Tensor renormalization group approach to four-dimensional complex ϕ^4 theory at finite density

Shinichiro Akiyama (Univ. of Tsukuba) in collaboration with D. Kadoh, Y. Kuramashi, T. Yamashita, Y. Yoshimura

Based on arXiv:2005.04645 [hep-lat]

Asia-Pacific Symposium for Lattice Field Theory (APLAT2020) 2020.8.7

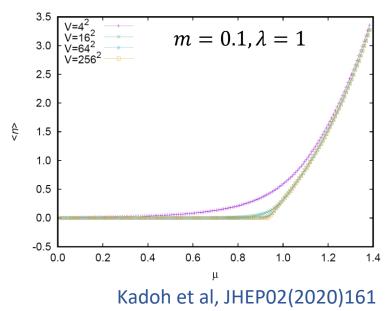
Tensor renormalization group approach

Tensor Renormalization Group (TRG) is a deterministic numerical method.

- No sign problem
- The computational cost scales logarithmically w. r. t. the system size

TRG has been successfully applied to various 2d models w/ or w/o the sign problem.

Ex) 2d complex ϕ^4 theory at finite density



-> the Silver Blaze phenomenon is successfully confirmed

> <u>Today's message</u> TRG is an effective approach not only in 2 dimensions but also in 4 dimensions!

4d complex ϕ^4 theory at finite density

- ✓ a typical system with the sign problem
- ✓ the Silver Blaze phenomenon
 - -> thermodynamic observables at zero temperature are independent of μ up to μ_c
 - Complex Langevin method Aarts, PRL102(2009)131601
 - Thimble approach
 Cristoforetti et al, PRD88(2013)051501
 Fujii et al, JHEP10(2013)147
 - World-line representation Gattringer-Kloiber, NPB869(2013)56-73
 - etc ..., and Tensor renormalization group This work is the first application of TRG to 4d QFT!!!

TRG in 4d system

- Higher-Order TRG (HOTRG) Xie et al, PRB86(2012)045139
 - ✓ Applicable to any dimensional lattice
 - ✓ Not so economic in 4d lattice
 - -> 4d Ising model on $V = 1024^4$ (with parallel computation) SA et al, PRD100(2019)054510
- Anisotropic TRG (ATRG) Adachi et al, arXiv:1906.02007
 - ✓ Also applicable to any dimensional lattice
 - Accuracy with the fixed computational time is improved compared with the HOTRG
 - -> 4d Ising model on $V = 1024^4$ (with parallel computation) SA et al, PoS(LAT2019)363

We employ the ATRG algorithm in this work

Anisotropic TRG with parallel computation

ATRG is a coarse-graining (direct truncation) method based on SVD

	4d ATRG	4d HOTRG
Memory	$O(D^5)$	$O(D^8)$
Time	$O(D^{9})$	$O(D^{15})$

D: bond dimension (singular value matrix is truncated by *D*)

 $O(D^9)$ calculations in 4d ATRG -> SVD and tensor contraction

Our implementation

	SVD	contraction
Strategy	Randomized SVD	Parallel computing
Time	$O(D^7)$	$O(D^8)$

-> Parallel computation reduces the computational cost from $O(D^9)$ to $O(D^8)$

Tensor network representation (1/2)

✓
$$\phi_n = r_n e^{i\pi s_n}$$
 : continuous d. o. f.
✓ μ : chemical potential

 $S_{\text{lat}} = \Sigma_{n \in \Gamma} \left[\left(8 + m^2 \right) r_n^2 + \lambda r_n^4 - 2\Sigma_{\nu} r_n r_{n+\widehat{\nu}} \cos(\pi s_{n+\widehat{\nu}} - \pi s_n + i\mu \delta_{\nu,4}) \right]$

To derive a finite dimensional tensor, we need to discretize r_n and s_n :

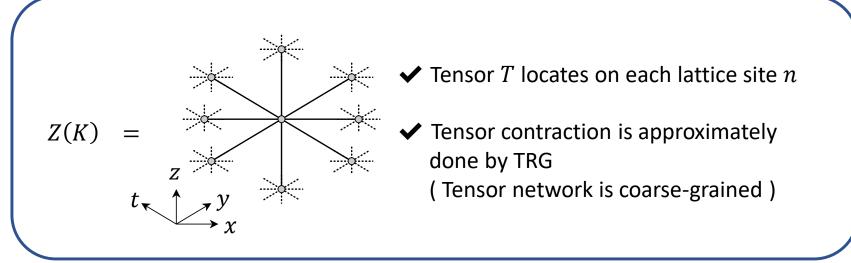
Continuous d. o. f.	Discrete d. o. f.	Quadrature rule
$r_n \in [0, \infty]$ —	$\rightarrow \alpha_n \in \mathbb{Z}$	Gauss-Laguerre : $\int_0^\infty dr_n e^{-r_n} f(r_n) \approx \sum_{\alpha_n=0}^K w_{\alpha_n} f(r_{\alpha_n})$
$s_n \in [-1,1]$ —	$\rightarrow \beta_n \in \mathbb{Z}$	Gauss-Legendre: $\int_{-1}^{1} ds_n f(s_n) \approx \sum_{\beta_n=0}^{K} u_{\beta_n} f(s_{\beta_n})$

-> The partition function Z is approximated by Z(K)

$$Z(K) = \Sigma_{\{\alpha,\beta\}} \Pi_{\nu=1}^{4} M_{\alpha_n \beta_n, \alpha_{n+\widehat{\nu}} \beta_{n+\widehat{\nu}}}^{[\nu]}$$

Tensor network representation (2/2)

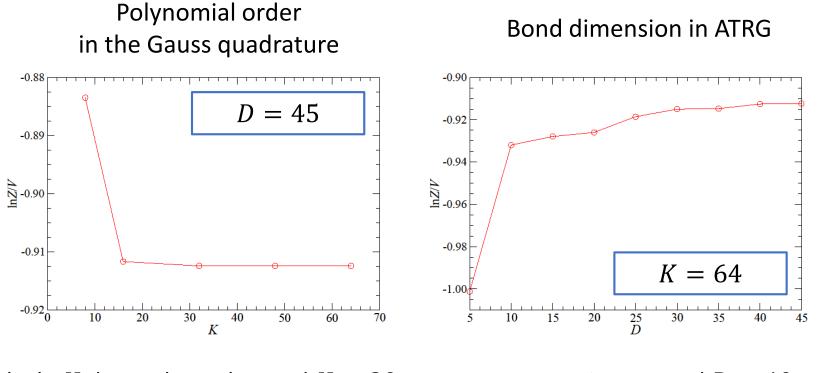
 $(T_{x_{n}y_{n}z_{n}t_{n}x_{n}'y_{n}'z_{n}'t_{n}'} = \Sigma_{\alpha_{n}=1}^{K} \Sigma_{\beta_{n}=1}^{K} \widetilde{U}_{\alpha_{n}\beta_{n},x_{n}}^{[1]} \widetilde{U}_{\alpha_{n}\beta_{n},y_{n}}^{[2]} \widetilde{U}_{\alpha_{n}\beta_{n},y_{n}}^{[3]} \widetilde{U}_{\alpha_{n}\beta_{n},z_{n}}^{[4]} \widetilde{U}_{\alpha_{n}\beta_{n},x_{n}}^{[1]*} \widetilde{V}_{\alpha_{n}\beta_{n},y_{n}'}^{[2]*} \widetilde{V}_{\alpha_{n}\beta_{n},z_{n}'}^{[3]*} \widetilde{V}_{\alpha_{n}\beta_{n},z_{n}'}^{[4]*} \widetilde{V}_{\alpha_{n}\beta_{n},$



Numerical Results

Algorithmic-parameters dependence

with $m = 0.1, \lambda = 1, \mu = 0.6, L = 1024$

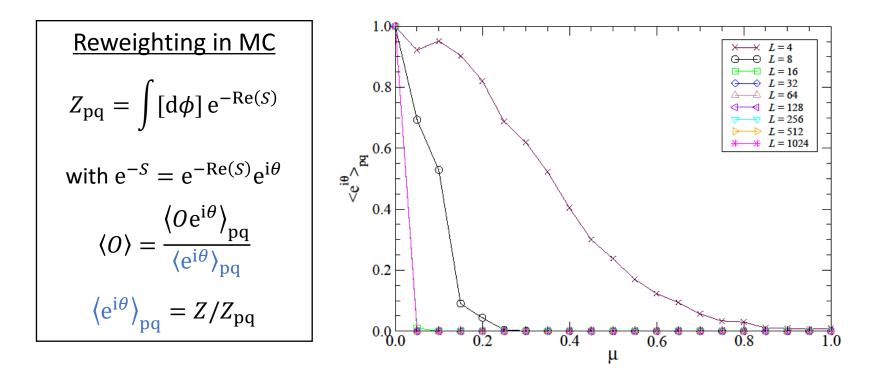


converging around $D \sim 40$

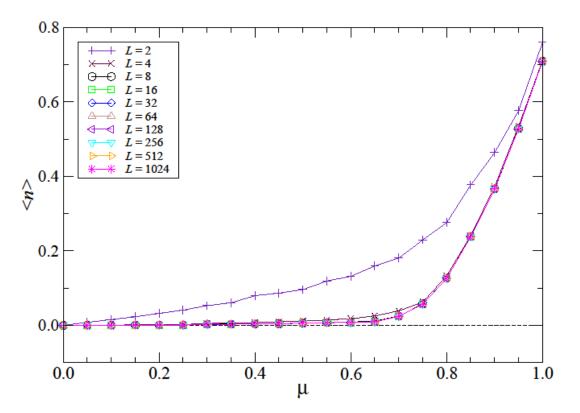
little *K* dependence beyond $K \sim 30$

Average phase factor
$$\langle e^{i\theta} \rangle_{pq}$$

with $m = 0.1, \lambda = 1, K = 64, D = 45$



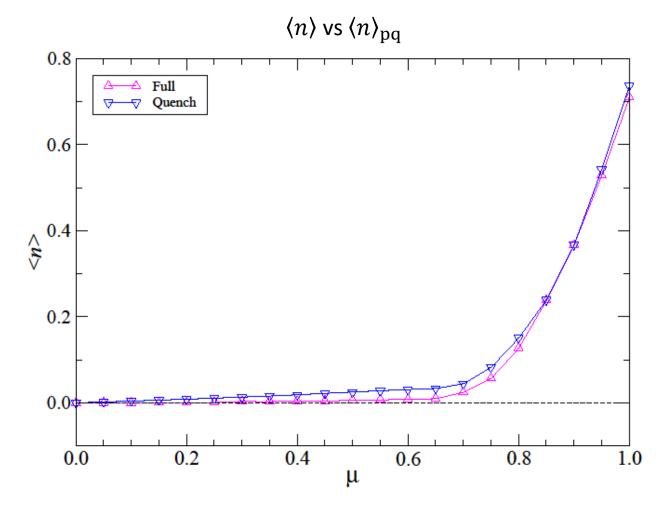
 $\langle e^{i\theta} \rangle_{pq}$ quickly falls off from 1 to 0 beyond $\mu \sim 0.05$ -> difficult to perform a MC simulation on large volume Particle number density (1/2) with $m = 0.1, \lambda = 1, K = 64, D = 45$



Resulting $\langle n \rangle$ is qualitatively not bad even in the region with $\langle e^{i\theta} \rangle_{pq} \sim 0$. $\langle n \rangle$ stays around 0 up to $\mu \approx 0.65$ and shows the rapid increase with $\mu \gtrsim 0.65$ -> The Silver Blaze phenomenon is confirmed

Particle number density (2/2)

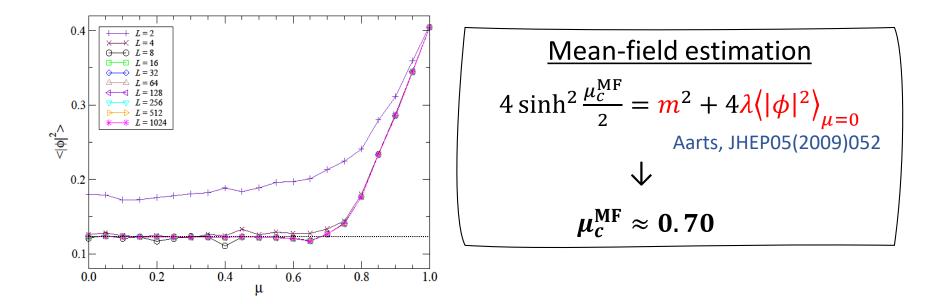
with $m = 0.1, \lambda = 1, K = 64, D = 45, L = 1024$



The Silver Blaze phenomenon is attributed to the imaginary part of S

10/12

$\langle |\phi|^2 \rangle$: a discussion of the validity of the numerical results with m = 0.1, $\lambda = 1$, K = 64, D = 45



 $\langle |\phi|^2 \rangle \approx 0.125$ over $0 \leq \mu \leq 0.6$

Location of μ_c in the current ATRG calculations seems reasonable

11/12

Summary

- This is the first application of TRG approach to 4d QFT
- The Silver Blaze phenomenon (thermodynamic observables at zero temperature are independent of μ up to μ_c) is clearly observed for $\langle n \rangle$ and $\langle |\phi|^2 \rangle$
- The location of μ_c seems reasonable compared with the mean-field value $\mu_c^{\rm MF}$
- TRG approach does not suffer from the sign problem and nicely works to evaluate the observables on almost thermodynamic lattice
- TRG will be an effective numerical approach to other 4d QFTs