Contribution ID: 36 Type: not specified

Infrared renormalon in the supersymmetric $\mathbb{C}P^{N-1}$ model on $\mathbb{R}\times S^1$

Thursday, 5 December 2019 15:00 (3 hours)

In the leading order of the large N approximation, we study the renormalon ambiguity in the gluon (or more appropriately, photon) condensate in the two-dimensional supersymmetric $\mathbb{C}P^{N-1}$ model on $\mathbb{R}\times S^1$ with the \mathbb{Z}_N twisted boundary conditions. In our large N limit, the combination ΛR , where Λ is the dynamical scale and R is the S^1 radius, is kept fixed (we set $\Lambda R\ll 1$ so that the perturbative expansion with respect to the coupling constant at the mass scale 1/R is meaningful). We extract the perturbative part from the large N expression of the gluon condensate and obtain the corresponding Borel transform B(u). For $\mathbb{R}\times S^1$, we find that the Borel singularity at u=2, which exists in the system on the un-compactified \mathbb{R}^2 and corresponds to twice the minimal bion action, disappears. Instead, an unfamiliar renormalon singularity emerges at u=3/2 for the compactified space $\mathbb{R}\times S^1$. The semi-classical interpretation of this peculiar singularity is not clear because u=3/2 is not dividable by the minimal bion action. It appears that our observation for the system on $\mathbb{R}\times S^1$ prompts reconsideration on the semi-classical bion picture of the infrared renormalon.

Presenter: Mr MORIKAWA, Okuto **Session Classification:** Poster