Recent developments on direct CP violation in the Kaon system and connection to $K \rightarrow \pi \nu \nu$ measurements

Teppei Kitahara
Karlsruhe Institute of Technology (KIT)

Heavy Quarks and Leptons 2018
Yamagata Terrsa, Yamagata
May 30, 2018
Kaon physics is still an exciting field!

- FCNC and its CP violation can be probed precisely by race decays: \(\text{Br} \sim O(10^{-11}) \)
- Non-perturbative QCD parts are calculable by ChPT and 2+1 flavour lattice
- One can test understanding of the SM, ChPT, unitarity of CKM… and BSM
- There are many promising on-going experiments; NA62 / KOTO / LHCb / KLOE-2 / TREK
Precise measurements for Kaon decay into two pions have discovered the **two types of CP violations**: indirect CPV ϵ_K & direct CPV ϵ'_K:

\[
\mathcal{A}(K_L \to \pi^+\pi^-) \propto \epsilon_K + \epsilon'_K \quad \text{with} \quad \epsilon_K = \mathcal{O}(10^{-3}) \neq 0 \quad \text{[Christenson, Cronin, Fitch, Turlay, '64 with Nobel prize]}
\]

\[
\mathcal{A}(K_L \to \pi^0\pi^0) \propto \epsilon_K - 2\epsilon'_K \quad \text{with} \quad \epsilon'_K = \mathcal{O}(10^{-6}) \neq 0 \quad \text{[NA48/CERN and KTeV/FNAL '99]}
\]

$\Delta S=2$

Indirect CP violation

[Kaon mixing]

W box

\[
\epsilon_K \propto \text{Im}[(\text{CKM})^2]
\]

$\Delta S=1$

Direct CP violation

W-box and penguin

\[
\epsilon'_K \propto \text{Im}[(\text{CKM})]
\]

Main topic of this talk

Recent developments on direct CP violation in the kaon system and connection to $K \to \pi\pi\nu$ measurements

Teppei Kitahara: Karlsruhe Institute of Technology (KIT), HQL2018, Yamagata, May 30, 2018
Direct CPV in $K \to \pi \pi$

- **The strong suppression** of ϵ'_K comes from the smallness of the $\Delta I-3/2$ amplitude ($\Delta I = 1/2$ rule) and an accidental cancellation between the SM contributions

$$A(K^0 \to (\pi\pi)_I) \equiv A_I e^{i\delta_I}$$

I: two-pion isospin = 0, 2

$$A(\bar{K}^0 \to (\pi\pi)_I) \equiv \bar{A}_I e^{i\delta_I} = A_I^* e^{i\delta_I}$$

δ_I: strong phase

$$\frac{\epsilon'_K}{\epsilon_K} = \frac{1}{\sqrt{2} |\epsilon_K| \text{Re} A_0} \frac{\text{Re} A_2}{\text{Re} A_0} \left(-\text{Im} A_0 + \frac{\text{Re} A_0}{\text{Re} A_2} \text{Im} A_2 \right)$$

$\Delta I = 1/2$ rule: factor = 0.04

accidental cancellation

$$\mathcal{O}(\alpha_s) \sim \frac{1}{\omega} \mathcal{O}(\alpha)$$

where $\frac{1}{\omega} \equiv \frac{\text{Re} A_0}{\text{Re} A_2} = 22.46$ (exp.)

$~ \text{Im [QCD penguin]}$

$~ \text{Im [EW penguin]}$
Accidental cancellation

Composition of ϵ'_K / ϵ_K with respect to the operator basis

$[TK, \text{Nierste, Tremper, JHEP '16}]$

$\times 10^{-4}$

Here, the hadronic matrix elements obtained from lattice result are used

First lattice result $[\text{RBC-UKQCD, PRL '15}]$

Recent developments on direct CP violation in the kaon system and connection to $K \to \pi \nu \nu$ measurements

Teppei Kitahara: Karlsruhe Institute of Technology (KIT), HQL2018, Yamagata, May 30, 2018
Progress on RG evolution

- Analytic solution of $f=3$ QCD-NLO RG evolution has a unphysical singularity [Ciuchini, Franco, Martinelli, Reina, 93', 94', Buras, Jamin, Lautenbacher 93']

\[
\hat{J}_s - \left[\frac{\hat{\gamma}_s^{(0)T}}{2\beta_0}, \frac{\hat{\gamma}_s^{(1)T}}{2\beta_0} \right] = \frac{\beta_1}{\beta_0} \frac{\hat{\gamma}_s^{(0)T}}{2\beta_0} - \frac{\hat{\gamma}_s^{(1)T}}{2\beta_0}, \quad \left(\hat{V}^{-1} \hat{J}_s \hat{V} \right)_{ij} = \frac{2\beta_0}{\beta_0} \left((\hat{\gamma}_s^{(0)T})_{jj} - (\hat{\gamma}_s^{(0)T})_{ii} \right).
\]

10x10 matrix \hat{J}_s is a solution of the $f=3$ QCD-NLO RG evolution

- 2$\beta_0 = 18$, $\hat{\gamma}_s^{(0)T} \supset +2, -16$ leads to singularity, which requires a regulator in the denominator

- Similar singularities exist in QED-NLO and QCD-QED-NLO RG evolutions

- Singularity-free solutions are obtained using more generalized ansatz for the NLO evolution matrices [TK, Nierste, Tremper, JHEP '16]
 - $\ln \alpha_s(\mu_2)/\alpha_s(\mu_1)$ terms are added compared to the previous solution
 - Contribution of order α_s^2/α_s^2 is also included for the first time and we find it is numerically irrelevant in the SM \rightarrow good perturbation
Recent developments on direct CP violation in the kaon system and connection to $K \to \pi \nu \nu$ measurements

Current situation of ϵ'_K / ϵ_K

\[\propto \text{Im} A_0 - \left(\frac{\text{Re} A_0}{\text{Re} A_2} \right) \text{Im} A_2 \propto B^{(1/2)}_6 \]

\[\propto B^{(3/2)}_8 \]

\[B^{(1/2)}_6 \sim 1.6, \quad B^{(3/2)}_8 \sim 0.9 \]
\[B^{(1/2)}_6 \sim 1.6, \quad B^{(3/2)}_8 \sim 0.9 \]
\[B^{(1/2)}_6 \approx 3, \quad B^{(3/2)}_8 \approx 3.5 \]
\[B^{(1/2)}_6 \leq B^{(3/2)}_8 \leq 1 \]
\[B^{(1/2)}_6 \leq B^{(3/2)}_8 \leq 0.76 \]

Observed values

\[B^{(1/2)}_6 = 0.57, \quad B^{(3/2)}_8 = 0.76 \]

dual QCD predictions

\[B^{(1/2)}_6 \leq B^{(3/2)}_8 < 1, \quad B^{(3/2)}_8 = 0.8 \]

\[\Delta I = 1/2 \text{ rule} \quad \left(\frac{\text{Re} A_0}{\text{Re} A_2} \right) \]

\[\text{Exp.} \quad 22.45 \pm 0.05 \quad \text{ChPT} \quad \sim 14 \quad \text{dual QCD} \quad 16.0 \pm 1.5 \quad \text{Lattice (I=0,2)} \quad 31.0 \pm 11.1 \]
Anomaly?

- Lattice result with recent progress on the short-distance physics predicts $\varepsilon'/\varepsilon = O(10^{-4})$ which is below the experimental average at 2.8-2.9σ level.

 NNLO QCD in progress [Cerdà-Sevilla, Gorbahn, Jäger, Kokulu]

- A large-N_c analysis (dual QCD method) including final-state interaction (FSI) is consistent with lattice results [Buras, Gerard, ’15, ’17]

- ChPT including FSI predicts $\varepsilon'/\varepsilon = O(10^{-3})$ with large error which is consistent with measured values [Gisbert, Pich 1712.06147]

- Main difference comes from $B_6^{(1/2)} = 0.6$ (lattice) vs 1.5 (ChPT)

- The lattice simulation includes FSI as the Lellouch-Lüscher finite-volume correction and explained $\Delta I=1/2$ rule for the first time. But, the strong phase of $I=0$ is smaller than a phenomenological expectation at 2.7σ level

- For $I=2$ decay, lattice/dual QCD/ChPT give well consistent results

Lattice result of I=0 with further statistics would shed light on the above discrepancies.

Lattice simulation with improved methods and higher statistics is on-going [1711.05648]
Recent developments on direct CP violation in the kaon system and connection to $K \to \pi \nu \nu$ measurements

Several types of BSM can explain ϵ'_K / ϵ_K discrepancy

\[
\frac{\epsilon'_K}{\epsilon_K} = \frac{1}{\sqrt{2}|\epsilon_K| \Re A_0} \frac{\Re A_2}{\Re A_0} \left(-\Im A_0 + \frac{\Re A_0}{\Re A_2} \Im A_2 \right)
\]

\[
\frac{\Re A_0}{\Re A_2} = 22.46 \text{ (exp.)}
\]

$\Im A_0$

- **g' scenario**
 - RS model
 - 1404.3824
 - SUSY
 - Type-III 2HDM
 - 1805.07522
 - Box scenario

- **Chromomagnetic scenario**
 - SUSY
 - 1711.11030,…

$\Im A_2$

- **Z scenario**
 - SUSY
 - 1604.07400,…
 - 1608.01444,…
 - VLQ
 - 1609.04783,…
 - LHT
 - 1507.06316

- **Z' scenario**
 - SUSY
 - 1608.01444,…
 - 1609.04783,…

- **W_R scenario**
 - SUSY
 - 1802.09903
 - LR model
 - 1512.02869
 - 331 model
 - 1512.02869,…
 - 1612.03914, 1802.09903

HME would be suppressed [1712.09824, 1803.08052]
Recent developments on direct CP violation in the kaon system and connection to $K \rightarrow \pi \nu \nu$ measurements

Gluino-box contribution

- In the supersymmetric models, the gluino box can significantly contribute to ϵ'_K / ϵ_K

- In spite of QCD correction, gluino box can break isospin symmetry through mass difference between right-handed up and down squarks, which contributes $\text{Im} A_2$

$\text{Im} A_2$ is generated at the low energy scale with HMEs, contributing to ϵ'_K can be solved.
Recent developments on direct CP violation in the kaon system and connection to $K \to \pi \nu \nu$ measurements

SUSY contributions to ϵ_K'/ϵ_K

- We take universal SUSY mass (M_S) without gaugino masses (M_3) and right-handed up-type squark mass ($m_{\tilde{u}}$)

ϵ_K'/ϵ_K discrepancy can be solved at

1σ 2σ

- ϵ_K excluded by ϵ_K with inclusive $|V_{cb}|$
- ϵ_K' preferred by ϵ_K with exclusive $|V_{cb}|$

$M_3 = 1.5M_S$

for suppressed ϵ_K

$m^2_{Q,ij} = \Delta_{Q,ij}M_S^2$

$\Delta_{Q,12} = 0.1 \exp(-i\pi/4)$

maximum CPV phase for ϵ_K

when $i\pi/4 \to i\pi/2$

amplifies ϵ_K'/ϵ_K

suppresses ϵ_K

excluded by LHC

Recent developments on direct CP violation in the kaon system and connection to $K \to \pi \nu \nu$ measurements

Tepppei Kitahara: Karlsruhe Institute of Technology (KIT), HQL2018, Yamagata, May 30, 2018
Recent developments on direct CP violation in the kaon system and connection to $K \rightarrow \pi \nu \bar{\nu}$ measurements

Teppei Kitahara: Karlsruhe Institute of Technology (KIT), HQL2018, Yamagata, May 30, 2018

When BSM contribution to FCNC ($s d Z$) coupling is the same magnitude as the SM, ϵ'_K discrepancy be explained

$\epsilon'_K / \epsilon_K \times 10^{-4}$

Note: Although Z' FCNC scenario can also explain ϵ'_K, a correlation to $B(K \rightarrow \pi \nu \bar{\nu})$ is model-dependent

$[- \text{Im} s_L d_L] \sim \text{Im} s_{L/R} d_{L/R}$

Positive contribution

SM Z-penguin gives the biggest negative contribution

ϵ'_K can be solved

$O(1)$ contribution to $B(K \rightarrow \pi \nu \bar{\nu})$
Modified Z-coupling scenario cont.

- For gauge-invariant predictions, SM + dimension-six effective theory (SMEFT) should be introduced [Endo, TK, Mishima, Yamamoto, '16] [Bobeth, Buras, Celis, Jung, '17] [Endo, Goto, TK, Mishima, Ueda, Yamamoto, '18]

\[
\mathcal{L} = \mathcal{L}_{\text{SM}} + \frac{c_L}{\Lambda^2} i (H^\dagger \bar{D}_\mu H)(\bar{Q}_L \gamma^\mu Q'_L) + \frac{c_R}{\Lambda^2} i (H^\dagger \bar{D}_\mu H)(\bar{d}_R \gamma^\mu d'_R),
\]

\[
= \mathcal{L}_{\text{SM}} - \frac{\sqrt{2} v M_Z}{\Lambda^2} (c_L s_R \gamma^\mu Z_\mu P_L d + c_R \bar{s}_R \gamma^\mu Z_\mu P_R d) + \ldots
\]

→ After EWSB, in addition to FCNC terms, some NG boson vertices emerge

- Constraint comes from $\Delta S=2$ process : ϵ_K

\[
(H^\dagger i \bar{D}_\mu H)(\bar{s}_R \gamma^\mu d_R) \quad @\text{high scale}
\]

\[
\Delta S = 1
\]

\[
(\bar{s}_L \gamma^\mu d_L)(\bar{s}_R \gamma^\mu d_R) \quad @\text{low scale}
\]

\[
\Delta S = 2
\]

Interference terms

They can be significant in a certain case
Other rare kaon decays

CP violation + FCNC decays of kaon $K \to \pi \pi$, $K \to \pi \nu \bar{\nu}$, $K \to \mu^+ \mu^-$ are sensitive to NP and can probe virtual effects from particles with masses far above the reach of LHC

They should be correlated with each other

\[\epsilon'_K \text{ discrepancy (} K_L \to \pi \pi) \rightarrow \text{deviations of the other rare kaon decays} \]

$K \to \pi \nu \bar{\nu}$ K_L is CPV, and clean BG. The experiments are on-going

- **NA62** experiment at CERN $K^+ \to \pi^+ \nu \bar{\nu}$, target: 10% precision compared with SM (2018)
- **KOTO** experiment at J-PARC $K_L \to \pi^0 \nu \bar{\nu}$, target: 100% (step1), 10% (step2)

$K_S \to \mu^+ \mu^-$: CPC(dom.) + CPV. Br is amplified in a certain case: $\tan^3 \beta / M_A^2$

 : In **LHCb**, Direct CP asymmetry could be probed, which is sensitive to CPV FCNC

$K_L \to \pi^0 \ell^+ \ell^-$: CPV(dom.) + CPC. The theoretical uncertainty can be reduced by precise measurement of $K_S \to \pi^0 \ell^+ \ell^-$ \rightarrow LHCb

 : Direct detection of $K_L \to \pi^0 \ell^+ \ell^-$ is necessary.
Recent developments on direct CP violation in the kaon system and connection to $K \rightarrow \pi \nu \nu$ measurements

B($K \rightarrow \pi \nu \nu$) in box scenario [Crivellin, D’Ambrosio, TK, Nierste, ’17]

$m_{\tilde{q}_1} = 1.5$ TeV, $m_L = 300$ GeV

\begin{align*}
\frac{m_{\bar{U}}}{m_{\bar{D}}} &= 2 \\
\frac{m_{\bar{U}}}{m_{\bar{D}}} &= 0.5
\end{align*}

1σ 2σ

ϵ'_K discrepancy can be solved at 1σ (10%) level is required in light of a constraint from ϵ_K

parameter tuning at 1-10% level is required for a fine-tuning at the 1(10)% level

$B(K_L \rightarrow \pi^0 \nu \bar{\nu})/SM \lesssim 2 (1.2)$

$B(K^+ \rightarrow \pi^+ \nu \bar{\nu})/SM \lesssim 1.4 (1.1)$

determines a position of the green bands

Positive ϵ'_K predicts a strict correlation

$sgn \left[B(K_L \rightarrow \pi^0 \nu \bar{\nu}) - B^{SM}(K_L \rightarrow \pi^0 \nu \bar{\nu}) \right]$

$= sgn \left[m_{\bar{U}} - m_{\bar{D}} \right]$

$sgn \left[m_{\bar{U}} - m_{\bar{D}} \right] \xrightarrow{\epsilon'_K} \arg \left[m_{Q12}^2 \right]$

$sgn \left[B(K_L \rightarrow \pi^0 \nu \bar{\nu}) - B^{SM}(K_L \rightarrow \pi^0 \nu \bar{\nu}) \right]$
Recent developments on direct CP violation in the kaon system and connection to $K \rightarrow \pi \nu \nu$ measurements

B(K→πνν) in Z scenario

Result of simplified cases

Constraint comes from ϵ_K, ΔM_K, $B(K_L \rightarrow \mu^+ \mu^-)$

- $\mu_{\text{NP}} = 1 \text{ TeV}$
- ϵ_K' discrepancy can be explained at 1σ
- $B(K_L \rightarrow \pi^0 \nu \bar{\nu})$ is smaller than the SM prediction
- $B(K_L \rightarrow \pi^0 \nu \bar{\nu})$ can be enhanced by overshothing ϵ_K' from C_R with destructive ϵ_K' from C_L
- Parameter tuning is required
- → study in concrete models in next slide

\[
\frac{c_L}{\Lambda^2} i(H^\dagger \tilde{D}_\mu H)(\overline{Q}_L \gamma^\mu Q'_L)
\]

\[
\frac{c_R}{\Lambda^2} i(H^\dagger \tilde{D}_\mu H)(\overline{d}_R \gamma^\mu d'_R)
\]

[Endo, TK, Mishima, Yamamoto, '16]
B(K→πνν) in Z scenario (MSSM)

chargino Z-penguin in the MSSM

[Endo, Mishima, Ueda, Yamamoto, ’16]

\[
\begin{array}{c}
\begin{aligned}
\text{Z model (LH)} & \quad \text{Z model (RH + LH)} \\
\end{aligned}
\end{array}
\]

Upper bounds under the constraints:

Vacuum, \(\varepsilon_K, \Delta M_K, K_L \rightarrow \mu\mu \)

gluino Z-penguin in the MSSM

[Tanimoto, Yamamoto, ’16]

[Endo, Goto, TK, Mishima, Ueda, Yamamoto, ’18]

\[
\begin{array}{c}
\begin{aligned}
\text{Z model (LH)} & \quad \text{Z model (RH + LH)} \\
\end{aligned}
\end{array}
\]

Upper bounds under the constraints:

Vacuum, \(\varepsilon_K, \Delta M_K, K_L \rightarrow \mu\mu, b \rightarrow s(d)\gamma \)

\[
\begin{array}{c}
\begin{aligned}
\text{with } & \quad B(K^+ \rightarrow \pi^+\nu\bar{\nu})/SM \lesssim 1.5 \\
\end{aligned}
\end{array}
\]

Recent developments on direct CP violation in the kaon system and connection to \(K \rightarrow \pi\nu\nu \) measurements

Teppei Kitahara: Karlsruhe Institute of Technology (KIT), HQL2018, Yamagata, May 30, 2018
Direct CP asymmetry in $K_S \rightarrow \mu\mu$

- $K_S \rightarrow \mu\mu$ (almost CPC) can be probed by an upgrade of the LHCb at the SM accuracy. [$K_L \rightarrow \mu\mu$ (CPC) has been observed precisely by BNL E871] [BNL E871, PRL '00]

- An interference contribution between K_L and K_S emerges from a genuine direct CP violation (indirect CPV is negligible) [TK, D’Ambrosio, PRL '17]

- Interference contribution is comparable size to CPC of $K_S \rightarrow \mu\mu$ thanks to the large absorptive part of long-distance contributions to $K_L \rightarrow \mu\mu$

- Nonzero dilution factor (D) can be obtained by an accompanying charged kaon tagging and a charged pion tagging

\[pp \rightarrow K^0 K^- X \]

\[pp \rightarrow K^{*+} X \rightarrow K^0 \pi^+ X \]

with $K^* \rightarrow \{K_S, K_L\} \rightarrow \mu^+ \mu^-$

\[D = \frac{K^0 - \bar{K}^0}{K^0 + \bar{K}^0} \]
Summary

- RBC-UKQCD lattice group and perturbative calculations of ϵ_K'/ϵ_K have revealed that the SM expected value deviates from measured value (2.8-2.9σ).
- Several types of BSM can explain ϵ_K'/ϵ_K discrepancy.
- Correlations with the other rare decays are crucial for discrimination of BSM.

- NA62 experiment $\mathcal{B}(K^+ \to \pi^+\nu\bar{\nu})$ with 10% precision (2018) could probe whether modified Z-coupling scenario is realized or not.
- KOTO experiment $\mathcal{B}(K_L \to \pi^0\nu\bar{\nu})$ with 10% precision can probe both box and modified-Z coupling scenarios.
- The upgrade of LHCb experiment can probe $\mathcal{B}(K_S \to \mu^+\mu^-)$ at the SM accuracy, which can also probe CP-violating FCNC.
Recent developments on direct CP violation in the kaon system and connection to $K \rightarrow \pi \nu\nu$ measurements.
Overview of effective models

- Chiral perturbation theory ($\Delta S=1$)
 - Effective theory of the QCD Goldstone bosons: $\Phi = \begin{pmatrix} \sqrt{\frac{1}{2}} \pi^0 + \sqrt{\frac{1}{2}} \eta & \pi^- & K^+ \\ \pi^- & -\sqrt{\frac{1}{2}} \pi^0 + \sqrt{\frac{1}{2}} \eta & K^- \\ K^- & \bar{K}^0 & -\sqrt{\frac{2}{3}} \eta \end{pmatrix}$

 $$\mathcal{L} = -\frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left(g_8 f^4 \text{tr} (\lambda L_\mu L^\mu) + g_{27} f^4 \left(L_{\mu 23} L^\mu_{11} + \frac{2}{3} L_{\mu 21} L^\mu_{13} \right) + \mathcal{O}(g_E W) \right)$$

 with $L_\mu = -i U^\dagger D_\mu U$ and $U = \exp \left(\frac{i \sqrt{2} \Phi}{f} \right)$

- Dual QCD method [Bardeen, Buras, Gerard, '87, '14]

- Effective theory of the truncated pseudo-scalar and vector mesons:
 $$\mathcal{L} = \frac{f^2}{4} \text{tr} (\partial_\mu U \partial^\mu U^\dagger) - \frac{1}{4} \text{tr} (V_{\mu \nu} V^{\mu \nu}) - \frac{f^2}{2} \text{tr} (\partial_\mu \xi^\dagger \xi + \partial_\mu \xi \xi^\dagger - 2ig V_\mu)^2$$
 with $U = \xi \xi$

- Chiral quark model
 - Mean-field approximation of the full extended NJL model
 $$\mathcal{L} = \mathcal{L}_{QCD} - M \left(\bar{q}_R U q_L + \bar{q}_L U^\dagger q_R \right)$$
Box scenario in the MSSM

- In the supersymmetric model (MSSM), the following parameter region is interesting for ϵ'_K discrepancy:

$$M_3 \gtrsim 1.5M_S, \ m_{Q,12}^2 \neq 0, \text{ and } m_{U}/m_{D} \neq 1$$

ΔS=1

- can explain ϵ'_K discrepancy

TK, Nierste, Tremper, '16

ΔS=2

- can suppress ΔS=2 process

Crivellin, Davidkov, '10

ΔS=1

- can contribute to $K \rightarrow \pi \nu\bar{\nu}$ correlating with above two physics

Crivellin, D'Ambrosio, TK, Nierste, '17
Recent developments on direct CP violation in the kaon system and connection to $K \rightarrow \pi \nu \bar{\nu}$ measurements

- NA62 experiment $B(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ with 10% precision (2018) could probe whether modified Z-coupling scenario is realized or not.

- KOTO experiment $B(K_L \rightarrow \pi^0 \nu \bar{\nu})$ with 10% precision can probe both box and modified-Z coupling scenarios.