Sign problem and the tempered Lefschetz thimble method

Masafumi Fukuma (Dept Phys, Kyoto Univ)

Dec 4, 2019
 KEK Theory workshop 2019

Based on work with

Nobuyuki Matsumoto (Kyoto Univ) \& Naoya Umeda (PwC)

-- MF and Umeda, "Parallel tempering algorithm for integration over Lefschetz thimbles" [arXiv:1703.00861, PTEP2017(2017)073B01]
-- MF, Matsumoto and Umeda, "Applying the tempered Lefschetz thimble method to the Hubbard model away from half-filling" [arXiv:1906.04243, to appear in PRD]
Also, for the geometrical optimization of tempering algorithms and its application to QG:
-- MF, Matsumoto and Umeda [arXiv:1705.06097, JHEP1712(2017)001], [arXiv:1806.10915, JHEP1811(2018)060] and for the geometry of tempered stochastic matrix models (= AdS BH) :
-- MF and Matsumoto [arXiv:1912. ${ }^{* * * * *] ~} \square$ Matsumoto's poster

1. Introduction

Overview

The numerical sign problem is one of the major obstacles when performing numerical calculations in various fields of physics

Typical examples:
(1) Finite density QCD
(2) Quantum Monte Carlo simulations of quantum statistical systems
(3) Real time QM/QFT

Today, I would like to
-- explain what the sign problem is
-- argue that
[MF-Umeda 1703.00861, MF-Matsumoto-Umeda 2019]
a new algorithm "Tempered Lefschetz thimble method" (TLTM) is a promising method towards solving the sign problem, by exemplifying its effectiveness for:
(2) Quantum Monte Carlo simulations
of strongly correlated electron systems, especially the Hubbard model away from half-filling

Sign problem

Our main concern is to estimate: $\langle\mathcal{O}(x)\rangle_{S} \equiv \frac{\int d x e^{-S(x)} \mathcal{O}(x)}{\int d x e^{-S(x)}}$

$$
\left\{\begin{array}{l}
x=\left(x^{i}\right) \in \mathbb{R}^{N}: \text { dynamical variable (real-valued) } \\
S(x): \text { action, } \mathcal{O}(x): \text { observable }
\end{array}\right.
$$

Markov chain Monte Carlo (MCMC) simulation:
probability distribution function
When $S(x) \in \mathbb{R}$, one can regard $p_{\text {eq }}(x) \equiv e^{-S(x)} / \int d x e^{-S(x)}$ as a PDF:

$$
0 \leq p_{\text {eq }}(x) \leq 1, \quad \int d x p_{\text {eq }}(x)=1
$$

\square Generate a sample $\left\{x^{(k)}\right\}_{k=1, \ldots, N_{\text {conf }}}$ from $p_{\text {eq }}(x)$
$\square\langle\mathcal{O}(x)\rangle \approx \frac{1}{N_{\text {conf }}} \sum_{k=1}^{N_{\text {conf }}} \mathcal{O}\left(x^{(k)}\right)$
Sign problem:
When $S(x)=S_{R}(x)+i S_{I}(x) \in \mathbb{C}$, one cannot regard $e^{-S(x)} / \int d x e^{-S(x)}$ as a PDF
\qquad Reweighting method:

Sign problem

$\underline{\text { Our main concern is to estimate: }}\langle\mathcal{O}(x)\rangle_{S} \equiv \frac{\int d x e^{-S(x)} \mathcal{O}(x)}{\int d x e^{-S(x)}}=\frac{\int d x e^{-S_{R}(x)} e^{-i S_{I}(x)} \mathcal{O}(x)}{\int d x e^{-S_{R}(x)} e^{-i S_{I}(x)}}$

$$
\left\{\begin{array}{l}
x=\left(x^{i}\right) \in \mathbb{R}^{N}: \text { dynamical variable (real-valued) } \\
S(x): \text { action, } \mathcal{O}(x): \text { observable }
\end{array}\right.
$$

Markov chain Monte Carlo (MCMC) simulation:
probability distribution function
When $S(x) \in \mathbb{R}$, one can regard $p_{\text {eq }}(x) \equiv e^{-S(x)} / \int d x e^{-S(x)}$ as a PDF:

$$
0 \leq p_{\text {eq }}(x) \leq 1, \quad \int d x p_{\text {eq }}(x)=1
$$

\square Generate a sample $\left\{x^{(k)}\right\}_{k=1, \ldots, N_{\text {conf }}}$ from $p_{\text {eq }}(x)$
$\Rightarrow\langle\mathcal{O}(x)\rangle \approx \frac{1}{N_{\text {conf }}} \sum_{k=1}^{N_{\text {corf }}} \mathcal{O}\left(x^{(k)}\right)$
Sign problem:
When $S(x)=S_{R}(x)+i S_{I}(x) \in \mathbb{C}$, one cannot regard $e^{-S(x)} / \int d x e^{-S(x)}$ as a PDF
Reweighting method:

Sign problem

$$
\left\{\begin{array}{l}
x=\left(x^{i}\right) \in \mathbb{R}^{N}: \text { dynamical variable (real-valued) } \\
S(x): \text { action, } \mathcal{O}(x): \text { observable }
\end{array}\right.
$$

Markov chain Monte Carlo (MCMC) simulation:
probability distribution function
When $S(x) \in \mathbb{R}$, one can regard $p_{\text {eq }}(x) \equiv e^{-S(x)} / \int d x e^{-S(x)}$ as a PDF:

$$
0 \leq p_{\mathrm{eq}}(x) \leq 1, \int d x p_{\mathrm{eq}}(x)=1
$$

\Rightarrow Generate a sample $\left\{x^{(k)}\right\}_{k=1, \ldots, N_{\text {coff }}}$ from $p_{\text {eq }}(x)$
$\Rightarrow\langle\mathcal{O}(x)\rangle \approx \frac{1}{N_{\text {conf }}} \sum_{k=1}^{N_{\text {coof }}} \mathcal{O}\left(x^{(k)}\right)$
Sign problem:
When $S(x)=S_{R}(x)+i S_{I}(x) \in \mathbb{C}$, one cannot regard $e^{-S(x)} / \int d x e^{-S(x)}$ as a PDF
\Rightarrow Reweighting method: treat $e^{-S_{R}(x)} / \int d x e^{-S_{R}(x)}$ as a PDF

Sign problem

Our main concern is to calculate: $\langle\mathcal{O}(x)\rangle_{S} \equiv \frac{\int d x e^{-S(x)} \mathcal{O}(x)}{\int d x e^{-S(x)}}=\frac{\int d x e^{-S_{R}(x)} e^{-i S_{I}(x)} \mathcal{O}(x)}{\int d x e^{-S_{R}(x)} e^{-i S_{I}(x)}}$

$$
\left\{\begin{array}{l}
x=\left(x^{i}\right) \in \mathbb{R}^{N}: \text { dynamical variable (real-valued) } \\
S(x): \text { action, } \mathcal{O}(x): \text { observable }
\end{array}\right.
$$

Markov chain Monte Carlo (MCMC) simulation:
probability distribution function
When $S(x) \in \mathbb{R}$, one can regard $p_{\text {eq }}(x) \equiv e^{-S(x)} / \int d x e^{-S(x)}$ as a PDF:

$$
0 \leq p_{\text {eq }}(x) \leq 1, \quad \int d x p_{\text {eq }}(x)=1
$$

\square Generate a sample $\left\{x^{(k)}\right\}_{k=1, \ldots, N_{\text {conf }}}$ from $p_{\text {eq }}(x)$
$\Rightarrow\langle\mathcal{O}(x)\rangle \approx \frac{1}{N_{\text {conf }}} \sum_{k=1}^{N_{\text {coof }}} \mathcal{O}\left(x^{(k)}\right)$
Sign problem:
When $S(x)=S_{R}(x)+i S_{I}(x) \in \mathbb{C}$, one cannot regard $e^{-S(x)} / \int d x e^{-S(x)}$ as a PDF
\Rightarrow Reweighting method : treat $e^{-S_{R}(x)} / \int d x e^{-S_{R}(x)}$ as a PDF

$$
\langle\mathcal{O}(x)\rangle_{S} \equiv \frac{\left\langle e^{-i S_{I}(x)} \mathcal{O}(x)\right\rangle_{S_{\mathrm{R}}}}{\left\langle e^{-i S_{\mathrm{I}}(x)}\right\rangle_{S_{\mathrm{R}}}}=\frac{e^{-O(N)}}{e^{-O(N)}}=O(1) \quad(N: \text { DOF })
$$

Sign problem

Our main concern is to calculate: $\langle\mathcal{O}(x)\rangle_{S} \equiv \frac{\int d x e^{-S(x)} \mathcal{O}(x)}{\int d x e^{-S(x)}}=\frac{\int d x e^{-S_{R}(x)} e^{-i S_{I}(x)} \mathcal{O}(x)}{\int d x e^{-S_{R}(x)} e^{-i S_{I}(x)}}$

$$
\left\{\begin{array}{l}
x=\left(x^{i}\right) \in \mathbb{R}^{N}: \text { dynamical variable (real-valued) } \\
S(x): \text { action, } \mathcal{O}(x): \text { observable }
\end{array}\right.
$$

Markov chain Monte Carlo (MCMC) simulation:
probability distribution function
When $S(x) \in \mathbb{R}$, one can regard $p_{\text {eq }}(x) \equiv e^{-S(x)} / \int d x e^{-S(x)}$ as a PDF:

$$
0 \leq p_{\text {eq }}(x) \leq 1, \quad \int d x p_{\text {eq }}(x)=1
$$

\Rightarrow Generate a sample $\left\{x^{(k)}\right\}_{k=1, \ldots, N_{\text {coff }}}$ from $p_{\text {eq }}(x)$
$\Rightarrow\langle\mathcal{O}(x)\rangle \approx \frac{1}{N_{\text {conf }}} \sum_{k=1}^{N_{\text {corf }}} \mathcal{O}\left(x^{(k)}\right)$
Sign problem:
When $S(x)=S_{R}(x)+i S_{I}(x) \in \mathbb{C}$, one cannot regard $e^{-S(x)} / \int d x e^{-S(x)}$ as a PDF
\Rightarrow Reweighting method : treat $e^{-s_{R}(x)} / \int d x e^{-S_{R}(x)}$ as a PDF
$\Rightarrow\langle\mathcal{O}(x)\rangle_{S} \equiv \frac{\left\langle e^{-i S_{I}(x)} \mathcal{O}(x)\right\rangle_{S_{\mathrm{R}}}}{\left\langle e^{-i S_{I}(x)}\right\rangle_{S_{\mathrm{R}}}} \approx \frac{e^{-O(N)} \pm O\left(1 / \sqrt{N_{\text {conf }}}\right)}{e^{-O(N)} \pm O\left(1 / \sqrt{N_{\text {conf }}}\right)} \quad\left(\begin{array}{l}N \text { : DOF } \\ N_{\text {conf }}\end{array}\right.$: sample size $)$

$$
N_{\text {conf }} \simeq e^{O(N)} \text { sign problem! }
$$

Example: Gaussian

Let us consider $\left\{\begin{array}{ll}S(x)=\frac{\beta}{2}(x-i)^{2} \equiv S_{R}(x)+i S_{I}(x) \\ \mathcal{O}(x)=x^{2} & \beta \gg 1\end{array}\binom{S_{R}(x)=\frac{\beta}{2}\left(x^{2}-1\right)}{S_{I}(x)=-\beta x}\right.$

$$
\text { numerically } \approx \frac{\left(\beta^{-1}-1\right) e^{-\beta / 2} \pm O\left(1 / \sqrt{N_{\text {conf }}}\right)}{e^{-\beta / 2} \pm O\left(1 / \sqrt{N_{\text {conf }}}\right)}
$$

Necessary sample size:

$$
1 / \sqrt{N_{\text {conf }}} \lesssim O\left(e^{-\beta / 2}\right) \Leftrightarrow N_{\text {conf }} \gtrsim O\left(e^{\beta}\right)
$$

[Essence]

$$
\operatorname{Re} e^{-i S_{I}(x)} \propto \cos \beta x
$$

In the limit $\beta \rightarrow \infty(\therefore 1 / \beta \ll 1 / \sqrt{\beta})$, the integration becomes highly oscillatory

Approaches to the sign problem

Various approaches:

(1) Complex Langevin method (CLM) [Parisi 1983]
(2) (Generalized) Lefschetz thimble method ((G)LTM)
[Cristoforetti et al. 2012, ...]
[Alexandru et al. 2015, ...]

Advantages/disadvantages:
(1) CLM Pros: fast $\propto O(N) \quad(N: D O F)$

Cons: "wrong convergence problem" [Ambjørn-Yang 1985, Aarts et al. 2011, Nagata-Nishimura-Shimasaki 2016]
(2) LTM Pros: No wrong convergence problem iff only a single thimble is relevant
Cons: Expensive $\propto O\left(N^{3}\right) \quad \longmapsto$ Jacobian determinant
Ergodicity problem if more than one thimble are relevant (wrong convergence de facto)
(2') TLTM (Tempered Lefschetz thimble method)
[MF-Umeda 1703.00861,
MF-Matsumoto-Umeda 1906.04243]
"facilitate transitions among thimbles by tempering the system with the flow time"

Pros: Works well even when multi thimbles are relevant
Cons: Expensive $\propto O\left(N^{3 \sim 4}\right) \Leftarrow$ Jacobian determinant + tempering

Plan

1. Introduction (done)
2. (Generalized) LTM (GLTM)
3. Tempered LTM (TLTM)
4. Applying the TLTM to the Hubbard model

- 1D case
- 2D case

5. Conclusion and outlook

2. (Generalized) Lefschetz thimble method (GLTM)

[Cristoforetti et al. 1205.3996, 1303.7204, 1308.0233]
[Fujii-Honda-Kato-Kikukawa-Komatsu-Sano 1309.4371] [Alexandru et al. 1512.08764]

Lefschetz thimble method (1/2)

[cf. Prof. Dunne's talk]
Complexify the variable: $x=\left(x^{i}\right) \in \mathbb{R}^{N} \Rightarrow z=\left(z^{i}=x^{i}+i y^{i}\right) \in \mathbb{C}^{N}$
Assumption: $\quad e^{-S(z)}, e^{-S(z)} \mathcal{O}(z)$: entire functions over \mathbb{C}^{N}
Cauchy's theorem

Integral does not change under continuous deformations of the integration region from $\Sigma_{0}=\mathbb{R}^{N}$ to $\Sigma \subset \mathbb{C}^{N}$ (with the boundary at infinity $|x| \rightarrow \infty$ kept fixed) :

$$
\langle\mathcal{O}(x)\rangle_{S} \equiv \frac{\int_{\Sigma_{0}} d x e^{-S(x)} \mathcal{O}(x)}{\int_{\Sigma_{0}} d x e^{-S(x)}}=\frac{\int_{\Sigma} d z e^{-S(z)} \mathcal{O}(z)}{\int_{\Sigma} d z e^{-S(z)}}
$$

severe sign problem
sign problem will get much reduced if $\operatorname{ImS}(z)$ is almost constant on Σ

Lefschetz thimble method (2/2)

Prescription:

antiholomorphic gradient flow
$\dot{z}_{t}^{i}=\overline{\partial_{i} S\left(z_{t}\right)}$ with $z_{t=0}^{i}=x^{i}$

Property: $\left[S\left(z_{t}\right)\right]=\partial_{i} S\left(z_{t}\right) \dot{z}_{t}^{i}=\left|\partial_{i} S\left(z_{t}\right)\right|^{2} \geq 0$

$\left[\operatorname{Re} S\left(z_{t}\right)\right]^{\cdot} \geq 0$: real part always increases along the flow $\left(\begin{array}{c}\left.z_{\sigma}: \frac{\text { critical point }}{\left(\partial_{i} S\left(z_{\sigma}\right)=0\right)}\right)\end{array}\right.$ $\left[\operatorname{lm} S\left(z_{t}\right)\right]^{\circ}=0$: imaginary part is kept fixed

In $t \rightarrow \infty, \Sigma_{t}$ approaches a union of Lefschetz thimbles: $\Sigma_{t} \rightarrow \bigcup \mathcal{J}_{\sigma}$ (on each of which $\operatorname{Im} S(z)$ is constant)
Expectation value:

$$
\begin{aligned}
&\langle\mathcal{O}(x)\rangle_{S} \equiv \frac{\int_{\Sigma_{0}} d x e^{-S(x)} \mathcal{O}(x)}{\int_{\Sigma_{0}} d x e^{-S(x)}}=\frac{\int_{\Sigma_{t}} d z_{t} e^{-S\left(z_{t}\right)} \mathcal{O}\left(z_{t}\right)}{\int_{\Sigma_{t}} d z_{t} e^{-S\left(z_{t}\right)}}=\frac{\int_{\Sigma_{0}} d x^{\left(\operatorname{det}\left(\partial z_{t}^{i}(x) / \partial x^{j}\right) e^{-S\left(z_{t}(x)\right)}\right.} \mathcal{O}\left(z_{t}(x)\right)}{\int_{\Sigma_{0}} d x\left(\operatorname{det}\left(\partial z_{t}^{i}(x) / \partial x^{j}\right) e^{-S\left(z_{t}(x)\right)}\right.} \\
&=\frac{\left\langle e^{i \theta_{t}(x)} \mathcal{O}\left(z_{t}(x)\right)\right\rangle_{S_{t}^{\text {eff }}}}{\left\langle e^{i \theta_{t}(x)}\right\rangle_{s_{t} \text { eff }}} \\
& \equiv e^{- \text {Stf }_{t}^{\text {eff }}(x)} e^{i \theta_{t}(x)}
\end{aligned}
$$

Example: Gaussian

Gradient flow: $\left[S(z)=(\beta / 2)(z-i)^{2}\right]$

$$
\begin{aligned}
& \text { Sradient flow: }\left[S(z)=(\beta / 2)(z-i)^{2}\right] \\
& \dot{z}_{t}=\dot{x}_{t}+i \dot{y}_{t}=\overline{S^{\prime}\left(z_{t}\right)} \Leftrightarrow\left\{\begin{array} { l }
{ \dot { x } _ { t } = \beta x } \\
{ \dot { y } = - \beta (y _ { t } - 1) }
\end{array} \text { with } \left\{\begin{array}{l}
x_{t=0}=x \\
y_{t=0}=0
\end{array}\right.\right. \\
& \square\left\{\begin{array}{l}
z_{t}(x)=x e^{\beta t}+i\left(1-e^{-\beta t}\right) \\
J_{t}(x)=\frac{d z_{t}(x)}{d x}=e^{\beta t}
\end{array}\right. \\
& \square\left\{\begin{array}{l}
\text { exponential growth } \\
\begin{array}{l}
S_{t}^{\text {eff }}(x)=\frac{1}{2} \beta e^{2 \beta t}\left(x^{2}-e^{-4 \beta t}\right)-\beta t \\
\theta_{t}(x)=\beta x
\end{array}
\end{array}\left(J_{t}(x) e^{-S\left(z_{t}(x)\right)}=e^{-S_{t}^{\text {eff }}(x)} e^{i \theta_{t}(x)}\right)\right.
\end{aligned}
$$

Taking a large T s.t. $\mathrm{e}^{-\beta T} \ll \frac{1}{\sqrt{\beta}}$, we can numerically estimate:

$$
\begin{aligned}
\left\langle x^{2}\right\rangle_{S} & =\frac{\left\langle e^{i \theta_{T}(x)} z_{T}^{2}(x)\right\rangle_{S_{T}^{e f f}}}{\left\langle e^{i \theta_{T}(x)}\right\rangle_{T}} \sqrt{s_{T}^{f}} \\
& =\frac{e^{-(\beta / 2) e^{-2 \beta T}}\left(\beta^{-1}-1\right)}{e^{-(\beta / 2) e^{-2 \beta T}}}=\frac{O(1)}{O(1)}
\end{aligned}
$$

(no small numbers appear!)
NB. Logarithmic increase is enough:

$$
T \sim O(\log \beta)(=O(\log N))
$$

Multimodal problem and Generalized LTM (1/2)

Flow time t needs to be large enough to solve the sign problem
However, this introduces a new problem "ergodicity (multimodal) problem"

Dilemma between the sign problem and the ergodicity problem

Multimodal problem and Generalized LTM (2/2)

Proposal in Generalized LTM: [Alexandru-Basar-Bedaque-Ridgway-Warrington 1512.08764]
Choose an intermediate value of T s.t. it is large enough for the sign problem but at the same time is not too large for the ergodicity (multimodal) problem

flow time $(=T)$	small	medium	large
sign problem	NG	\triangle	OK
ergodicity problem	OK	\triangle	NG

However, the existence of such T is not obvious a priori
Even when it exists,
 a very fine tuning will be needed

Tempered LTM:

[MF-Umeda 1703.00861]
(cf. [Alexandru-Basar-Bedaque-Warrington 1703.02414])

Implement a tempering method by using the flow time t as a dynamical variable

flow time $(=T)$	small	medium	large
sign problem	NG	OK	OK
ergodicity problem	OK	OK	OK

3. Tempered Lefschetz thimble method (TLTM)
[MF-Umeda 1703.00861]
[MF-Matsumoto-Umeda 1906.04243]

Suppose that the action $S(x ; \beta)$ gives a multimodal distribution for the value of β in our main concern (e.g. $S(x ; \beta)=\beta V(x)$ with $\beta \gg 1$)

It often happens that multimodality disappears if we take a different value of β (e.g. for $\beta \ll 1$)

In the tempering method, we extend the config space from $\{x\}$ to $\{(x, \beta)\}$. Then, transitions between two modes become easy by passing through configs with smaller β

Tempered LTM (1/3)

Algorithm of TLTM

(1) Introduce copies of config space labeled by a finite set of flow times

$$
\mathcal{A}=\left\{t_{a}\right\}(a=0,1, \ldots, A) \quad\left(t_{0}=0<t_{1}<t_{2}<\cdots<t_{A}=T\right),
$$

and construct a Markov chain that drives the enlarged system to global equilibrium

Tempered LTM (1/3)

Algorithm of TLTM

(1) Introduce copies of config space labeled by a finite set of flow times

$$
\mathcal{A}=\left\{t_{a}\right\}(a=0,1, \ldots, A) \quad\left(t_{0}=0<t_{1}<t_{2}<\cdots<t_{A}=T\right),
$$

and construct a Markov chain that drives the enlarged system to global equilibrium

Tempered LTM (2/3)

Algorithm of TLTM

(2) After the enlarged system is relaxed to global equilibrium, evaluate the expectation value by using the subsample at $t_{A}=T$

Tempered LTM (2/3)

Algorithm of TLTM

(2) After the enlarged system is relaxed to global equilibrium, evaluate the expectation value by using the subsample at $t_{A}=T$
$\left(w_{a}:\right.$ prob wt factor of replica $\left.a\right)$

$\underline{N B}$: various tempering methods $(\mathcal{M} \equiv\{x\}$: original config space $)$

- simulated tempering : enlarged system
- parallel tempering $\underset{\text { (replica exchange MCMC) }}{\text { : enlarged system }}$ [Swendsen-Wang 1986, Geyer 1991, $\left.\Longleftrightarrow \mathcal{M} \times \mathcal{A}=\left\{\left(x, t_{a}\right)\right\} \quad \triangleq \begin{array}{l}\text { to detemine } \\ \text { the weights } w_{a}\end{array}\right]$ Nemoto-Hukushima 1996]

Tempered LTM (2/3)

Algorithm of TLTM
(2) After the enlarged system is relaxed to global equilibrium, evaluate the expectation value by using the subsample at $t_{A}=T$
$\left(w_{a}:\right.$ prob wt factor of replica $\left.a\right)$

NB: various tempering methods ($\mathcal{M} \equiv\{x\}$: original config space)

- simulated tempering : enlarged system
[Marinari-Parisi 1992]
- parallel tempering
(replica exchange MCMC) [Swendsen-Wang 1986, Geyer 1991,
 Nemoto-Hukushima 1996]

Tempered LTM (3/3)

Important points in TLTM:

(1) NO "tiny overlap problem" in TLTM

Distribution functions have peaks at the same positions x_{σ} for varying tempering parameter (which is t in our case)

\square
We can expect significant overlap between adjacent replicas!
(2) The growth of computational cost due to the tempering can be compensated by the increase of parallel processes

Example: $(0+1)$-dim Massive Thirring model $(1 / 3)$

Lorentzian action (dim reduction of ($1+1$)D model):
[Pawlowski-Zielinski 1302.1622, 1402.6042,

$$
S_{M}=\int d t\left[i \bar{\psi}^{0} \partial_{0} \psi-m \bar{\psi} \psi-\frac{g^{2}}{2}\left(\bar{\psi} \gamma^{0} \psi\right)^{2}\right] \quad \begin{gathered}
\text { Fujii-Kamata-Kikukawa } \\
\left(\left(\gamma^{0}\right)^{2}=1_{2}, \quad \gamma^{0 \dagger}=\gamma^{0}\right)
\end{gathered}
$$

bosonization + discretization

Grand partition function $Z_{\beta, \mu}=\operatorname{tr} \mathrm{e}^{-\beta(H-\mu Q)}$:

$$
Z_{\beta, \mu}=\int_{\mathrm{PBC}}(d \phi) e^{-S(\phi)}
$$

$$
\text { with }\left\{\begin{array}{c}
(d \phi)=\prod_{n=1}^{N} \frac{d \phi_{n}}{2 \pi}, \quad e^{-S(\phi)}=\operatorname{det} D(\phi) \exp \left[\frac{-1}{2 g^{2}} \sum_{n=1}^{N}\left(1-\cos \phi_{n}\right)\right] \\
D_{n n^{\prime}}(\phi)=\frac{1}{2}\left(e^{i \phi_{n}+\mu} \delta_{n+1, n^{\prime}}-e^{-\left(i \phi_{n}+\mu\right)} \delta_{n-1, n^{\prime}}-e^{i \phi_{N}+\mu} \delta_{n, N} \delta_{n^{\prime}, 1}+e^{-\left(i \phi_{N}+\mu\right)} \delta_{n, 1} \delta_{n^{\prime}, N}\right)+m \delta_{n, n^{\prime}}
\end{array}\right.
$$

One can show $[\operatorname{det} D(\phi ; \mu)]^{*}=\operatorname{det} D(\phi ;-\mu)$ (thus, $\operatorname{det} D \notin \mathbb{R}$ for $\mu \in \mathbb{R}$)
Sign problem will arise when N is very large

Example: $(0+1)$-dim Massive Thirring model $(2 / 3)$

Chiral condensate $\langle\bar{\chi} \chi\rangle$

[MF-Umeda 1703.00861]

$$
T=2 \text { (w/o temp) }
$$

deviate from exact values
due to multimodality (see below)

Confirmation of the resolution of multimodality

multiple thimbles (i.e. config space is well explored)

Example: ($0+1$)-dim Massive Thirring model $(3 / 3)$

Confirmation of the resolution of sign problem

$$
\left(\langle\mathcal{O}(\phi)\rangle=\frac{\left\langle e^{i \theta_{T}(\phi)} \mathcal{O}(\phi)\right\rangle_{s_{e_{f}^{f f}}}}{\left\langle e^{i \theta_{T}(\phi)}\right\rangle_{S_{T}^{e f t}}}\right)
$$

sign average

$$
\begin{gathered}
\left|\left\langle e^{i \theta_{T}(\phi)}\right\rangle_{S_{T}^{e f f}}\right| \sim\left|\left\langle e^{-i S_{I}\left(z_{T}(\phi)\right)}\right\rangle_{S_{T}^{\text {eff }}}\right| \\
1.0
\end{gathered}
$$

We actually can go further...

[MF-Matsumoto-Umeda 1906.04243]
Consider the estimates of $\langle\mathcal{O}\rangle_{S}$ at various flow times t_{a} :

Here the estimation on the RHS is made by using the subsample at t_{a} :

We actually can go further

[MF-Matsumoto-Umeda 1906.04243]
Consider the estimates of $\langle\mathcal{O}\rangle_{s}$ at various flow times t_{a} :

The LHS must be independent of a due to Cauchy's theorem

The RHS must be the same for all a's within the statistical error margin if the system is in global equilibrium and the sample size is large enough

This gives a method with a criterion for precise estimation in the TLTM!

4. Applying the TLTM to the Hubbard model
[MF-Matsumoto-Umeda 1906.04243]

Hubbard model (1/2)

Hubbard model [Hubbard 1963]

modeling NR electrons in a solid

- $c_{\mathrm{x}, \sigma}^{\dagger}, c_{\mathrm{x}, \sigma}$: creation/anihilation op of an electron

$$
\text { on site } \mathbf{x} \text { with spin } \sigma(=\uparrow, \downarrow)
$$

- Hamiltonian

$$
\begin{aligned}
H= & -\kappa \sum_{\langle\mathbf{x}, \mathbf{y}\rangle} \sum_{\sigma} c_{\mathbf{x}, \sigma}^{\dagger} c_{\mathbf{y}, \sigma}-\mu \sum_{\mathbf{x}}\left(n_{\mathbf{x}, \uparrow}+n_{\mathbf{x}, \downarrow}\right)+U \sum_{\mathbf{x}} n_{\mathbf{x}, \uparrow} n_{\mathbf{x}, \downarrow} \\
& \left\{\begin{array}{l}
n_{\mathbf{x}, \sigma} \equiv c_{\mathbf{x}, \sigma}^{\dagger} c_{\mathbf{x}, \sigma} \\
\kappa(>0): \text { hopping parameter } \\
\mu: \text { chemical potential } \\
U(>0): \text { strength of on-site replusive potential }
\end{array}\right.
\end{aligned}
$$

bipartite lattice ($N_{s}: \#$ of sites)

$$
n_{\mathrm{x}, \sigma} \rightarrow n_{\mathrm{x}, \sigma}-1 / 2 \text { s.t. } \mu=0 \Leftrightarrow \text { half-filling } \sum_{\sigma=\uparrow, \downarrow}\left\langle n_{\mathrm{x}, \sigma}-1 / 2\right\rangle=0
$$

$$
H=\underbrace{-\kappa \sum_{\mathbf{x}, \mathbf{y}} \sum_{\sigma} K_{\mathbf{x y}} c_{\mathbf{x}, \sigma}^{\dagger} c_{\mathbf{y}, \sigma}-\mu_{\mathbf{x}}\left(n_{\mathbf{x}, \uparrow}+n_{\mathbf{x}, \downarrow}-1\right)}_{H_{1}}+\underbrace{U \sum_{\mathbf{x}}\left(n_{\mathbf{x}, \uparrow}-\frac{1}{2}\right)\left(n_{\mathbf{x}, \downarrow}-\frac{1}{2}\right)}_{H_{2}}
$$

Hubbard model (2/2)

- Grand partition function (continuous imaginary time) : $Z_{\beta, \mu}^{\text {cont }}=\operatorname{tr} e^{-\beta H}$
- Quantum Monte Carlo

$$
e^{-\beta H}=e^{-\beta\left(H_{1}+H_{2}\right)}=\left(e^{-\epsilon\left(H_{1}+H_{2}\right.}\right)^{N_{\tau}} \cong\left(e^{-\epsilon H_{1}} e^{-\epsilon H_{2}}\right)^{N_{\tau}} \quad\left(\beta=N_{\tau} \epsilon\right)
$$

\Rightarrow Transform $e^{-\epsilon H_{2}}=\prod_{\mathbf{x}} e^{-\epsilon U\left(n_{\mathrm{x}, \uparrow}-1 / 2\right)\left(n_{\mathrm{x}, \downarrow}-1 / 2\right)}$ to a fermion bilinear using a boson ϕ

$$
\left.\Rightarrow Z_{\beta, \mu}=\int[d \phi] e^{-S\left[\phi_{\ell, \mathbf{x}}\right]} \equiv \int \prod_{\ell=1}^{N_{\tau}} \prod_{\mathbf{x}} d \phi_{\ell, \mathbf{x}} e^{-(1 / 2) \sum_{\ell, \mathbf{x}} \phi_{\ell, \mathbf{x}}{ }^{2}} \operatorname{det} M_{\uparrow}[\phi] \operatorname{det} M_{\downarrow}[\phi]\right] \text { }
$$

This gives complex actions for non half-filling ($\mu \neq 0$)
(NB: For half-filling ($\mu=0$)
$\operatorname{det} M_{\uparrow}[\phi] \operatorname{det} M_{\downarrow}[\phi]=\left|\operatorname{det} M_{\uparrow}[\phi]\right|^{2} \geq 0$
\Rightarrow No sign problem
We apply the Tempered LTM to this system
[MF-Matsumoto-Umeda 1906.04243] $\binom{x=\left(x^{i}\right)=\left(\phi_{\ell, \mathrm{x}}\right) \in \mathbb{R}^{N}}{i=1, \ldots, N\left(N=N_{\tau} N_{s}\right)}$

Results for 1D lattice (1/3)

imaginary time : 2 steps $\left(N_{\tau}=2\right)$ $\beta \kappa=1, \quad \beta U=16, \quad$ max flow time $T=0.4$ sample size: 5,000

$$
\text { number density } n=\frac{1}{N_{s}} \sum_{x}\left(n_{x, \uparrow}+n_{x, \downarrow}-1\right)
$$

Results for 1D lattice (1/3)

imaginary time : 2 steps $\left(N_{\tau}=2\right)$ $\beta \kappa=1, \quad \beta U=16, \quad$ max flow time $T=0.4$ sample size: 5,000

$$
\text { number density } n=\frac{1}{N_{s}} \sum_{x}\left(n_{x, \uparrow}+n_{x, \downarrow}-1\right)
$$

Results for 1D lattice (2/3)

[MF-Matsumoto-Umeda 2019]
Distribution of flowed configs at flow time $T=0.4$ (projected on a plane)

Histogram of $\operatorname{ImS}(z) / \pi$

reweighting

distributing uniformly from $-\pi$ to $+\pi$
severe sign problem

w/o temp
w/ temp

peaked at a single angle $\sim 0.8 \pi$ due to the trap to a single thimble (errors become small
because the thimble is well sampled)

Reẑ

Results for 1D lattice (3/3)

sign average $\quad\left(\langle\mathcal{O}(x)\rangle=\frac{\left\langle e^{i \theta_{T}(x)} \mathcal{O}\left(z_{T}(x)\right)\right\rangle_{s_{T}^{\text {eff }}}}{\left\langle e^{i \theta_{T}(x)}\right\rangle_{S_{T}^{\text {eff }}}}\right)$

When only a single (or very few) thimble(s) is sampled, the sign average can become larger than the correct sampling due to the absence of phase mixtures among thimbles
\square It is generally dangerous to regard the sign average as an index of the "resolution of the sign problem"

Results for 2D lattice (1/5)

[MF-Matsumoto-Umeda 1906.04243]
$\left[\begin{array}{l}\text { imaginary time : } 5 \text { steps }\left(N_{\tau}=5\right) \\ \text { spatial lattice: 2D periodic lattice with } N_{s}=2 \times 2 \\ \beta \kappa=3 \beta U=13, \quad \text { max flow time } T=0.5 \\ \text { sample size: 5,000~25,000 depending on } \beta \mu\end{array}\right] \quad\left(\langle n\rangle=\frac{\left\langle e^{i \theta_{t_{a}}(x)} n\left(z_{t_{a}}(x)\right)\right\rangle_{S_{t_{a}}^{\text {eff }}}}{\left\langle e^{i \theta_{t_{a}}(x)}\right\rangle_{S_{t_{a}}^{\text {eff }}}} \approx \bar{n}_{a}\right)$

Example: $\beta \mu=5$

(1) discarded

discarded

Results for 2D lattice (2/5)

Results for 2D lattice (2/5)

Results for 2D lattice (3/5)

Distribution of flowed configs at flow time $T=0.5(\beta \mu=5)$ (projected on a plane)

distributed widely over many thimbles

distributed over only
a small number of thimbles

Results for 2D lattice (4/5)

Histogram of $\theta_{t_{a}} \in[-\pi, \pi)$
[MF-Matsumoto-Umeda 1906.04243]

w/ temp

$\mathrm{w} /$ temprainn $a=0^{n-0}$	${ }^{a=1} \quad a=1$	${ }^{a=2} \quad a=2$	${ }^{a=3} \quad a=3$	${ }^{a=4} \quad a=4$	${ }^{a=5} \quad a=5$

many peaks (may not be so obvious because there are so many peaks and the peaks are broadened by Jacobian)

w/o temp

$$
\begin{array}{llllllll}
\text { w/o tem } a=0=0 & a=1 & a=1 & a=2 & a=2 & { }^{a=3} a=3 & a=4 & a=4
\end{array} \quad{ }^{a=5} \quad a=5
$$

$a=6 \quad a=6$
${ }^{a=7} \quad a=7$
${ }^{a=8} \quad a=8$

$$
{ }^{a=9} a=9
$$

$$
{ }^{a=10} a=10
$$

$$
a=11 \quad a=11
$$

unimodal distribution

Results for 2D lattice (5/5)

$\frac{\text { sign average }}{\mid\left\langle e^{i \theta_{T}(x)}\right\rangle_{S_{T}^{\text {eff }}}} \left\lvert\,\left(\langle\mathcal{O}(x)\rangle=\frac{\left\langle e^{i \theta_{T}(x)} \mathcal{O}\left(z_{T}(x)\right)\right\rangle_{S_{T}^{\text {eff }}}}{\left\langle e^{i \theta_{T}(x)}\right\rangle_{S_{T}^{\text {eff }}}}\right)\right.$

When only a single (or very few) thimble(s) is sampled, the sign average can become larger than that in the correct sampling due to the absence of phase mixtures among thimbles

It is generally dangerous to regard the sign average as an index of the "resolution of the sign problem"

Comment on the Generalized LTM

$\left[\begin{array}{l}\text { imaginary time : } 5 \text { steps }\left(N_{\tau}=5\right) \\ \text { spatial lattice: 2D periodic lattice with } N_{s}=2 \times 2 \\ \beta \kappa=3, \beta U=13,0 \leq T \leq 0.4(\Leftrightarrow 0 \leq a \leq 10) \\ \text { sample size: } 5,000 \sim 25,000 \text { depending on } \beta \mu\end{array}\right]$

$$
\left(\langle n\rangle=\frac{\left\langle e^{i \theta_{t_{a}}(x)} n\left(z_{t_{a}}(x)\right)\right\rangle_{S_{t_{a}}^{\text {eff }}}}{\left\langle e^{i \theta_{t_{a}}(x)}\right\rangle_{S_{t_{a}}^{\text {eff }}}} \approx \bar{n}_{a}\right)
$$

Example: $\beta \mu=5$

large stat errors (due to sign problem) (due to multimodality)

It is a hard task to find an intermediate flow time that solves both sign problem and multimodality

5. Some on-going work

[MF-Matsumoto-Umeda, in preparation]

Some on-going work (1/2)

Implementation of HMC on the TLTM:

- We implemented the HMC algorithm for transitions at each replica [cf. Fujii-Honda-Kato-Kikukawa-Komatsu-Sano 2013, Alexandru in Lattice 2019]
(our crucial improvement: handling of configs near det zeros + tempering)
- Computational cost gets much reduced with short autocorrelation times (at least a few times faster than the Metropolis even for small N)
- We no longer need to tune parameters that required long-term test runs (such as determining the variance of the proposal distribution)
- Good features in the TLTM are all preserved

Some on-going work (2/2)

Application of TLTM to Stephanov models (chiral matrix models):

$$
\text { Dirac operator } D \Rightarrow 2 N \times 2 N \text { dense complex matrix } D=\left(\begin{array}{cc}
m 1_{N} & * \\
* & m 1_{N}
\end{array}\right)
$$

- It has been known that the CLM does not work for this model even for small N
(Gauge cooling is not applicable for this model)
- Multi Lefschetz thimbles again become relevant around critical points
- GLTM gives wrong results or large ambiguities for some parameter region
- TLTM seems to work for all the region of parameters (T, μ, m) producing numerical results that agree with exact values ($N=4,8,12, \ldots$)

6. Conclusion and outlook

Conclusion and outlook

What we have done:

- We proposed the tempered Lefschetz thimble method (TLTM) as a versatile method towards solving the numerical sign problem
- We further developed it and found an algorithm for a precise estimation with a criterion ensuring global equilibrium and the sample size (the key: $\overline{\mathcal{O}}_{a}$ should not depend on replica a due to Cauchy's theorem)
- GLTM can easily give incorrect results or large ambiguities
- TLTM works for the Hubbard model and gives correct results, avoiding both the sign and ergodicity problems simultaneously
Outlook: [mF-Matsumoto, work in progress]
- Investigate the Hubbard model of larger temporal and spatial sizes to understand the phase structure [computational cost: $O\left(N^{3-4}\right)$]
- More generally, apply the TLTM to the following three typical subjects:
(1) Finite density QCD
(2) Quantum Monte Carlo (incl. the Hubbard model)
(3) Real time QM/QFT
- Develop a more efficient algorithm with less computational cost (e.g. HMC at each replica [MF-Matsumoto-Umeda, in prep])

Thank you.

