

Determination of α_s in $N_f=3$ QCD from current-current correlation functions in position space

based on arXiv:2003.05781 [hep-lat]

Salvatore Calì¹, Krzysztof Cichy², Piotr Korcyl¹,³, Jakob Simeth³

Jagiellonian University in Kraków¹, Adam Mickiewicz University in Poznań², University of Regensburg³

Asia-Pacific Symposium for Lattice Field Theory (APLAT 2020)

August 6, 2020

Table of contents

1. Introduction

2. Strategy

3. Results

4. Conclusions

Introduction

Running coupling constant α_s

Physical interest

- \bullet α_s plays a key role in the understanding of QCD and in its applications to collider physics.
- The uncertainty of α_s is one of dominant sources of uncertainty in SM predictions for the partial widths $H \to bb$, $H \to gg$.
- Higher precision determinations are needed to maximize the potential of experimental measurements at the LHC, for high-precision Higgs studies at future colliders and investigate of the stability of the vacuum.
- The value of α_s yields one of the essential boundary conditions for completions of the SM at high energies.

Typical determination

• We measure a short-distance quantity Q at scale μ (experimentally or through lattice calculations) and then match it to a perturbative expansion in terms of α_s (typically in the $\overline{\rm MS}$ scheme):

$$Q(\mu) = c_1 \alpha_{\overline{\mathrm{MS}}}(\mu) + c_2 \alpha_{\overline{\mathrm{MS}}}(\mu)^2 + \dots$$

[Particle Data Group, Chin. Phys. C, 40, 100001 (2016)]

- hadronic au decays
- hadronic final states of e^+e^- annihilation
- deep inelastic lepton-nucleon scattering
- electroweak precision data
- high energy hadron collider data

[Particle Data Group, Chin. Phys. C, 40, 100001 (2016)]

• Average of nonlattice determinations:

$$lpha_{\overline{
m MS}}^{(5)}(M_z)=0.1174(16)$$
, PDG 2018

- hadronic au decays
- hadronic final states of e^+e^- annihilation
- · deep inelastic lepton-nucleon scattering
- electroweak precision data
- high energy hadron collider data

[Particle Data Group, Chin. Phys. C, 40, 100001 (2016)]

• Average of nonlattice determinations:

$$lpha_{\overline{
m MS}}^{(5)}(M_z)=0.1174(16)$$
, PDG 2018

• Average of lattice determinations: $\alpha_{\overline{MS}}^{(5)}(M_z) = 0.11823(81)$, FLAG 2019

- hadronic au decays
- hadronic final states of e^+e^- annihilation
- · deep inelastic lepton-nucleon scattering
- electroweak precision data
- high energy hadron collider data

[Particle Data Group, Chin. Phys. C, 40, 100001 (2016)]

- Average of nonlattice determinations:
 - $\alpha_{\overline{\rm MS}}^{(5)}(M_z) = 0.1174(16)$, PDG 2018
- Average of lattice determinations: $\alpha_{\overline{\rm MS}}^{(5)}(M_{\rm Z})=0.11823(81),$ FLAG 2019
- Combining the two estimates above, we have: $\alpha_{\overline{MS}}^{(5)}(M_z) = 0.11806(72)$, PDG 2018 + FLAG 2019

- hadronic au decays
- hadronic final states of e^+e^- annihilation
- deep inelastic lepton-nucleon scattering
- electroweak precision data
- high energy hadron collider data

Goals of this project

Lattice QCD approach

- Lattice QCD is a powerful tool that allows to determine α_s starting from first principles.
- Typical strategies of investigation (see e.g. FLAG Review 2019):
 - 1. step scaling methods;
 - 2. heavy quark-antiquark potential;
 - 3. observable in momentum space;
 - 4. moments of heavy quark current;
 - 5. eigenvalues of the Dirac operator.

Questions we want to answer to in this project

- 1. Can α_s be determined from current-current correlation functions in position space?
- 2. If yes, what kind of precision can be achieved?

Strategy

Lattice setup

$N_f = 3$ ensembles

β	name	$\kappa_I = \kappa_s$	m_{π} [MeV]	t_0/a^2	# conf.
3.46	B450	0.136890	419	3.663(11)	320
3.46	rqcd30	0.136959	320	3.913(15)	280
3.46	X450	0.136994	264	3.994(10)	280
3.55	B250	0.136700	709	4.312(8)	84
3.55	N202	0.137000	412	5.165(14)	177
3.55	X250	0.137050	348	5.283(27)	182
3.55	X251	0.137100	269	5.483(26)	177
3.7	N303	0.136800	641	7.743(23)	99
3.7	N300	0.137000	423	8.576(21)	197
3.85	N500	0.13672514	599	12.912(75)	100
3.85	J500	0.136852	410	14.045(38)	120

Consortium of several groups to generate "large volume" ensembles
 CLS: Coordinated Lattice Simulations

[Berlin, Dublin, Geneva, Madrid, Mainz, Milan, Münster, Odense, Regensburg, Rome, Valencia, Wuppertal, Zeuthen (NIC)]

- S_G : tree-level Symanzik improved action.
- S_F : Wilson O(a)-improved action with clover coefficient c_{SW} determined non-perturbatively.

Correlation functions in position space

Correlation functions of flavor non-singlet bilinear quark operators in position space

$$C_{\Gamma}(x) = \langle \bar{\psi}^i(x) \Gamma \psi^j(x) \bar{\psi}^j(0) \Gamma \psi^i(0) \rangle$$

- i, j, with $i \neq j$ flavor indices (no disconnected diagrams)
- $\Gamma = \{\gamma_{\mu}, \gamma_{\mu}\gamma_{5}\} \equiv \{V, A\}$ (vector and axial-vector channels)
- Renormalization constants Z_A and Z_V [M. Dalla Brida et al., Eur.Phys.J. C79 (2019) no.1, 23, arXiv:1808.09236]
- In particular, we investigate two types of correlation functions

$$C_V = \sum_{\mu} C_{\gamma_{\mu}}(x), \quad C_A = \sum_{\mu} C_{\gamma_{\mu}\gamma_5}(x)$$

ullet Perturbative formulae in the $\overline{\mathrm{MS}}$ -scheme are known up to 4 loops

[K. G. Chetyrkin and A. Maier, Nucl.Phys. B844 (2011) 266-288, arXiv:1010.1145]

$$X^6 C_V = X^6 C_A = rac{6}{\pi^4} \left[1 + c_1 lpha_{\overline{
m MS}} + c_2 lpha_{\overline{
m MS}}^2 + c_3 lpha_{\overline{
m MS}}^3 + c_4 lpha_{\overline{
m MS}}^4
ight]$$

• The equality $C_V = C_A$ follows from the assumption of quarks being massless and of working in the flavour-charged sector.

Intermediate steps

- 1. Average over sites that are equivalent with respect to the hypercubic symmetry (e.g. $(1,1,1,1)\sim (1,1,1,-1)\sim (1,1,-1,-1)$, etc.).
- 2. At fixed lattice spacing a, $C_{V,A}$ are computed at different quark masses \Rightarrow chiral limit is needed to find the massless correlator.
- 3. Reduce discretization effects
 - tree level improvement: compare $C_{V,A}$ obtained on a unit gauge configuration and in the continuum [K. G. Chetyrkin and A. Maier, Nucl.Phys. B844 (2011) 266-288, arXiv:1010.1145];
 - one loop improvement: Numerical Stochastic Perturbation Theory (NSPT) framework adapted to the QCD action in use [F. Di Renzo and L. Scorzato, JHEP 0410 (2004) 073, arXiv:hep-lat/0410010].
- 4. Interpolate correlators at the same physical distance for every a.
- 5. Take the continuum limit of C_V and C_A .
- 6. Average axial and vector channels.
- 7. Use 4-loop perturbative expansion of C_V to determine $lpha_{\overline{\rm MS}}$. Warning: this applies only for distances which are sufficiently small.

Results

Chiral limit

Example of chiral extrapolation for $C_{V,A}$ at a=0.064 fm

- Introduce a dimensionless variable $y=t_0m_\pi^2$, proportional to the renormalized quark mass.
- t_0 is an artificial scale introduced in [M. Lüscher, JHEP 1008 (2010) 071, arXiv:1006.4518]. In physical units $\sqrt{8t_0}=0.415(4)(2)$ fm, [M. Bruno et al., PRD 95 (2017) no.7, 074504, arXiv:1608.08900].
- To obtain the chiral limit, we perform an extrapolation using a linear fit with respect to $t_0 m_{\pi}^2$, as suggested from Chiral Perturbation Theory:

$$C_{V,A}(x, m_{\pi}) = C_{V,A}(x, m_{\pi} = 0) + k \times t_0 m_{\pi}^2$$

Reduction of discretization effects

Example at lattice spacing a = 0.039 fm

- Different kinds of points are affected by different lattice artifacts.
- Subtracting tree-level and one-loop lattice artifacts is important to reduce the size of these unwanted effects and allows a better continuum extrapolation.

Continuum extrapolation

Example at the distance X = 0.15 fm

- X^6C is found at a fixed distance X through interpolation.
- Two interpolation ansätze: linear and quadratic in X². The difference of the two interpolation models is taken as systematic uncertainty.
- Interpolations are performed using points of the same type: [k k k k], [0 k k k] and [0 k k 2k].
- Combined best-fit for the continuum extrapolation.

Important remark

• At short distances, $C_V - C_A$ is reliably provided by the OPE [M. Shifman et al., Nuclear Physics B 147, 385 (1979)]. Using estimates from [T. Schäfer and E. V. Shuryak, Phys. Rev. Lett. 86, 3973 (2001)], the relative difference ranges from 0.03% at x = 0.1 fm up to 1.5% at x = 0.3 fm. Hence, within the statistical and systematic precision of our data, the two correlators are indistinguishable in that range of distances.

From the correlator to α_s

- From X^6C we can obtain α_s through PT [K. G. Chetyrkin and A. Maier, Nucl.Phys. B844 (2011) 266-288, arXiv:1010.1145].
- At distances above around 0.20 fm (scales below 1 GeV), we observe that the running of the coupling freezes, indicating the breakdown of PT.
- Using the RG equation, we convert our results for α_s and obtain:

$$\Lambda_{\overline{
m MS}}^{N_f=3}=342(17)~{
m MeV}$$

- The shaded blue band is the corresponding 5-loop perturbative running $(1\sigma, 2\sigma, 3\sigma)$.
- Good agreement with the previous estimates, e.g.: $\Lambda_{\overline{\rm MS}}^{N_f=3}=341(12)~{\rm MeV}~{\rm [M.~Bruno~et~al.,~PRL~119~(2017)~no.10,~102001,~arXiv:1706.03821]}.$

Extracting the ∧ parameter

Several sources of uncertainties

- statistical
- chiral limit
- NSPT
- interpolation
- errors on Z_A , Z_V
- truncation
- choice of the window of physical distances

• Decomposition of the total error:

Conclusions

Summary

Conclusions

- We tested a new method to extract the running coupling α_s from current-current correlation functions in position space and used it to determine $\Lambda_{\overline{\rm MS}}^{N_f=3}$.
- Using a combination of state-of-the-art simulations and novel analysis techniques, one can find a window of available scales μ and provide an estimate of $\Lambda_{\overline{\rm MS}}^{N_f=3}$ with a competitive precision (around 5%).
- Crucial steps:
 - 1. perturbative subtraction of hypercubic artifacts;
 - combined continuum extrapolation using four lattice spacings and several lattice directions, which allowed us to control discretization effects at small distances in lattice units;
 - 3. independent evaluation of C_V and C_A , which have a common continuum limit at small distances \Rightarrow characterize the quality of continuum extrapolations and gain in precision.

Future plans

- A similar strategy can be used for the determination of other quantities, such as the quark and gluon condensates.
- Test our method for N_f = 0 QCD, for which smaller lattice spacings can be easier reached (better contact with PT)

Thank you very much for your attention