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Tensor renormalization group approach
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Tensor Renormalization Group (TRG) is a deterministic numerical method.

・No sign problem
・The computational cost scales logarithmically w. r. t. the system size

TRG has been successfully applied to various 2d models w/ or w/o the sign 
problem.

Ex) 2d complex 𝝓𝟒 theory at finite density

Kadoh et al, JHEP02(2020)161

-> the Silver Blaze phenomenon 
is successfully confirmed

𝑚 = 0.1, 𝜆 = 1

Today’s message
TRG is an effective approach

not only in 2 dimensions
but also in 4 dimensions!



4d complex 𝜙4 theory at finite density
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✔ a typical system with the sign problem 

✔ the Silver Blaze phenomenon 

-> thermodynamic observables at zero temperature are independent of 𝜇 up to 𝜇𝑐

・Complex Langevin method 

Aarts, PRL102(2009)131601

・Thimble approach 

Cristoforetti et al, PRD88(2013)051501

Fujii et al, JHEP10(2013)147

・World-line representation

Gattringer-Kloiber, NPB869(2013)56-73

etc …, and ・ Tensor renormalization group

This work is the first application of TRG to 4d QFT!!!



TRG in 4d system
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・Higher-Order TRG (HOTRG)  Xie et al, PRB86(2012)045139

✔ Applicable to any dimensional lattice     
✔ Not so economic in 4d lattice

->   4d Ising model on 𝑉 = 10244 (with parallel computation)  
SA et al, PRD100(2019)054510

・Anisotropic TRG (ATRG)  Adachi et al, arXiv:1906.02007

✔ Also applicable to any dimensional lattice     
✔ Accuracy with the fixed computational time is improved compared with 

the HOTRG

->   4d Ising model on 𝑉 = 10244 (with parallel computation)  
SA et al, PoS(LAT2019)363

We employ the ATRG algorithm in this work



Anisotropic TRG with parallel computation 
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ATRG is a coarse-graining (direct truncation) method based on SVD

4d ATRG 4d HOTRG

Memory 𝑂(𝐷5) 𝑂(𝐷8)

Time 𝑂(𝐷9) 𝑂(𝐷15)

𝐷: bond dimension (singular value matrix is truncated by 𝐷)

𝑂 𝐷9 calculations in 4d ATRG  ->  SVD and tensor contraction 

Our implementation

SVD contraction

Strategy Randomized SVD Parallel computing

Time 𝑂(𝐷7) 𝑂(𝐷8)

-> Parallel computation reduces the computational cost from 𝑶 𝑫𝟗 to 𝑶 𝑫𝟖



Tensor network representation (1/2)
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✔ 𝜙𝑛 = 𝑟𝑛e
i𝜋𝑠𝑛 : continuous d. o. f. 

✔ 𝜇 : chemical potential

𝑆lat = Σ𝑛∈Γ 8 +𝑚2 𝑟𝑛
2 + 𝜆𝑟𝑛

4 − 2Σ𝜈𝑟𝑛𝑟𝑛+ෝ𝜈 cos(𝜋𝑠𝑛+ෝ𝜈 − 𝜋𝑠𝑛 + i𝜇𝛿𝜈,4)

To derive a finite dimensional tensor, we need to discretize 𝑟𝑛 and 𝑠𝑛:

-> The partition function 𝑍 is approximated by 𝑍(𝐾)

𝑍(𝐾) = Σ{𝛼,𝛽}Π𝜈=1
4 𝑀𝛼𝑛𝛽𝑛,𝛼𝑛+ෝ𝜈𝛽𝑛+ෝ𝜈

𝜈

Continuous
d. o. f.

Discrete
d. o. f.

Quadrature rule

𝑟𝑛 ∈ [0,∞] 𝛼𝑛 ∈ ℤ Gauss-Laguerre : 0
∞
d𝑟𝑛 e

−𝑟𝑛𝑓 𝑟𝑛 ≈ σ𝛼𝑛=0
𝐾 𝑤𝛼𝑛𝑓(𝑟𝛼𝑛)

𝑠𝑛 ∈ [−1,1] 𝛽𝑛 ∈ ℤ Gauss-Legendre:         1−
1
d𝑠𝑛𝑓 𝑠𝑛 ≈ σ𝛽𝑛=0

𝐾 𝑢𝛽𝑛𝑓(𝑠𝛽𝑛)



Tensor network representation (2/2)
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SVD separates 𝑛-site d. o. f. from (𝑛 + Ƹ𝜈)-site d. o. f. :

𝑀𝛼𝑛𝛽𝑛,𝛼𝑛+ෝ𝜈𝛽𝑛+ෝ𝜈

𝜈
= Σ𝑙=1

𝐾2 ෩𝑈𝛼𝑛𝛽𝑛,𝑙
𝜈 ෨𝑉𝛼𝑛+ෝ𝜈𝛽𝑛+ෝ𝜈,𝑙

𝜈 ∗
≈ Σ𝑙=1

𝐷 ෩𝑈𝛼𝑛𝛽𝑛,𝑙
𝜈 ෨𝑉𝛼𝑛+ෝ𝜈𝛽𝑛+ෝ𝜈,𝑙

𝜈 ∗

Tensor network representation:   𝑍 𝐾 ≈ Tr[Π𝑛𝑇𝑥𝑛𝑦𝑛𝑧𝑛𝑡𝑛𝑥𝑛′ 𝑦𝑛′ 𝑧𝑛′ 𝑡𝑛′ ]

෩𝑈 ≔ 𝑈 𝜎
෨𝑉∗ ≔ 𝑉∗ 𝜎

( 𝑇𝑥𝑛𝑦𝑛𝑧𝑛𝑡𝑛𝑥𝑛′ 𝑦𝑛′ 𝑧𝑛′ 𝑡𝑛′ = Σ𝛼𝑛=1
𝐾 Σ𝛽𝑛=1

𝐾 ෩𝑈𝛼𝑛𝛽𝑛,𝑥𝑛
1 ෩𝑈𝛼𝑛𝛽𝑛,𝑦𝑛

2 ෩𝑈𝛼𝑛𝛽𝑛,𝑧𝑛
3 ෩𝑈𝛼𝑛𝛽𝑛,𝑡𝑛

4 ෨𝑉
𝛼𝑛𝛽𝑛,𝑥𝑛

′
1 ∗ ෨𝑉

𝛼𝑛𝛽𝑛,𝑦𝑛
′

2 ∗ ෨𝑉
𝛼𝑛𝛽𝑛,𝑧𝑛

′
3 ∗ ෨𝑉

𝛼𝑛𝛽𝑛,𝑡𝑛
′

4 ∗ )

𝑍 𝐾 =

✔ Tensor 𝑇 locates on each lattice site 𝑛

✔ Tensor contraction is approximately 
done by TRG
( Tensor network is coarse-grained )𝑡

𝑥
𝑦

𝑧

( 𝑍(𝐾) = Σ{𝛼,𝛽}Π𝜈=1
4 𝑀𝛼𝑛𝛽𝑛,𝛼𝑛+ෝ𝜈𝛽𝑛+ෝ𝜈

𝜈
)



Numerical Results



Algorithmic-parameters dependence

7/12

𝐷 = 45

𝐾 = 64

with 𝑚 = 0.1, 𝜆 = 1, 𝜇 = 0.6, 𝐿 = 1024

little 𝐾 dependence beyond 𝐾 ∼ 30 converging around 𝐷 ∼ 40

Polynomial order 
in the Gauss quadrature

Bond dimension in ATRG



Average phase factor ei𝜃
pq
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with 𝑚 = 0.1, 𝜆 = 1, 𝐾 = 64, 𝐷 = 45

ei𝜃
pq

quickly falls off from 1 to 0 beyond 𝜇 ∼ 0.05

-> difficult to perform a MC simulation on large volume

Reweighting in MC

𝑍pq = න[d𝜙] e−Re 𝑆

with e−𝑆 = e−Re 𝑆 ei𝜃

𝑂 =
𝑂ei𝜃

pq

ei𝜃 pq

ei𝜃
pq

= 𝑍/𝑍pq



Particle number density (1/2)
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with 𝑚 = 0.1, 𝜆 = 1, 𝐾 = 64, 𝐷 = 45

Resulting 𝑛 is qualitatively not bad even in the region with ei𝜃
pq

∼ 0.

𝑛 stays around 0 up to 𝜇 ≈ 0.65 and shows the rapid increase with 𝜇 ≳ 0.65

-> The Silver Blaze phenomenon is confirmed



Particle number density (2/2)
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with 𝑚 = 0.1, 𝜆 = 1, 𝐾 = 64, 𝐷 = 45, 𝐿 = 1024

The Silver Blaze phenomenon is attributed to the imaginary part of 𝑆

𝑛 vs 𝑛 pq



𝜙 2 : a discussion of the validity of the numerical results
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Mean-field estimation

4 sinh2
𝜇𝑐
MF

2
= 𝑚2 + 4𝜆 𝜙 2

𝜇=0
Aarts, JHEP05(2009)052

↓

𝝁𝒄
𝐌𝐅 ≈ 𝟎. 𝟕𝟎

with 𝑚 = 0.1, 𝜆 = 1, 𝐾 = 64, 𝐷 = 45

𝜙 2 ≈ 0.125 over 0 ≲ 𝜇 ≲ 0.6

Location of 𝝁𝒄 in the current ATRG calculations seems reasonable



Summary

12/12

• This is the first application of TRG approach to 4d QFT

• The Silver Blaze phenomenon (thermodynamic observables at zero 
temperature are independent of 𝜇 up to 𝜇𝑐 ) is clearly observed for 𝑛

and 𝜙 2

• The location of 𝜇𝑐 seems reasonable compared with the mean-field 
value 𝜇𝑐

MF

• TRG approach does not suffer from the sign problem and nicely works 
to evaluate the observables on almost thermodynamic lattice 

• TRG will be an effective numerical approach to other 4d QFTs


