}}\left(e^{5 / 3} \mu^{2}\right)^{u}\left(q^{2}\right)^{2-u} \frac{1}{u-2} \\
& \stackrel{u}{ } \sim^{2} \frac{3 N}{16 \pi^{2}}\left(e^{5 / 3} \mu^{2}\right)^{2} \frac{1}{u-2} .
\end{aligned}
$$

- The Borel singularity at $u=2$ and this is the same as \mathbb{R}^{4}.
- The situation is completely different from that in $2 \mathrm{D} \mathbb{C} P^{N-1}$.
- For this, the contribution of the W-boson is crucial.
- If you do not like the UV divergence of the gluon condensate, we may consider the gradient flow (Lüscher) version, that is perfectly UV finite and exhibits the same Borel singularity.
- We should investigate how the situation changes as a function of N.
- Yes, we have no unified understanding yet...

