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Tensor renormalization group approach

Tensor Renormalization Group (TRG) is a deterministic numerical method.

* No sign problem
- The computational cost scales logarithmically w. r. t. the system size

TRG has been successfully applied to various 2d models w/ or w/o the sign
problem.
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4d complex ¢* theory at finite density

v a typical system with the sign problem
v the Silver Blaze phenomenon

-> thermodynamic observables at zero temperature are independent of u up to .

* Complex Langevin method
Aarts, PRL102(2009)131601

* Thimble approach

Cristoforetti et al, PRD88(2013)051501
Fujii et al, JHEP10(2013)147

- World-line representation
Gattringer-Kloiber, NPB869(2013)56-73

etc..,and -+ Tensor renormalization group

This work is the first application of TRG to 4d QFT!!!
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TRG in 4d system

* Higher-Order TRG (HOTRG) Xie et al, PRB86(2012)045139

v Applicable to any dimensional lattice
v Not so economic in 4d lattice

-> 4d Ising model on V = 1024* (with parallel computation)
SA et al, PRD100(2019)054510
* Anisotropic TRG (ATRG) Adachi et al, arXiv:1906.02007

v Also applicable to any dimensional lattice
v Accuracy with the fixed computational time is improved compared with

the HOTRG

-> 4d Ising model on V = 1024* (with parallel computation)
SA et al, PoS(LAT2019)363

We employ the ATRG algorithm in this work
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Anisotropic TRG with parallel computation

ATRG is a coarse-graining (direct truncation) method based on SVD

4d ATRG 4d HOTRG
Memory 0(D>) 0(D?®)
Time 0(D?) 0(D*>)

D: bond dimension (singular value matrix is truncated by D)

O(Dg) calculations in 4d ATRG -> SVD and tensor contraction

Our implementation

SVD contraction
Strategy Randomized SVD Parallel computing
Time 0(D7) 0(D?®)

-> Parallel computation reduces the computational cost from 0(D?) to 0(D3)
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Tensor network representation (1/2)

v ¢, = 1,,el™n : continuous d. o. f.
+ U : chemical potential

Siat = Zner‘[(8 + mz)rnz + At — 2%, 1T pty COS(TTS 1y — TSy, + i,u(SvA)]

To derive a finite dimensional tensor, we need to discretize 1, and s,;:

Continuous Discrete Quadrature rule
d.o.f. d.o.f.
T, € [0,0] —— a, EZ Gauss-Laguerre : fooo dr,e ™ f(r,) = Z§n=0 wo f(1,)
1
s, €[-1,1] — B, EZ Gauss-Legendre: f—1 ds, f(s,) = Z§n=ouﬂnf(5ﬁn)

-> The partition function Z is approximated by Z (K)

Z(K) = Syq p i MY

An B+ Bn+y

5/12



Tensor network representation (2/2)

SVD separates n-site d. o. f. from (n + V)-site d. o. f. : U= Uyo
V] M v o et 2
1% _ wK? 3lv ~ | v]* - vD gylv ~|v]*
Man.gn»an+17ﬁn+17 o lelU“n.Bn:lV“nH?ﬁnH%l ~ Zl:l Uan.gn:lvan+17.8n+17»l

(Z(K) = S plio M

AnBn, %15 Bn+v

Tensor network representation: Z(K) ~ Tr[I1,,T, ;, , 2/ yr 11 ]

oo =3K kgl gl gl gl gl gl gl gl )

( TannZntnX;LYnzntn

AnBrXn AnPr¥n AnbnZn InBrtn’ anfuxn nBnYn AnPnZn Cnfntn

~

« Tensor T locates on each lattice site n

« Tensor contraction is approximately
done by TRG
( Tensor network is coarse-grained )

J
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Algorithmic-parameters dependence

withm=0.1,A=1,u =0.6,L = 1024

Polynomial order

in the Gauss quadrature Bond dimension in ATRG
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little K dependence beyond K ~ 30 converging around D ~ 40
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Average phase factor (eie)pq

Reweighting in MC

Zpq = [ 4] e

with e™5 = e Re(S)elf
(Oeie)pq
(0) =——F—
(€')pq

<eig>pq =Z/Zpq
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(em)pq quickly falls off from 1 to 0 beyond u ~ 0.05

-> difficult to perform a MC simulation on large volume

withm =0.1,A=1,K = 64,D =45
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Particle number density (1/2)

withm =0.1,A=1,K = 64,D =45
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Resulting (n) is qualitatively not bad even in the region with (eig)pq ~ 0.

(n) stays around O up to u = 0.65 and shows the rapid increase with u = 0.65

-> The Silver Blaze phenomenon is confirmed
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Particle number density (2/2)

withm=0.1,A=1,K =64,D =45,L = 1024

(n) vs (n)pq
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The Silver Blaze phenomenon is attributed to the imaginary part of S
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(|¢|?): a discussion of the validity of the numerical results
withm = 0.1, =1,K = 64,D = 45
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Mean-field estimation
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4sinh? 45 = 2 4 42(|¢1?)
2 u=0
Aarts, JHEPO5(2009)052

2
<|o>

N/
pIF =~ 0.70

0.2

(|¢]?) =~ 0.125 over 0 < u < 0.6

Location of i in the current ATRG calculations seems reasonable
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Summary

This is the first application of TRG approach to 4d QFT

The Silver Blaze phenomenon (thermodynamic observables at zero
temperature are independent of u up to i, ) is clearly observed for (n)

and (|¢]?)

The location of u. seems reasonable compared with the mean-field
value uMF

TRG approach does not suffer from the sign problem and nicely works
to evaluate the observables on almost thermodynamic lattice

TRG will be an effective numerical approach to other 4d QFTs
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