$B_{(s)} - \bar B_{(s)}$ mixing on domain-wall lattices

Peter Boyle, Luigi Del Debbio, Felix Erben, Shoji Hashimoto, Andreas Jüttner, Takashi Kaneko, Antonin Portelli, J Tobias Tsang RBC/UKQCD and JLQCD

Asia-Pacific Symposium for Lattice Field Theory APLAT 2020

5 August 2020

Outline

1 [Introduction](#page-2-0)

- **•** [Motivation](#page-2-0)
- o [neutral meson mixing](#page-3-0)

2 [Analysis strategies](#page-6-0)

- • $B_{(s)} - \bar{B}_{(s)}$ mixing gives access to CKM matrix elements $|V_{ts}|$ and $|V_{td}|$
	- \Rightarrow test whether the CKM matrix is indeed unitary
- Data produced on RBC-UKQCD and JLQCD ensembles using Grid and Hadrons.

[<github.com/paboyle/Grid>]

[<github.com/aportelli/Hadrons>]

Related RBC/UKQCD and JLQCD talks:

- Semileptonic $B_s \to K$ and $B_s \to D_s$ decays [Wed 16:00, Tobias Tsang]
- $B->D^{(*)}\ell\nu$ form factors from relativistic lattice QCD [Wed 16:40, Takashi Kaneko]
- **Semileptonic** $B \to \pi \ell \nu$ decays [Wed 17:40, Ryan Hill]

neutral meson mixing

neutral meson mixing

W bosons heavier than anything we simulate on the lattice \rightarrow treat mixing operator as point-like. [arxiv 1812.08791]

$$
C_3^{\mathcal{O}}(t, \Delta \tau) = \sum_{i,j} \frac{(M_{\text{snk}})_i (M_{\text{src}})_j}{4E_iE_j} \langle i|\mathcal{O}|j\rangle e^{-(E_j - E_i)(t - \Delta \tau/2)} e^{-(E_j + E_i)\Delta \tau/2}
$$
\nwith $(M_{\text{src/snk}})_i \in \{P|i\rangle, \langle A_i|i\rangle\}$
\nFor src = snk = P:
\n
$$
C_3^{\mathcal{O}}(t, \Delta \tau; PP) \approx \frac{P_0^2}{4E_0^2} \langle gr|\mathcal{O}|gr\rangle e^{-E_0\Delta \tau} \left[1 + 2\frac{P_1E_0}{P_0E_1} \frac{\langle gr|\mathcal{O}|ex\rangle}{\langle gr|\mathcal{O}|gr\rangle} e^{-\Delta E\Delta \tau/2} \cosh\left[\Delta E(t - \Delta \tau/2)\right]\right] + \left(\frac{P_1E_0}{P_0E_1}\right)^2 \frac{\langle ex|\mathcal{O}|ex\rangle}{\langle gr|\mathcal{O}|gr\rangle} e^{-\Delta E\Delta \tau}
$$

neutral meson mixing

W bosons heavier than anything we simulate on the lattice \rightarrow treat mixing operator as point-like. [arxiv 1812.08791]

$$
C_3^{\mathcal{O}}(t, \Delta \tau) = \sum_{i,j} \frac{(M_{\text{snk}})_i (M_{\text{src}})_j}{4E_iE_j} \langle i|\mathcal{O}|j\rangle e^{-(E_j - E_i)(t - \Delta \tau/2)} e^{-(E_j + E_i)\Delta \tau/2}
$$
\nwith $(M_{\text{src}/\text{snk}})_i \in \{ \langle P|i \rangle, \langle A_i|i \rangle \}$
\nFor src = snk = P:
\n
$$
C_3^{\mathcal{O}}(t, \Delta \tau; P P) \approx \frac{P_0^2}{4E_0^2} \langle gr|\mathcal{O}|gr\rangle e^{-E_0\Delta \tau} \left[1 \frac{\text{related to bag} - \text{parameter}}{2E_0E_0E_0}\right] + 2\frac{P_1E_0}{P_0E_1} \frac{\langle gr|\mathcal{O}|er\rangle}{\langle gr|\mathcal{O}|gr\rangle} e^{-\Delta E\Delta \tau/2} \cosh \left[\Delta E(t - \Delta \tau/2)\right] + \left(\frac{P_1E_0}{P_0E_1}\right)^2 \frac{\langle ex|\mathcal{O}|ex\rangle}{\langle gr|\mathcal{O}|gr\rangle} e^{-\Delta E\Delta \tau} \right]
$$

- • 1-state fit to a ratio of 3pt and 2pt functions [arxiv 1812.08791]
- extract P_0 , A_0 , E_0 and P_1 , A_1 , E_1 from a 2-state fit to heavy-light or heavy-strange 2pt functions (A and P simultaneously)
	- \bullet 1-state fit to 3pt functions, for each $\Delta\,T$
	- 2-state fit to 3pt functions, for each ΔT
	- fit in ΔT direction for $C_3(t = \Delta T/2, \Delta T)$
	- could also include $\langle ex|\mathcal{O}|ex\rangle$

extract all parameters in a simultaneous fit to 2pt and 3pt functions

- 1-state fit to a ratio of 3pt and 2pt functions [arxiv 1812.08791]
- extract P_0 , A_0 , E_0 and P_1 , A_1 , E_1 from a 2-state fit to heavy-light or heavy-strange 2pt functions (A and P simultaneously)
	- \bullet 1-state fit to 3pt functions, for each $\Delta\,T$
	- 2-state fit to 3pt functions, for each ΔT
	- fit in ΔT direction for $C_3(t = \Delta T/2, \Delta T)$
	- could also include $\langle ex|O|ex\rangle \Rightarrow$ cannot be resolved at our level of statistics
- extract all parameters in a simultaneous fit to 2pt and 3pt functions

⇒ Correlation matrix becomes large and fits are less stable

Lattice setup

- RBC-UKQCD's 2+1 flavour domain wall fermions [arxiv 1411.7017]
	- pion masses from $m_{\pi} = 139$ MeV to $m_{\pi} = 430$ MeV
	- several heavy-quark masses from below m_c to 0.5 m_b , using a stout-smeared action ($\rho = 0.1$, $N = 3$) with $M_5 = 1.0$, $L_s = 12$ and Moebius-scale $= 2$ [arxiv:1812.08791]
- \bullet JLQCD's 2+1 flavour domain wall fermions [arxiv 1711.11235]
	- pion masses from $m_{\pi} = 226$ MeV to $m_{\pi} = 310$ MeV
	- \bullet heavy-quark masses closer to m_b

Lattice setup

- RBC-UKQCD's 2+1 flavour domain wall fermions [arxiv 1411.7017]
	- pion masses from $m_{\pi} = 139$ MeV to $m_{\pi} = 430$ MeV
	- several heavy-quark masses from below m_c to 0.5 m_b , using a stout-smeared action ($\rho = 0.1, N = 3$) with $M_5 = 1.0, L_s = 12$ and Moebius-scale $= 2$ [arxiv:1812.08791]
- \bullet JLQCD's 2+1 flavour domain wall fermions [arxiv 1711.11235]
	- pion masses from $m_{\pi} = 226$ MeV to $m_{\pi} = 310$ MeV
	- \bullet heavy-quark masses closer to m_b

first glance at one RBC-UKQCD ensemble (F1M) [arxiv 1701.02644]:

- $m_{\pi} = 232MeV$
- solve on every 2nd timeslice
- \bullet 16 \leq Δ T \leq 48
- \bullet m_s tuned to be near physical value
- 5 heavy masses $0.32 \le m_h \le 0.68$

strange mass interpolation in JLQCD ensembles

Interpolation in 2 $m_K^2 - m_\pi^2$ on JLQCD ensembles. The RBC/UKQCD ensembles are tuned to be near physical strange quark mass, so we don't have to do this step.

heavy-mass dependence of $\langle \textit{gr}|O^{\textit{VV} + \textit{AA}}|\textit{gr}\rangle$

for each meson, we chose one representative fit of the 2-state fits (red data points on earlier slides). The green vertical lines are the physical masses of η_c and η_b .

heavy-mass dependence of $\langle \textit{gr}|O^{\textit{VV} + \textit{AA}}|\textit{gr}\rangle$

The JLQCD ensembles are not tuned to have a near-physical strange mass (like the RBC-UKQCD ones do), so we do a linear interpolation between each pair of ensembles in $2m_{K}^{2}-m_{\pi}^{2}$

heavy-mass dependence of $\langle \textit{gr}|O^{\textit{VV} + \textit{AA}}|\textit{gr}\rangle$

The JLQCD ensembles are not tuned to have a near-physical strange mass (like the RBC-UKQCD ones do), so we do a linear interpolation between each pair of ensembles in $2m_{K}^{2}-m_{\pi}^{2}$

ratio of bag parameters

with bag parameters

$$
B_P = \frac{\langle gr | O | gr \rangle}{8/3f_P^2 m_P^2}
$$

non-SM operators // NPR

The standard-model operator

$$
O_1=O^{VV+AA}\,,
$$

forms a full basis with four other operators

$$
O2 = OVV-AA
$$

$$
O3 = OSS-PP
$$

$$
O4 = OSS+PP
$$

$$
O5 = OTT
$$

This set of operators has a block-structure, meaning that O_2 , O_3 as well as O_4 , O_5 mix. O_1 is linearly independent from the others. [arxiv 1708.05552]

non-SM operators // NPR

The standard-model operator

$$
O_1=O^{VV+AA}\,,
$$

forms a full basis with four other operators

$$
O2 = OVV-AA
$$

$$
O3 = OSS-PP
$$

$$
O4 = OSS+PP
$$

$$
O5 = OTT
$$

This set of operators has a block-structure, meaning that O_2 , O_3 as well as O_4 , O_5 mix. O_1 is linearly independent from the others. [arxiv 1708.05552] We need to do a non-perturbative renormalisation (NPR) for those operators as well which we have not done yet as part of this work but are planning to implement as a next step! [arxiv 1812.08791]

non-SM operators

possible heavy quark masses

Heavy-mass dependence shown earlier:

The JLQCD F1 ensemble can get us much closer to the physical η_b mass.

possible heavy quark masses

Heavy-mass dependence shown earlier:

The JLQCD F1 ensemble can get us much closer to the physical η_b mass.

Conclusions:

• We can extract bag parameter matrix elements $\langle gr|\mathcal{O}|gr\rangle$

 \Rightarrow Consistently using a variety of methods

Outlook:

- want to go closer to physical m_b mass (JLQCD ensemble F1)
- We have done measurements already on a number of ensembles, and we will repeat this analysis on these.
	- \Rightarrow Continuum limit, chiral limit, ...

Thank you!

Backup