Nucleon electromagnetic form factors at high momenta using the Feynman-Hellmann method

Mischa Batelaan

The University of Adelaide

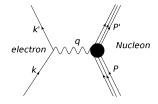
5 August 2020

The Feynman-Hellmann approach offers an alternative for calculating matrix elements which does not require three-point functions

Two-exponential fits and a weighting method can be used to control the excited states in the form factor calculation at high momenta.

Structure of the nucleons

- How is the charge distributed inside the nucleons?
- How does this distribution change at smaller scales?
- Need to calculate vector matrix elements: $\langle P(p') | \mathcal{J}(0) | P(p) \rangle$
- matrix elements can be parameterised by two form factors: F_1, F_2



$$\langle P'|J^{\nu}|P\rangle = \bar{u}(p')\Big[\gamma^{\mu}F_1(Q^2) + i\sigma^{\mu\nu}\frac{q_{\nu}}{2M}F_2(Q^2)\Big]u(p)$$

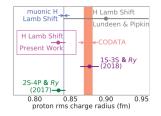
Often rewrite the matrix element in terms of G_E and G_M , as they are related to the charge and magnetisation distribution

Experimental results

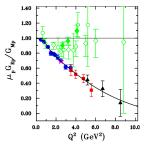
- quantity of highest interest is the momentum dependence at various Q^2 values.
- At Q² close to 0, this dependence gives the charge radius.
- Recoil polarisation experiments have shown ineresting large Q^2 behaviour

Ratio $\frac{G_E}{G_M}$ crossing over zero?

- Conflict with older Rosenbluth separation data
 - \rightarrow more data is required



[Bezginov,2019] DOI:10.1126/science.aau7807



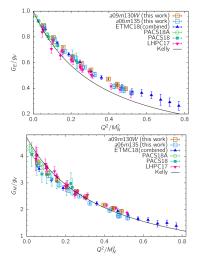
[JLab,2015] arXiv:1503.01452

▲ 同 ▶ → 三 ▶

Lattice results

- High quality data for low Q^2
- Fewer calculations at high Q² difficulties with signal-to-noise ratio and controlling excited states.
- Expensive to calculate high enough statistics at high momenta

Can the Feynman-Hellmann approach deliver improvements at high Q^2 ?



[Jang,2020] arXiv:1906.07217

Feynman-Hellmann theorem

$$\frac{\partial E_{\psi}}{\partial \lambda} = \langle \psi | \frac{\partial H}{\partial \lambda} | \psi \rangle$$

Consider the forward case for the proton:

• Insert a new term into the Lagrangian

$$\mathcal{L}(x)
ightarrow \mathcal{L}(x) + \lambda \mathcal{O}(x)$$

• Calculate the energy of the proton with this new term:

$$G(\lambda, \mathbf{p}, t) \xrightarrow{t >> 0} A(\lambda) e^{-E(\lambda, \mathbf{p})t}$$

• Feynman-Hellmann theorem relates the energy shift to the matrix element:

$$\left. \frac{\partial E(\lambda, \mathbf{p})}{\partial \lambda} \right|_{\lambda=0} = \frac{1}{2E} \left< P(\mathbf{p}) |\mathcal{O}(0)| P(\mathbf{p}) \right>$$

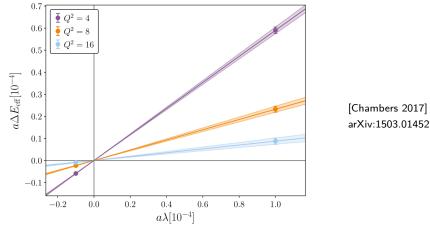
How does the energy shift dE behave at small λ ?

Mischa Batelaan

5 August 2020 7 / 20

Feynman-Hellmann theorem $\frac{\partial E_{\psi}}{\partial \lambda} = \langle \psi | \frac{\partial H}{\partial \lambda} | \psi \rangle$

- At $\lambda = 10^{-4}, -10^{-5}$ the energy shift behaves linearly with λ
- Can now calculate matrix elements by using only lattice two-point functions.



Feynman-Hellmann theorem

$$\frac{\partial E_{\psi}}{\partial \lambda} = \langle \psi | \frac{\partial H}{\partial \lambda} | \psi \rangle$$

Electromagnetic form factors at large momentum

• Insert a term with vector current into the lagrangian

$$\mathcal{L}(x) \rightarrow \mathcal{L}(x) + 2\lambda cos(\mathbf{q} \cdot \mathbf{x}) \bar{q}(x) \gamma_{\mu} q(x)$$

• Requirement: Breit frame is necessary here.

Since we want to access high Q^2 , setting $\mathbf{p} = -\mathbf{p}'$ will satisfy this and keep noise to a minimum

• Using the temporal current: $\frac{dE_{\rho}(\mathbf{p},\gamma_4)}{d\lambda}\Big|_{\lambda=0} = \frac{m_{\rho}}{E_{\rho}(\mathbf{p})}G_{E,\rho}(Q^2)$

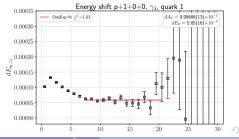
• Using the spatial current: $\frac{dE_p(\mathbf{p},\sigma,\gamma_2)}{d\lambda}\Big|_{\lambda=0} = \frac{[\mathbf{q} \times \hat{\mathbf{e}}]_2}{2E_p(\mathbf{p})}G_{M,p}(Q^2)$

Ratio of two-point functions How do we get the energy shift dE?

Construct a ratio forward and backwards propagating states which gives the energy shift in the large time limit.

$$egin{aligned} &R_{E,p}(\lambda,\pm\mathbf{p},t)\equiv \left|rac{G^+(\lambda,\pm\mathbf{p},t)}{G^+(0,\pm\mathbf{p},t)}rac{G^-(0,\pm\mathbf{p},-t)}{G^-(\lambda,\pm\mathbf{p},-t)}
ight|^rac{1}{2}\ &rac{ ext{large t}}{\longrightarrow}B(\lambda)e^{\Delta E(\lambda)t} \end{aligned}$$

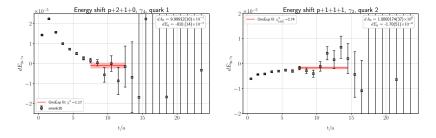
Good fit for low momentum transfer and heavy quark masses.



Nucleon form factors at high Q°

Ratio of two-point functions

At high momentum transfer or low quark masses, the signal-to-noise ratio is lower and choosing a suitable plateau region becomes difficult.



Need a better and more consistent method for choosing a good fitting range.

Excited states

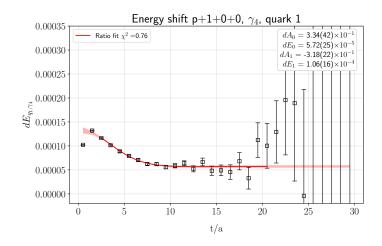
Try to include the excited states in the fitting function to be able to include earlier timeslices in the fitting range.

$$\begin{split} \mathsf{R}_{\mathsf{E},p}(\lambda,\pm\mathbf{p},t) &\equiv \left| \frac{G^+(\lambda,\pm\mathbf{p},t)}{G^+(0,\pm\mathbf{p},t)} \frac{G^-(0,\pm\mathbf{p},-t)}{G^-(\lambda,\pm\mathbf{p},-t)} \right|^{\frac{1}{2}} \\ & \xrightarrow{\mathsf{large t}} \left| \frac{(A_0 + \Delta A_0) e^{-(E_0 + \Delta E_0)t} + (A_1 + \Delta A_1) e^{-(E_1 + \Delta E_1)t}}{(A_0 - \Delta A_0) e^{-(E_0 - \Delta E_0)t} + (A_1 - \Delta A_1) e^{-(E_1 - \Delta E_1)t}} \end{split}$$

Need 4 parameters from the fit to the ratio: $\Delta A_0, \Delta A_1, \Delta E_0, \Delta E_1$

Two-exponential fitting

Allows for starting the fit at earlier timeslices.

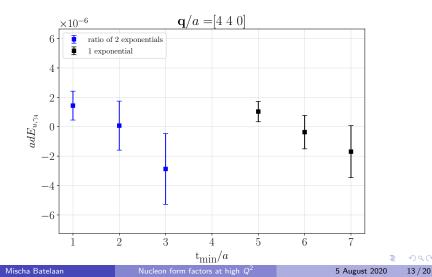


 $N_{conf} = 1500, \quad 32 \times 64, \quad m_{\pi} \approx 470 \, MeV$

Mischa Batelaan

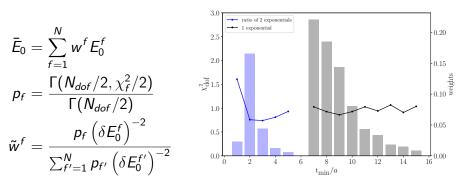
Two-exponential fitting $\mathbf{q}/\mathbf{a} = (4, 4, 0), \ m_{\pi} = 310 \text{MeV}$ Fit parameters still depend on the chosen time range

Can we minimize the dependence on the chosen time range?



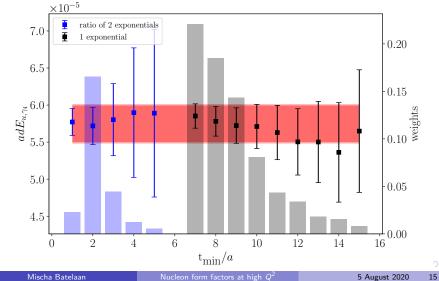
Weighted average of fits

 Include fits with several different t_{min} values and give them weighting based on [Beane 2020, ArXiv:2003.12130]



 $p_f = p$ -value for the fit, $w^f = weighting$ of the fit

Weighted average of fits $N_{conf} = 1500, \quad 32^3 \times 64, \quad m_{\pi} \approx 470 \, MeV, \quad \frac{q}{2} = (2, 0, 0)$



5 August 2020 15 / 20

Three-point functions

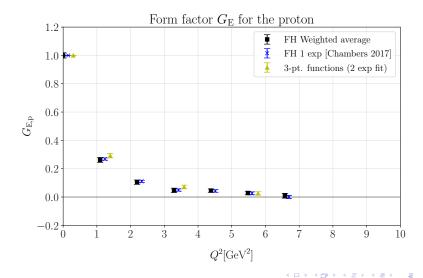
How does this method compare to the usual three-point functions?

Recalculate the electromagnetic form factors of the nucleon with three-point functions on the same lattice and using the same breit frame momenta to facilitate an exact comparison.

- UKQCD/QCDSF ensembles with $N_f = 2 + 1$
- $L^3 \times T = 32^3 \times 64$, a = 0.074 fm, $m_{\pi} \approx 470 MeV$
- \bullet source-sink separations: 0.74 ${\rm fm},~$ 0.96 ${\rm fm},~$ 1.18 ${\rm fm}$
- Same Breit frame momenta as the Feynman-Hellmann calculation
- Use a two-exponential fit to the three source-sink separations

Image: A math a math

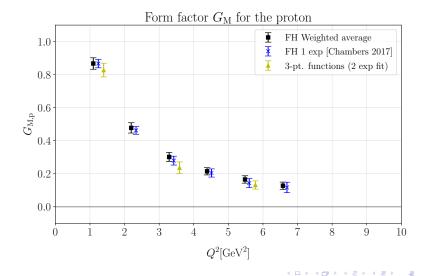
$N_{conf} = 1500, \quad 32^3 \times 64, \quad m_\pi \approx 470 \, MeV$



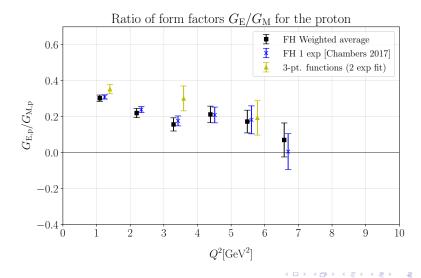
Mischa Batelaan

5 August 2020 17 / 20

$N_{conf} = 1500, \quad 32^3 \times 64, \quad m_\pi \approx 470 \, MeV$



$N_{conf}=1500,~~32^3 imes 64,~~m_{\pi}pprox 470\, MeV$



Conclusion

- The Feynman-Hellmann approach allows for the calculation of form factors at high momentum.
- Including the contributions from excited states in the fits makes the analysis more reliable across quark masses and momenta.

Next steps:

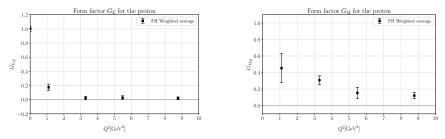
- Increase N_{conf} for lighter masses to allow for the flavour breaking expansion analysis from [Bickerton 2019]
- Include more lattice spacings and volumes in the analysis.

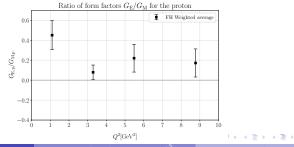
Bonus slides

3

<ロト < 四ト < 三ト < 三ト

 $N_{conf} = 1500, 32^3 \times 64, m_{\pi} \approx 360 MeV$



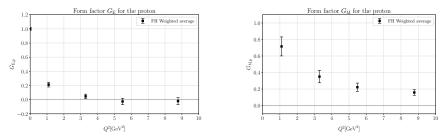


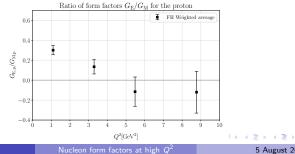
Mischa Batelaan

Nucleon form factors at high Q^2

э

 $N_{conf} = 1500, \quad 32^3 \times 64, \quad m_\pi \approx 310 \, MeV$





5 August 2020 23 / 20

э

Mischa Batelaan