The T2K Neutrino Flux Predictions

Tomislav Vladisavljevic

University of Oxford & Kavli IPMU

On behalf of the T2K Collaboration
The T2K Experiment

- T2K (Tokai-to-Kamioka): Long-baseline neutrino oscillation experiment located in Japan
- Measures ν_μ ($\bar{\nu}_\mu$) disappearance and ν_e ($\bar{\nu}_e$) appearance in ν ($\bar{\nu}$) mode
- Neutrino flux uncertainty affects the oscillation analysis through the far detector flux prediction
- Precise knowledge of the neutrino flux is also vital for T2K ν cross-section measurements

\[
N_{\nu_e}^{SK} = P_{\nu_\mu \rightarrow \nu_e} \times \Phi_{\nu_\mu}^{SK} \times \sigma_{\nu_e}^{SK}
\]

Observed Number of Events

Far Detector (Super-Kamiokande)
T2K Neutrino Production Beamline

- 30 GeV (kinetic energy) protons striking the 90 cm long T2K graphite target
- Hadronic cascade is created (chain of hadronic interactions inside the target)
- 3 magnetic horns used to focus pions and kaons from the cascade
- In-flight pion and kaon decays inside the decay volume (~96 m)

- Hadronic interactions not only with the graphite target, but also the horns (Al), decay volume walls (Fe), decay volume itself (He) etc.
- Stable beam operation achieved at maximum power of 470 kW
The T2K Off-Axis Neutrino Flux

- SK and ND280 are placed at 2.5° off-axis angle with respect to the primary proton beam direction
- On-axis near detector (INGRID) used to monitor beam stability and direction
- Off-axis beam makes the ν_μ flux more narrow and peaked around the energies needed for observing the first oscillation maximum at SK (295 km baseline)
- High energy background gets reduced
The T2K Neutrino Flux Prediction

- Understanding the ν_e ($\bar{\nu}_e$) background is important for the $\nu_\mu \rightarrow \nu_e$ ($\bar{\nu}_\mu \rightarrow \bar{\nu}_e$) appearance analysis.
- Wrong sign contamination is greater in $\bar{\nu}$ mode flux.

Neutrino Mode Flux at SK

- ν_μ, ν_e, $\bar{\nu}_\mu$, $\bar{\nu}_e$

2.3% $\bar{\nu}_\mu$ & 0.4% ν_e (for $E_\nu \sim 0.6$ GeV)

Antineutrino Mode Flux at SK

- ν_μ, ν_e, $\bar{\nu}_\mu$, $\bar{\nu}_e$

3.2% ν_μ & 0.4% $\bar{\nu}_e$ (for $E_\nu \sim 0.6$ GeV)
Understanding The T2K Neutrino Flux

- Neutrino production dominated by pion (and muon) decays at low energies, and kaon decays at high energies
- Uncertainty on the hadron production models limits the neutrino flux uncertainty
- Problem: Available models cannot describe the existing data
- Solution: Constrain model predictions with external hadron production data!

Neutrino Ancestry (Parents)

Main ν-producing channels

<table>
<thead>
<tr>
<th>Decay Products</th>
<th>Branching Ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^+ \rightarrow \mu^+\nu_\mu$</td>
<td>99.9877</td>
</tr>
<tr>
<td>$\pi^+ \rightarrow e^+\nu_e$</td>
<td>1.23×10^{-4}</td>
</tr>
<tr>
<td>$K^+ \rightarrow \mu^+\nu_\mu$</td>
<td>63.55</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^0\mu^+\nu_\mu$</td>
<td>3.353</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^0\nu_e$</td>
<td>5.07</td>
</tr>
<tr>
<td>$K_L^0 \rightarrow \pi^-\mu^+\nu_\mu$</td>
<td>27.04</td>
</tr>
<tr>
<td>$K_L^0 \rightarrow \pi^-\nu_e$</td>
<td>40.55</td>
</tr>
<tr>
<td>$\mu^+ \rightarrow e^+\bar{\nu}_\mu\nu_e$</td>
<td>100</td>
</tr>
</tbody>
</table>
NA61/SHINE Experimental Setup

- Multi-purpose hadron production experiment based in CERN (effectively a large spectrometer)
- Different targets can be inserted (two target configurations used for T2K, thin-target and replica-target)
- Triggering on incoming particle type and energy
- 5 time projection chambers (TPCs) combined with magnets used for particle tracking
- Time-of-flight (ToF) and energy-loss analysis employed for outgoing PID
Phase Space Coverage Of NA61 Thin-Target Data (2007 & 2009)

- Thin-target: 2 cm thick graphite
- Good coverage of the phase space relevant for the T2K neutrino flux prediction

NA61 2007 thin-target dataset
arXiv:1102.0983
arXiv:1112.0150

NA61 2009 thin-target dataset
arXiv:1510.02703

Proton beam
2 cm

\(\pi^\pm, \ldots \)
NA61 2009 Thin-Target Data Currently Used by T2K

- Part of the NA61 2009 thin-target data ([arXiv:1510.02703](https://arxiv.org/abs/1510.02703))

\[\pi^+ \text{ multiplicities} \quad \pi^- \text{ multiplicities} \]
The T2K Neutrino Flux Simulation

FLUKA2011.2c ➔ GEANT3+GCALOR ➔ FLUX REWEIGHTING

- Modelling hadronic interactions inside the graphite target
- T2K beam profile measurements used as an input for running FLUKA

- FLUKA output used as an input for this step
- Propagates particles exiting from the target through the horns and the decay volume
- Detailed knowledge of the secondary beamline is needed
- Out-of-target interactions are modelled using GCALOR

- Constraining the hadron production model with available external hadron production data
- Kinematic coverage of external data is extended by using parametrizations obtained from fits to data
- Scaling applied to account for interactions on different target nuclei and to cover a wider range of centre-of-mass energies
Flux Reweighting Procedure

- A weight is applied to the neutrino yield based on its history (hadronic ancestry cascade)
- For every hadronic interaction in the cascade, two distinct (data/simulation) weights are applied

- Interaction Length Weight (corrects the yield based on the length travelled by the hadron through different materials before interacting)

\[
\text{weight}(x) = \frac{\sigma_{\text{data}}}{\sigma_{\text{MC}}} e^{-\rho(\sigma_{\text{data}} - \sigma_{\text{MC}})x}
\]

- Multiplicity Weight (corrects the yield based on the momentum and direction of the outgoing hadron produced in the interaction)

\[
\text{weight}(p, \theta) = \frac{\left[\frac{d^2n(p, \theta)}{dpd\theta} \right]_{\text{data}}}{\left[\frac{d^2n(p, \theta)}{dpd\theta} \right]_{\text{MC}}}
\]
Effect Of Flux Reweighting On The Flux Prediction

- The reweighting procedure changes the nominal neutrino flux prediction
- The weight assigned to every neutrino event is given by the product of interaction length and multiplicity weights for every interaction in the hadronic cascade

νμ at SK (ν-mode)

- **νμ at SK (ν-mode)**
- **νμ at SK (ν-mode)**

T2K PRELIMINARY
The total uncertainty on the neutrino flux is still dominated by our limited understanding of hadronic interactions inside the long graphite target.

- Thin-target data directly constrains primary $p + C$ interactions inside the target ($\sim 60\%$).
- Expect a further reduction of uncertainties with NA61 2009 replica-target data: directly constrains both primary ($\sim 60\%$) and secondary ($\sim 30\%$) interactions inside the target.
T2K Flux Prediction Uncertainties Separated Into Different Contributions

SK: Positive Focussing (ν) Mode, ν_μ

- Mult. Error
- Pion Rescatter Error
- Nucl. Error
- Int. Length Error
- Horn Alignment
- Target Alignment

SK: Negative Focussing ($\bar{\nu}$) Mode, $\bar{\nu}_\mu$

- Mult. Error
- Pion Rescatter Error
- Nucl. Error
- Int. Length Error
- 13av2 Error

Non-Hadronic Contribution

Hadronic Interaction Contribution
NA61 also collected data with an exact replica of the T2K target.

Incorporating the **NA61 2009 replica-target data** (only π^\pm multiplicity) into the flux reweighting procedure.

Replica-target data is additionally binned in the longitudinal (z) coordinate of the outgoing hadron exiting position, besides the standard (p, θ) bins.

This dataset is expected to constrain up to 90% of hadronic interactions.

T2K Neutrino Flux Prediction: Where next?

Part of NA61 2009 Replica Target Data for π^+

Exiting z-position

Proton beam

18 cm

90 cm

π^\pm

\bar{p}

θ

NA61 Data Taking Periods for T2K

<table>
<thead>
<tr>
<th>Beam+target</th>
<th>Mom (GeV/c)</th>
<th>year</th>
<th>Data</th>
<th>POT ($\times 10^6$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p+C</td>
<td>31</td>
<td>2007</td>
<td>π^+, π^-, K^+</td>
<td>0.7</td>
</tr>
<tr>
<td>p+C</td>
<td>31</td>
<td>2009</td>
<td>$\pi^+, \pi^-, K^+, K^-, K_S^0, p$</td>
<td>5.4</td>
</tr>
<tr>
<td>p+T2K RT</td>
<td>31</td>
<td>2007</td>
<td>π^+, π^-</td>
<td>0.2</td>
</tr>
<tr>
<td>p+T2K RT</td>
<td>31</td>
<td>2009</td>
<td>π^+, π^-</td>
<td>4</td>
</tr>
<tr>
<td>p+T2K RT</td>
<td>31</td>
<td>2010</td>
<td>still to be released</td>
<td>10</td>
</tr>
</tbody>
</table>

NA61 2009 replica-target dataset

arXiv:1603.06774
Replica-target reweighting corrects only the outgoing rate for charged pions exiting the T2K target (no reweighting is applied for interactions inside the target, unless the exiting particle is different from a pion, in which case thin-target reweighting is applied):

\[\text{total weight} = \text{weight}(p, \theta, z_3) \]

NA61 replica-target data favours a lower value for the proton production cross section compared to the thin-target data.
Conclusion

- Current uncertainty on the T2K neutrino flux prediction is ~9% at peak T2K neutrino energy

- Flux reweighting is based on the NA61 2009 thin-target data

- NA61 replica-target data directly constrains ~30% more hadronic interactions than thin-target data

- Expecting to reduce T2K flux uncertainties at peak neutrino energy to ~5% level with NA61 2009 replica-target data (dataset consists of exiting π^{\pm} rates)

- Analysis of NA61 2010 replica-target data is ongoing, NA61 collaboration expects to extract for the first time rates of K^{\pm} exiting from the replica target, in addition to higher statistics π^{\pm} rates