Multigrid Methods for Chiral Fermions

Peter Boyle*, Azusa Yamaguchi (+ input from Daniel Richtmann, Tilo Wettig)
Brookhaven National Laboratory, University of Edinburgh
® Faster multigrid Chebyshev setup
® First cross over of setup + solve faster than red black CGNR
® Detailed comparison of arXiv:1611.06944 and arXiv:2004.07732 in D=4 QCD.
® Aim towards next generation of 24+1+41f HMC simulations
With thanks to USQCD ECP solver call participants (esp. Brower, Clark, Weinberg)



Moebius Domain Wall Fermions
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Hierarchically deflated conjugate gradient : arXiv:arXiv:1402.2585

Why not HDCG? coarsen (Dpwr)oo — (Dowr )oe(Dowr ) (Dowr )eo
® Significant speed up for valence DWF on BlueGene/Q
® Not as significant as exact eigenvector deflation with 2000 low modes
® Used in UKQCD analysis on small memory machines
® Next-to-next-to-next-nearest neighbour coarse space (81 point stencil)
® Deflate coarse space
® Non-recursive

® Too expensive to set up for use in HMC

Cohen/Brower/Clark/Osborne : coarsen D}, Dpwr arXiv:1205.2933 (17 point stencil)



Hierarchically deflated conjugate residual : arXiv:1611.06944

Generate 5D null space 's Dpwe¢;i ~0

® Coarsen with
¢ =14Ts¢;
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Hierarchically deflated conjugate residual Coarse space Is 4-dimensional

® Coarse space is nearest neighbour - aim for HMC
s s ® Coarse operator
Apwr = P'Ts DpwrP = P! Hpyre P
® Then
Hye Howe = (P' HpweP)? = P’ D}, PP' DpyeP

Outer GCR, smoothers and (deflated) coarse solve
based on normal equations

® As nearest neighbour it is recursive in principle, but
prefer to deflate repeated inner solves



Hierarchically deflated conjugate residual : arXiv:1611.06944

Rationale: Wilson fermions ReA > 0 in “Hamburger” plot:

DWF spectrlim shifted placing zero in the centre of the first opening.
® Violates the folklore present in numerical analysis of the half-plane condition.
® In the infinite volume the spectrum becomes dense
® Must approximate P(z) — % over a region in the complex plane encircling the pole zero

® Impossible to reproduce the phase behaviour around pole with a polynomial

CGNE: multiply by z = real, pos def:
1
P(zz)~ —;z oo
(zz) zz,zz€ (0,00)

HDCR: use 's to make the system real indefinite. Must make coarsening I's compatible

® As % is odd, every second term cannot contribute: coarse Krylov space is in effect CGNR
krylov space

® Real spectrum lies in range [m?,8?]

® Coarsening remains nearest neighbour
® Fine - Coarse - CoarseCoarse - eVectors



Hierarchically deflated conjugate residual

Novel setup scheme:
® Apply Chebyshev low pass filter: grows as x"
® Inverse iteration costs multiple approximate solves per vector

® Use one Chebyshev low pass, then use recursive sequence to generate multiple independent
vectors

® O(100-200) fine matrix multiples per new vector.
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New approach to multigrid setup




Hierarchically deflated conjugate residual

® Significant software effort to keep 4 GPUs busy

1. Subspace generation

2. Matrix element calculation
3. Coarsest space eigenvectors
4. Solve




163 test system

® First test system: 163 x 32 x 16. Set mass artificially low 0.00078
® Single node on DOE Summit computer

® Chebyshev smoother with full comms, double precision

Algorithm Fine Matmuls ~ Time
CGNE 3200 44s
HDCR 650 19s
HDCR 400 15s

Chebyshev 2000 26s

Lanczos 10s

Ldop calc 10s

Setup+solve 2650 70s



483 x 96 test system

® 483 x 96 x 16. Ls=24 mass 0.00078
® 128 nodes on DOE Summit computer
® double precision, two level multigrid + Lanczos deflation

® Chebyshev smoother with full comms

Algorithm Fine Matmuls ~ Time
CGNE 11400 440s
HDCR 2400 240s

Chebyshev 2500 100s

Lanczos 40s

Ldop calc 20s

Setup+solve 4900 400s

’ Set up AND solve faster than a single red black preconditioned solve

In principle (slight) win for HMC without subspace reuse across Hasenbusch terms or timesteps



963 x 192 test system

Second test system: 483 x 96 x 16. Ls=12 mass 0.00054
256 nodes on DOE Summit computer
single precision, two level multigrid + Lanczos deflation

Chebyshev smoother with full comms

Algorithm Fine Matmuls  Time

CGNE 14000 700s
HDCR 1300 250s
Chebyshev 2500 100s

Still dominated by coarse space (256 evecs)

® Gain greater at bigger Ls
® Lanczos or 3 level multigrid is under on-going tuning.

TODO: change Kernel and study myes vs b



Multigrid for Domain Wall Fermions

arXiv:2004.07732
® nice proof the D(mp,)"D(m;) has half plane complex
spectrum

® Opens new methods for non-hermitian krylov solvers and
Multigrid for Chiral Lattice Fermions: Domain Wall multigrid for DWF

Richard C. Brover', M. A, Clar
Wei

® Generate 4D null space H, ¢; ~0
® Coarsen with
97 =1+ %0,
® Build 5D coarse Mobius with :‘:IW
® BCHW used 2D Schwinger model
sp{(P D7 (myp, )PP D(m)P)"} = sp{(B" 15 D(m,, )PE 15 D(my)F)" }



Implemented D=4 QCD in Grid

Share code between fine Grid Mobius and Coarse Grid Mobius
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First look at D=4 QCD on 163 test system

Compare ignoring cost of coarse space:
® BiCGSTAB on D(m,,)"D(my) (20 iterations)
® Coarse BiCGSTAB on PfD(mp, ) PP'D(m,)P
® Vi1 multigrid with BICGSTAB smoother, BICGSTAB coarse solver, PrecGCR(16) outer

Algorithm operator Outer iterations  Fine Matmuls
CG unprec D(m;)"D(my) 9500 9500
CGNE (Mee — Meo M Mioe) 3200 3200
CGNE (1= MMM, Mee) 3880 3880
BiCGSTAB D(my, ) D(m) 4140 4140
Tuned HDCR P D(m;)TPPTD(m,)P 23 460
HPD-MG PTD(my)"PPTD(m)P 27 650
PV-MG P’ D(m,, ) PP'D(m,)P 24 960

® Hg.r and H,, deflation both work

® OQuter iterations for [A);'EA), very similar

® Outer iterations for b;vb, higher and higher order smoother needed (with BiICGSTAB).
® Needed to use 20 fine matrix multiplies in smoother for convergence

® H, set up cost is reduced as 4D setup, but doesn’t out balance solve time
® Coarse space is L; bigger, and even with Lanczos deflation clock favours HDCR

® Tried reducing Ls in coarse space, but insufficient



Coarse space solver

Converging to 1078

Coarsening Algorithm Operator Coarse Matmuls
Hawr HDCR-CG PTD(m)"PPTD(m/)P 4736
HDCR-CG(defl) P D(m;) PPt D(m))P 668
BiCGSTAB P'D(mp, ) PPTD(m;)P 4839
H.y, CG P D(m;)PPTD(m,)P 4770
CG defl PYD(my) PP D(m,)P 756
BiCGStab P D(mp, ) PP D(m))P 1221

® Coarse space is L; bigger, and even with momest Lanczos deflation clock favours HDCR

® Recursive or SVD deflation may reduce coarse cost for D;vbl



Best time comparison 163 x 32

Algo smoother  outer  fine mat setup solve
HDCR 10 23 460 30s + 20s  19s
MGrid D] D, 10 28 560 8s+160s  76s
MGrid D}, Dy 20 24 960 8s 210s

MGrid is 90% dominated by coarse space.
Deflating the [),“D/ but not the ﬁ;vf)/
Recursive may reduce coarse cost for D},’vb/, but greater smoother order is discouraging

GMRES etc.. possible too



Summary

Compared two approaches to DWF multigrid arXiv:1611.06944 and arXiv:2004.07732

Found similar ratio of matrix multiplies to Fine unpreconditione CG as BCHW.
Deflation is working.

Possible to deflate with only 4D H,, setup

2* blocking and 12 vectors required

makes 5D coarse space expense prohibitive; pursuing HDCR

If subspace with 4* blocking deflated effectively, H,, coarsening would be favourable

Various failed attempts at using H,, coarsening to accelerate Hy,s coarsening

Demonstrated HDCR for continued fraction overlap (but slow, untuned)

Aim for 2+141f evolution with b>1,c =0 and fast setup multigrid in HMC

Implies change of kernel so accompany with change of gauge action and Ny.

All code was written in Grid, CPU / GPU portable



