Charged lepton flavor violation search by lepton-nucleus scattering

M. Takeuchi, YU, & M. Yamanaka, in progress.

Yuichi Uesaka
Saitama Univ.
Charged Lepton Flavor Violation (CLFV)
- A probe for new physics -

- lepton flavor violation for charged lepton = \textbf{CLFV}
 \((\mu \rightarrow e\gamma, \mu \rightarrow ee\bar{e}, \tau \rightarrow e\gamma, \ldots)\)

- forbidden in SM
- contribution of neutrino mixing → very small

 \(\text{Br}(\mu \rightarrow e\gamma) \lesssim 10^{-54}\)
 ✓ cannot be observed by current technology

- enhanced in many theories beyond SM
 e.g. SUSY

✓ Searches for CLFV can access new physics with little SM backgrounds.
Current Limits of CLFV processes

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Present limit</th>
<th>C.L.</th>
<th>Experiment</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu^+ \rightarrow e^+\gamma$</td>
<td>$< 4.2 \times 10^{-13}$</td>
<td>90%</td>
<td>MEG at PSI</td>
<td>2016</td>
</tr>
<tr>
<td>$\mu^+ \rightarrow e^+e^-e^+$</td>
<td>$< 1.0 \times 10^{-12}$</td>
<td>90%</td>
<td>SINDRUM</td>
<td>1988</td>
</tr>
<tr>
<td>$\mu^-\text{Ti} \rightarrow e^-\text{Ti}$</td>
<td>$< 6.1 \times 10^{-13}$</td>
<td>90%</td>
<td>SINDRUM II</td>
<td>1998</td>
</tr>
<tr>
<td>$\mu^-\text{Pb} \rightarrow e^-\text{Pb}$</td>
<td>$< 4.6 \times 10^{-11}$</td>
<td>90%</td>
<td>SINDRUM II</td>
<td>1996</td>
</tr>
<tr>
<td>$\mu^-\text{Au} \rightarrow e^-\text{Au}$</td>
<td>$< 7.0 \times 10^{-13}$</td>
<td>90%</td>
<td>SINDRUM II</td>
<td>2006</td>
</tr>
<tr>
<td>$\tau \rightarrow e\gamma$</td>
<td>$< 3.3 \times 10^{-8}$</td>
<td>90%</td>
<td>BaBar</td>
<td>2010</td>
</tr>
<tr>
<td>$\tau \rightarrow \mu\gamma$</td>
<td>$< 4.4 \times 10^{-8}$</td>
<td>90%</td>
<td>BaBar</td>
<td>2010</td>
</tr>
<tr>
<td>$\tau \rightarrow eee$</td>
<td>$< 2.7 \times 10^{-8}$</td>
<td>90%</td>
<td>Belle</td>
<td>2010</td>
</tr>
<tr>
<td>$\tau \rightarrow \mu\mu\mu$</td>
<td>$< 2.1 \times 10^{-8}$</td>
<td>90%</td>
<td>Belle</td>
<td>2010</td>
</tr>
<tr>
<td>$\tau \rightarrow \pi^0e$</td>
<td>$< 8.0 \times 10^{-8}$</td>
<td>90%</td>
<td>Belle</td>
<td>2007</td>
</tr>
<tr>
<td>$\tau \rightarrow \pi^0\mu$</td>
<td>$< 1.1 \times 10^{-7}$</td>
<td>90%</td>
<td>BaBar</td>
<td>2007</td>
</tr>
<tr>
<td>$\tau \rightarrow \rho^0e$</td>
<td>$< 1.8 \times 10^{-8}$</td>
<td>90%</td>
<td>Belle</td>
<td>2011</td>
</tr>
<tr>
<td>$\tau \rightarrow \rho^0\mu$</td>
<td>$< 1.2 \times 10^{-8}$</td>
<td>90%</td>
<td>Belle</td>
<td>2011</td>
</tr>
</tbody>
</table>
\[\mu N(eN) \rightarrow \tau X \]

- CLFV process in lepton-nucleus(neucleon) scattering
 - sensitive to \((\bar{\tau}\ell)(\bar{q}q)\) coupling

Example of experiments

- Leptoquark search @ HERA \((ep\) collider\)

Advantages over the rare decay searches of \(\tau\)

- high-intensity muon/electron beam
- sensitive to interactions which cannot be explored by tau decay \((e.g. \bar{\tau}\mu\bar{c}u)\)
- polarized beam to investigate detailed information of new physics

In this talk, let us consider the case that the mediated scalar couples strongly to heavy quarks
\(\mu N(eN) \rightarrow \tau X \) by higgs exchange

- 4-Fermi CLFV int. induced by heavy higgs
- subprocess is \(\ell q \rightarrow \tau q \)
- 5-flavor PDF

\[
\frac{d^2 \sigma_{\ell N \rightarrow \tau X}}{dx dy} = \sum_q \frac{d^2 \hat{\sigma}_{\ell q \rightarrow \tau q}}{dx dy} f_q(x, Q^2)
\]

\(b \)-quarks in nucleon give significant contribution for \(E_\ell > 50 \text{GeV} \)

"threshold" of \(b \)-quark

Cross section graph
Questions for previous analysis

1. the cross section was estimated with bottom PDF
 • subprocess: $\ell b \rightarrow \tau b$

 In the region near the “bottom threshold”, 5-flavor PDF is valid?
 • The final state must be $b\bar{b}$, due to bottom # conservation.
 • We cannot ignore phase space suppression by mass of final state.

 threshold for fixed target experiment

 $\tau b : E_\ell > 19$GeV $\tau b\bar{b} : E_\ell > 55$GeV

2. subprocesses were only reactions with quarks

 If CLFV is induced by mediation of
 “particle which couples strongly to heavy quarks” (like higgs),
 the subprocess with gluon ($\ell g \rightarrow \tau g$) would be important.

 • No need to create heavy states in the final state
Subprocesses we consider

previous work \(\ell q \rightarrow \tau q \)

our work

1. \(\ell g \rightarrow \tau q\overline{q} \)
2. \(\ell g \rightarrow \tau g \)

1. explicitly treat \(q\overline{q} \) as final state to consider the phase space suppression
 more quantitative near \(q\overline{q} \) threshold

2. include the new subprocess with gluon
 enhancement of total cross section
We can take into account the “mass” of heavy quarks explicitly.
2. $\ell g \rightarrow \tau g$

- CLFV coupling
- Sgg coupling via quark loop
 - $q^2 < 0$
 - In addition to top contribution, bottom & charm are also important

\[
\frac{d^2\sigma_{\ell p \rightarrow \tau X}}{dx dy} = \frac{d^2\sigma_{\ell g \rightarrow \tau b\bar{b}}(x)}{dx dy} f_g(x, Q^2)
\]
Example 1: 125GeV higgs LFV

\[\mathcal{L}_I = \mathcal{L}_{I}^{\text{SM}} + \mathcal{L}_{I}^{\text{CLFV}} \]

\[\mathcal{L}_{I}^{\text{SM}} = - \sum_{q} \frac{m_q}{v} h \bar{q} q \]

\[\mathcal{L}_{I}^{\text{CLFV}} = - h \bar{\tau} (\rho_{i\tau} P_L + \rho_{\tau i} P_R) \ell_i + \text{H. c.} \]

- constraint by searches for rare decays of higgs

\[Br(h \rightarrow \tau e) < 6.1 \times 10^{-3} \]
\[\Rightarrow \sqrt{|\rho_{\tau e}|^2 + |\rho_{e\tau}|^2} < 2.3 \times 10^{-3} \]

\[Br(h \rightarrow \tau \mu) < 2.5 \times 10^{-3} \]
\[\Rightarrow \sqrt{|\rho_{\tau \mu}|^2 + |\rho_{\mu \tau}|^2} < 1.4 \times 10^{-3} \]

CMS Collab., CMS-PAS-HIG-17-001.
Cross section (fixed target)

\[\sqrt{|Y_{\ell\tau}|^2 + |Y_{\tau\ell}|^2} = 2.3 \times 10^{-3} \]

\(\ell g \rightarrow \tau g \) is important for \(E_\ell < 1 \) TeV

\(eN \rightarrow \tau X \)

ILC: \(E_e = 500 \) GeV, \(N_e = 10^{22} \)/year

(density of target ~ 100 g \cdot cm^{-2})

\(\mathcal{O}(10) \) events/year
Example 2: “heavy scalar” LFV

Toy model:

\[\mathcal{L}_I = -\rho (\bar{\tau}e)S - y (\bar{b}b)S \]

\(S \) : scalar (mass : \(m_S \))
\(\rho, y \) : couplings

integrate out \(S \)

\[\mathcal{L}_{\text{eff}} = C_{4F} (\bar{\tau}e)(\bar{b}b) + C_G (\bar{\tau}e)G_{\mu\nu}G^{\mu\nu} \]

\[C_{4F} \sim \frac{\rho y}{m_S^2} \]
\[C_G \sim \frac{\alpha_S}{12\pi m_b} \frac{\rho y}{m_S^2} \]

✓ \(C_G \) is limited by rare decay searches of \(\tau \)

\[Br(\tau \to e\pi^+\pi^-) < 2.3 \times 10^{-8} \]

\[\frac{\rho y}{m_S^2} < 1.8 \times 10^{-6} [\text{GeV}^{-2}] \]
Cross section (fixed target)

\[\frac{\rho y}{m_S^2} = 1.8 \times 10^{-6} \text{ [GeV}^{-2}] \]

\(\sigma \text{ [fb]} \)

\[\begin{array}{c}
\rho y \\
E_\ell \text{ [GeV]} \\
\end{array} \]

\(eN \rightarrow \tau X \):

ILC: \(E_e = 250 \text{GeV}, N_e = 10^{22}/\text{year} \)

(density of target \(\sim 100 \text{g} \cdot \text{cm}^{-2} \)) \(\Rightarrow \mathcal{O}(10^5) \) events/\text{year}
Momentum distribution of emitted τ

$E_e = 100\text{GeV}$

① $\ell g \to \tau b\bar{b}$

$\frac{d^2\sigma(eg \to \tau b\bar{b})}{dp_x dp_y}$

② $\ell g \to \tau g$

$\frac{d^2\sigma(eg \to \tau g)}{dp_x dp_y}$

Preliminary
Conclusion

- $\ell N \rightarrow \tau X$ process
 - one of the promising candidates to study CLFV including tau
 - Here, assuming CLFV yukawa of a scalar, the cross section is estimated.
 - corrections for previous calculation
 - explicitly consider the mass of a quark-pair in the final state
 - newly consider gluon subprocess

- gluon subprocess is dominant for $E_\ell \lesssim 1$TeV
- future experiments (e.g. ILC) can search for CLFV with tau!
Backup
Comparison of $\ell g \rightarrow \tau q \bar{q}$ & $\ell q \rightarrow \tau q$

$\sqrt{|Y_{\ell \tau}|^2 + |Y_{\tau \ell}|^2} = 2.3 \times 10^{-3}$

taking into account phase space suppression in the final state

more quantitative near the threshold
Higgs CLFV

(CLFV = lepton flavor violation in charged lepton sector)

- current constraint for branching ratio

\[Br(h \to \mu^\pm e^{\mp}) < 3.5 \times 10^{-4} \]
\[\Rightarrow \sqrt{|Y_{\mu e}|^2 + |Y_{e\mu}|^2} < 5.4 \times 10^{-4} \]

\[Br(h \to \tau e) < 6.1 \times 10^{-3} \]
\[\Rightarrow \sqrt{|Y_{\tau e}|^2 + |Y_{e\tau}|^2} < 2.3 \times 10^{-3} \]

\[Br(h \to \tau \mu) < 2.5 \times 10^{-3} \]
\[\Rightarrow \sqrt{|Y_{\tau\mu}|^2 + |Y_{\mu\tau}|^2} < 1.4 \times 10^{-3} \]

- constraint by other searches (assuming that CLFV is induced by only yukawa with SM higgs)

\[\mu \to e\gamma : \sqrt{|Y_{\mu e}|^2 + |Y_{e\mu}|^2} < 2.1 \times 10^{-6} \]

\[\tau \to e\gamma : \sqrt{|Y_{\tau e}|^2 + |Y_{e\tau}|^2} < 1.4 \times 10^{-2} \]

\[\tau \to \mu\gamma : \sqrt{|Y_{\mu e}|^2 + |Y_{e\mu}|^2} < 1.6 \times 10^{-2} \]

\[\text{stronger limit than higgs rare decay's} \]
\[\text{relatively small} \]

CMS Collab., CMS-PAS-HIG-17-001.

When \(h \to \tau \ell \) is observed, we have any ways to crosscheck?
Way to calculate the cross section

1. calculation of cross section of subprocess \(\hat{\sigma} \)

\[\ell (p_\ell) \quad \rightarrow \quad \hat{\sigma}(\xi) \quad \rightarrow \quad \tau (p_\tau) \]

\[g (\xi P) \quad \rightarrow \quad \hat{\sigma}(\xi) \quad \rightarrow \quad g, \bar{q}q (p_f) \]

\[N (P) \quad \rightarrow \quad X ((1 - \xi)P) \]

2. integration weighted by PDF

\[
\frac{d^2 \sigma_{\ell N \rightarrow \tau X}}{dx dy} = \sum \int_{\xi_{\text{min}}}^{1} d\xi \frac{d^2 \hat{\sigma}_{\ell g \rightarrow \tau \bar{X}}(\xi)}{dx dy} f_g(\xi, Q^2)
\]

- \(x \): Bjorken variable
- \(y \): inelasticity

(the ranges of \(x, y \) are restricted by \(\tau \) mass)

Relation between x & ξ

case of one parton in the final state:

by momentum conservation

$$p_f^2 = (p_i + q)^2$$

$$= 2\xi P \cdot q - Q^2$$

$$\therefore \xi = \frac{Q^2 + p_f^2}{Q^2} x \quad (x = \frac{Q^2}{2P \cdot q})$$

$\xi = x$ if $p_f^2 = 0$
Higgs-glu-glu coupling

- higgs couples to gluon via quark loop

\[\mathcal{L}_{hgg}^{\text{eff}} = g_{hgg} h G_{\mu\nu}^a G^{a\mu\nu} \]

\[g_{hgg} = \frac{\alpha_s}{8\pi v} \sum_{i=t,b,...} c \left(\frac{q^2}{4m_i^2} \right) \]

\[c(t) = \frac{1}{t} \left\{ 1 - \frac{1}{4} \left(1 - \frac{1}{t} \right) \log^2 \left[-\frac{1 + \sqrt{1 - 1/t}}{1 - \sqrt{1 - 1/t}} \right] \right\} \]

- Here, the region of \(q^2 < 0 \) is needed.

※ bottom & charm contribution is important as well as top

e.g.) \(Q^2 = -q^2 = (10\text{GeV})^2 \)

\[\sum_{i=t,b,...} c \left(\frac{q^2}{4m_i^2} \right) \approx 0.67 + 0.53 + 0.24 + ... \]

\[\text{top, bottom, charm} \]
Cross section (\(\ell p\) collider)

\[\sqrt{|\rho_{\ell\tau}|^2 + |\rho_{\tau\ell}|^2} = 2.4 \times 10^{-3}\]

- The \(t\bar{t}\) channel is important in the high energy region.

[Graph showing cross sections for various processes with \(\ell g \rightarrow \tau g\), \(\ell g \rightarrow \tau t\bar{t}\), \(\ell g \rightarrow \tau b\bar{b}\), and \(\ell g \rightarrow \tau c\bar{c}\) plotted against \(\sqrt{s}\) in GeV.]
For experimental searches

1. fixed target experiment

 event number N per year

 $$N \simeq 6 \times 10^{-16} \cdot N_\ell \left(\frac{\sigma}{1\text{fb}} \right) \left(\frac{T_m}{1\text{g} \cdot \text{cm}^{-2}} \right)$$

 N_ℓ : produced number of ℓ per year
 T_m : mass of target per $\text{cm}^2 \sim 100\text{g} \cdot \text{cm}^{-2}$

 $eN \to \tau X$
 ILC (PWFA) : $E_e = 500\text{GeV (5TeV)}$, $N_e = 10^{22}/\text{year} \Rightarrow \mathcal{O}(10) \left(\mathcal{O}(10^3) \right)$ events/year

 $\mu N \to \tau X$
 neutrino factory : $E_\mu = \mathcal{O}(100)\text{GeV}$, $N_\mu = 10^{20}/\text{year} \Rightarrow \mathcal{O}(10^{-1})$ events/year

2. collider experiment

 $ep \to \tau X$
 TLHeC (VHE-TLHeC) : $\sqrt{s} \simeq 1.3(3.5)\text{TeV}$
 Luminosity $\simeq \mathcal{O}(10^3) \text{fb}^{-1}/\text{year}$
 $\Rightarrow \mathcal{O}(100)$ events