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• Faster multigrid Chebyshev setup

• First cross over of setup + solve faster than red black CGNR

• Detailed comparison of arXiv:1611.06944 and arXiv:2004.07732 in D=4 QCD.

• Aim towards next generation of 2+1+1f HMC simulations

With thanks to USQCD ECP solver call participants (esp. Brower, Clark, Weinberg)



Moebius Domain Wall Fermions
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D+ = (bDW + 1)

D− = (1−cDW )

HM = γ5
(b + c)DW

2 + (b−c)DW

Shamir DWF case: b = 1, c = 0

c = 0⇒HGDW = γ5R5DGDW = Γ5DGDW



Hierarchically deflated conjugate gradient : arXiv:arXiv:1402.2585

Why not HDCG? coarsen (DDWF )oo − (DDWF )oe (DDWF )−1
ee (DDWF )eo

• Significant speed up for valence DWF on BlueGene/Q

• Not as significant as exact eigenvector deflation with 2000 low modes

• Used in UKQCD analysis on small memory machines

• Next-to-next-to-next-nearest neighbour coarse space (81 point stencil)

• Deflate coarse space

• Non-recursive

• Too expensive to set up for use in HMC

Cohen/Brower/Clark/Osborne : coarsen D†
DWF DDWF arXiv:1205.2933 (17 point stencil)



Hierarchically deflated conjugate residual : arXiv:1611.06944
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• Generate 5D null space Γ5DDWF φi ∼ 0

• Coarsen with
φ
±
i = 1±Γ5φi

Restrict to blocks b

P = |φ b±
i 〉

• Coarse space is 4-dimensional

• Coarse space is nearest neighbour - aim for HMC

• Coarse operator

ĤDWF = P†Γ5DDWFP = P†HDWFP

• Then

Ĥ†
DWF ĤDWF = (P†HDWFP)2 = P†D†

DWFPP
†DDWFP

• Outer GCR, smoothers and (deflated) coarse solve
based on normal equations

• As nearest neighbour it is recursive in principle, but
prefer to deflate repeated inner solves



Hierarchically deflated conjugate residual : arXiv:1611.06944

Rationale: Wilson fermions Reλ ≥ 0 in “Hamburger” plot:

DWF spectrum shifted placing zero in the centre of the first opening.

• Violates the folklore present in numerical analysis of the half-plane condition.

• In the infinite volume the spectrum becomes dense
• Must approximate P(z)→ 1

z over a region in the complex plane encircling the pole zero

• Impossible to reproduce the phase behaviour around pole with a polynomial

CGNE: multiply by z̄ ⇒ real, pos def:

P(z̄z)≈ 1

z̄z
; z̄z ∈ (0,∞)

HDCR: use Γ5 to make the system real indefinite. Must make coarsening Γ5 compatible

• As 1
x is odd, every second term cannot contribute: coarse Krylov space is in effect CGNR

krylov space

• Real spectrum lies in range
[
m2

l ,8
2
]

• Coarsening remains nearest neighbour
• Fine - Coarse - CoarseCoarse - eVectors



Hierarchically deflated conjugate residual

Novel setup scheme:

• Apply Chebyshev low pass filter: grows as xN

• Inverse iteration costs multiple approximate solves per vector

• Use one Chebyshev low pass, then use recursive sequence to generate multiple independent
vectors

• O(100-200) fine matrix multiples per new vector.
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New approach to multigrid setup



Hierarchically deflated conjugate residual

• Significant software effort to keep 4 GPUs busy

1. Subspace generation
2. Matrix element calculation
3. Coarsest space eigenvectors
4. Solve



163 test system

• First test system: 163×32×16. Set mass artificially low 0.00078

• Single node on DOE Summit computer

• Chebyshev smoother with full comms, double precision

Algorithm Fine Matmuls Time
CGNE 3200 44s
HDCR 650 19s
HDCR 400 15s

Chebyshev 2000 26s
Lanczos 10s

Ldop calc 10s
Setup+solve 2650 70s



483×96 test system

• 483×96×16. Ls=24 mass 0.00078

• 128 nodes on DOE Summit computer

• double precision, two level multigrid + Lanczos deflation

• Chebyshev smoother with full comms

Algorithm Fine Matmuls Time
CGNE 11400 440s
HDCR 2400 240s

Chebyshev 2500 100s
Lanczos 40s

Ldop calc 20s
Setup+solve 4900 400s

Set up AND solve faster than a single red black preconditioned solve

In principle (slight) win for HMC without subspace reuse across Hasenbusch terms or timesteps



963×192 test system

• Second test system: 483×96×16. Ls=12 mass 0.00054

• 256 nodes on DOE Summit computer

• single precision, two level multigrid + Lanczos deflation

• Chebyshev smoother with full comms

Algorithm Fine Matmuls Time
CGNE 14000 700s
HDCR 1300 250s

Chebyshev 2500 100s

• Still dominated by coarse space (256 evecs)

• Gain greater at bigger Ls
• Lanczos or 3 level multigrid is under on-going tuning.

• TODO: change Kernel and study mres vs b



Multigrid for Domain Wall Fermions

Multigrid for Chiral Lattice Fermions: Domain Wall
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Abstract

Critical slowing down for the Krylov Dirac solver presents a major obstacle to

further advances in lattice field theory as it approaches the continuum solution. We

propose a new multi-grid approach for chiral fermions, applicable to both the 5-d

domain wall or 4-d Overlap operator. The central idea is to directly coarsen the 4-d

Wilson kernel, giving an e↵ective domain wall or overlap operator on each level. We

provide here an explicit construction for the Shamir domain wall formulation with

numerical tests for the 2-d Schwinger prototype, demonstrating near ideal multi-grid

scaling. The framework is designed for a natural extension to 4-d lattice QCD chi-

ral fermions, such as the Möbius, Zolotarev or Borici domain wall discretizations

or directly to a rational expansion of the 4-d Overlap operator. For the Shamir

operator, the e↵ective overlap operator is isolated by the use of a Pauli-Villars pre-

conditioner in the spirit of the Kähler-Dirac spectral map used in a recent staggered

MG algorithm [1].
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arXiv:2004.07732

• nice proof the D(mpv )†D(ml ) has half plane complex
spectrum

• Opens new methods for non-hermitian krylov solvers and
multigrid for DWF

• Generate 4D null space Hw φi ∼ 0

• Coarsen with
φ
±
i = 1± γ5φi

• Build 5D coarse Mobius with ĤW

• BCHW used 2D Schwinger model

sp{(P†D†(mpv )PP†D(ml )P)n}= sp{(P†
γ5D(mpv )PP†

γ5D(ml )P)n}



Implemented D=4 QCD in Grid

Share code between fine Grid Mobius and Coarse Grid Mobius

D̂5
GDW =
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First look at D=4 QCD on 163 test system
Compare ignoring cost of coarse space:

• BiCGSTAB on D(mpv )†D(ml ) (20 iterations)

• Coarse BiCGSTAB on P†D(mpv )†PP†D(ml )P
• V11 multigrid with BiCGSTAB smoother, BiCGSTAB coarse solver, PrecGCR(16) outer

Algorithm operator Outer iterations Fine Matmuls
CG unprec D(ml )

†D(ml ) 9500 9500
CGNE (Mee −Meo M−1

oo Moe ) 3200 3200
CGNE (1−M−1

ee Meo M−1
oo Moe ) 3880 3880

BiCGSTAB D(mpv )†D(ml ) 4140 4140
Tuned HDCR P†D(ml )

†PP†D(ml )P 23 460
HPD-MG P†D(ml )

†PP†D(ml )P 27 650
PV-MG P†D(mpv )†PP†D(ml )P 24 960

• Hdwf and Hw deflation both work

• Outer iterations for D̂†
l D̂l very similar

• Outer iterations for D̂†
pv D̂l higher and higher order smoother needed (with BiCGSTAB).

• Needed to use 20 fine matrix multiplies in smoother for convergence

• Hw set up cost is reduced as 4D setup, but doesn’t out balance solve time

• Coarse space is Ls bigger, and even with Lanczos deflation clock favours HDCR

• Tried reducing Ls in coarse space, but insufficient



Coarse space solver

Converging to 10−8

Coarsening Algorithm Operator Coarse Matmuls
Hdwf HDCR-CG P†D(ml )

†PP†D(ml )P 4736
HDCR-CG(defl) P†D(ml )

†PP†D(ml )P 668
BiCGSTAB P†D(mpv )†PP†D(ml )P 4839

Hw CG P†D(ml )
†PP†D(ml )P 4770

CG defl P†D(ml )
†PP†D(ml )P 756

BiCGStab P†D(mpv )†PP†D(ml )P 1221

• Coarse space is Ls bigger, and even with momest Lanczos deflation clock favours HDCR

• Recursive or SVD deflation may reduce coarse cost for D̂†
pv D̂l



Best time comparison 163×32

Algo smoother outer fine mat setup solve
HDCR 10 23 460 30s + 20s 19s

MGrid D̂†
l D̂l 10 28 560 8s+160s 76s

MGrid D̂†
pv D̂l 20 24 960 8s 210s

• MGrid is 90% dominated by coarse space.

• Deflating the D̂†
l D̂l , but not the D̂†

pv D̂l

• Recursive may reduce coarse cost for D̂†
pv D̂l , but greater smoother order is discouraging

• GMRES etc.. possible too



Summary

• Compared two approaches to DWF multigrid arXiv:1611.06944 and arXiv:2004.07732

• Found similar ratio of matrix multiplies to Fine unpreconditione CG as BCHW.
Deflation is working.

• Possible to deflate with only 4D Hw setup
• 24 blocking and 12 vectors required
• makes 5D coarse space expense prohibitive; pursuing HDCR
• If subspace with 44 blocking deflated effectively, Hw coarsening would be favourable

• Various failed attempts at using Hw coarsening to accelerate Hdwf coarsening

• Demonstrated HDCR for continued fraction overlap (but slow, untuned)

• Aim for 2+1+1f evolution with b ≥ 1,c = 0 and fast setup multigrid in HMC

• Implies change of kernel so accompany with change of gauge action and Nf .

• All code was written in Grid, CPU / GPU portable


