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Introduction



Running coupling constant αs

Physical interest

• αs plays a key role in the understanding of QCD and in its applications to collider physics.

• The uncertainty of αs is one of dominant sources of uncertainty in SM predictions for the partial

widths H → bb, H → gg .

• Higher precision determinations are needed to maximize the potential of experimental

measurements at the LHC, for high-precision Higgs studies at future colliders and investigate of

the stability of the vacuum.

• The value of αs yields one of the essential boundary conditions for completions of the SM at high

energies.

Typical determination

• We measure a short-distance quantity Q at scale µ (experimentally or through lattice calculations)

and then match it to a perturbative expansion in terms of αs (typically in the MS scheme):

Q(µ) = c1αMS(µ) + c2αMS(µ)2 + . . .
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Determination of αs

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  
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[Particle Data Group, Chin. Phys. C, 40, 100001 (2016)]

αs is typically determined from:

• hadronic τ decays

• hadronic final states of e+e− annihilation

• deep inelastic lepton-nucleon scattering

• electroweak precision data

• high energy hadron collider data

• Average of nonlattice determinations:

α
(5)

MS
(Mz) = 0.1174(16), PDG 2018

• Average of lattice determinations:

α
(5)

MS
(Mz) = 0.11823(81), FLAG 2019

• Combining the two estimates above, we have:

α
(5)

MS
(Mz) = 0.11806(72), PDG 2018 + FLAG 2019
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Goals of this project

Lattice QCD approach

• Lattice QCD is a powerful tool that allows to determine αs starting from first principles.

• Typical strategies of investigation (see e.g. FLAG Review 2019):

1. step scaling methods;

2. heavy quark-antiquark potential;

3. observable in momentum space;

4. moments of heavy quark current;

5. eigenvalues of the Dirac operator.

Questions we want to answer to in this project

1. Can αs be determined from current-current correlation functions in position space?

2. If yes, what kind of precision can be achieved?
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Strategy



Lattice setup

Nf = 3 ensembles

β name κl = κs mπ [MeV] t0/a2 # conf.

3.46 B450 0.136890 419 3.663(11) 320

3.46 rqcd30 0.136959 320 3.913(15) 280

3.46 X450 0.136994 264 3.994(10) 280

3.55 B250 0.136700 709 4.312(8) 84

3.55 N202 0.137000 412 5.165(14) 177

3.55 X250 0.137050 348 5.283(27) 182

3.55 X251 0.137100 269 5.483(26) 177

3.7 N303 0.136800 641 7.743(23) 99

3.7 N300 0.137000 423 8.576(21) 197

3.85 N500 0.13672514 599 12.912(75) 100

3.85 J500 0.136852 410 14.045(38) 120

• Consortium of several groups to generate “large volume” ensembles

CLS: Coordinated Lattice Simulations

[Berlin, Dublin, Geneva, Madrid, Mainz, Milan, Münster, Odense, Regensburg, Rome, Valencia, Wuppertal, Zeuthen (NIC)]

• SG : tree-level Symanzik improved action.

• SF : Wilson O(a)-improved action with clover coefficient cSW determined non-perturbatively.
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Correlation functions in position space

• Correlation functions of flavor non-singlet bilinear quark operators in position space

CΓ(x) = 〈ψ̄i (x)Γψj(x)ψ̄j(0)Γψi (0)〉

• i , j , with i 6= j flavor indices (no disconnected diagrams)

• Γ = {γµ, γµγ5} ≡ {V ,A} (vector and axial-vector channels)

• Renormalization constants ZA and ZV [M. Dalla Brida et al., Eur.Phys.J. C79 (2019) no.1, 23, arXiv:1808.09236]

• In particular, we investigate two types of correlation functions

CV =
∑
µ

Cγµ(x), CA =
∑
µ

Cγµγ5 (x)

.
• Perturbative formulae in the MS-scheme are known up to 4 loops

[K. G. Chetyrkin and A. Maier, Nucl.Phys. B844 (2011) 266-288, arXiv:1010.1145]

X 6CV = X 6CA =
6

π4

[
1 + c1αMS + c2α

2
MS + c3α

3
MS + c4α

4
MS

]
• The equality CV = CA follows from the assumption of quarks being massless and of working in the

flavour-charged sector.
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Intermediate steps

1. Average over sites that are equivalent with respect to the hypercubic symmetry (e.g.

(1, 1, 1, 1) ∼ (1, 1, 1,−1) ∼ (1, 1,−1,−1), etc.).

2. At fixed lattice spacing a, CV ,A are computed at different quark masses ⇒ chiral limit is needed to

find the massless correlator.

3. Reduce discretization effects

• tree level improvement: compare CV ,A obtained on a unit gauge configuration and in the continuum

[K. G. Chetyrkin and A. Maier, Nucl.Phys. B844 (2011) 266-288, arXiv:1010.1145];

• one loop improvement: Numerical Stochastic Perturbation Theory (NSPT) framework adapted to the

QCD action in use [F. Di Renzo and L. Scorzato, JHEP 0410 (2004) 073, arXiv:hep-lat/0410010].

4. Interpolate correlators at the same physical distance for every a.

5. Take the continuum limit of CV and CA.

6. Average axial and vector channels.

7. Use 4-loop perturbative expansion of CV to determine αMS.

Warning: this applies only for distances which are sufficiently small.
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Results



Chiral limit

Example of chiral extrapolation for CV ,A at a = 0.064 fm
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• Introduce a dimensionless variable y = t0m
2
π , proportional to the renormalized quark mass.

• t0 is an artificial scale introduced in [M. Lüscher, JHEP 1008 (2010) 071, arXiv:1006.4518].

In physical units
√

8t0 = 0.415(4)(2) fm, [M. Bruno et al., PRD 95 (2017) no.7, 074504, arXiv:1608.08900].

• To obtain the chiral limit, we perform an extrapolation using a linear fit with respect to t0m
2
π , as

suggested from Chiral Perturbation Theory:

CV ,A(x ,mπ) = CV ,A(x ,mπ = 0) + k × t0m
2
π
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Reduction of discretization effects

Example at lattice spacing a = 0.039 fm
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• Different kinds of points are affected by different lattice artifacts.

• Subtracting tree-level and one-loop lattice artifacts is important to reduce the size of these

unwanted effects and allows a better continuum extrapolation.
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Continuum extrapolation

Example at the distance X = 0.15 fm
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• X 6C is found at a fixed distance X through

interpolation.

• Two interpolation ansätze: linear and quadratic in

X 2. The difference of the two interpolation models

is taken as systematic uncertainty.

• Interpolations are performed using points of the

same type: [k k k k], [0 k k k] and [0 k k 2k].

• Combined best-fit for the continuum extrapolation.

Important remark

• At short distances, CV − CA is reliably provided by the OPE [M. Shifman et al., Nuclear Physics B 147, 385 (1979)].

Using estimates from [T. Schäfer and E. V. Shuryak, Phys. Rev. Lett. 86, 3973 (2001)], the relative difference ranges from

0.03% at x = 0.1 fm up to 1.5% at x = 0.3 fm. Hence, within the statistical and systematic

precision of our data, the two correlators are indistinguishable in that range of distances.
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From the correlator to αs
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MS
= 342(17) MeV

• From X 6C we can obtain αs through

PT [K. G. Chetyrkin and A. Maier, Nucl.Phys. B844 (2011)

266-288, arXiv:1010.1145].

• At distances above around 0.20 fm

(scales below 1 GeV), we observe that

the running of the coupling freezes,

indicating the breakdown of PT.

• Using the RG equation, we convert our results for αs and obtain:

ΛNf =3

MS
= 342(17) MeV

• The shaded blue band is the corresponding 5-loop perturbative running (1σ, 2σ, 3σ).

• Good agreement with the previous estimates, e.g.:

ΛNf =3

MS
= 341(12) MeV [M. Bruno et al., PRL 119 (2017) no.10, 102001, arXiv:1706.03821].
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Extracting the Λ parameter
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Conclusions



Summary

Conclusions

• We tested a new method to extract the running coupling αs from current-current correlation

functions in position space and used it to determine ΛNf =3

MS
.

• Using a combination of state-of-the-art simulations and novel analysis techniques, one can find a

window of available scales µ and provide an estimate of ΛNf =3

MS
with a competitive precision

(around 5%).
• Crucial steps:

1. perturbative subtraction of hypercubic artifacts;

2. combined continuum extrapolation using four lattice spacings and several lattice directions, which

allowed us to control discretization effects at small distances in lattice units;

3. independent evaluation of CV and CA, which have a common continuum limit at small distances ⇒
characterize the quality of continuum extrapolations and gain in precision.

Future plans

• A similar strategy can be used for the determination of other quantities, such as the quark and

gluon condensates.

• Test our method for Nf = 0 QCD, for which smaller lattice spacings can be easier reached (better

contact with PT)
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