Lattice QCD calculation of the pion charge radius using a model-independent method

Speaker: Yang Fu (Peking U.)

Co-authors: Xu Feng (Peking U.), Lu-Chang Jin (UConn/RIKEN BNL)

Augest 05, 2020 Asia-Pacific Symposium for Lattice Field Theory

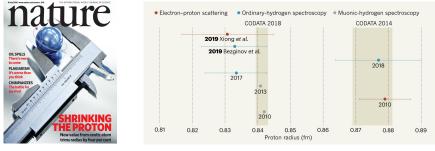
Reference: Phys. Rev. D 101, 051502 (2020)

Introduction and motivation

- What is charge radius?
- Traditional lattice approach: fitting the form factor

2 Model-independent method

- Calculating the slope directly on lattice
- Results: smaller statistical errors



JP Karr, Nature, 2019, 575, 61-62

- Over 5σ discrepancy between muon and electron based measurements;
- The debate over this puzzle mainly comes from experiments;
- Lattice simulations have not been able to give a comparable result. \implies Still affected by systematic uncertainties.

• Why pion charge radius?

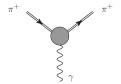
Pion structure is simple, no signal-to-noise problem, ...

 \Longrightarrow Well suited for a high precision benchmark of new methods.

• What is charge radius?

Defined as the derivative of the form factor $F(q^2)$ at zero momentum transfer

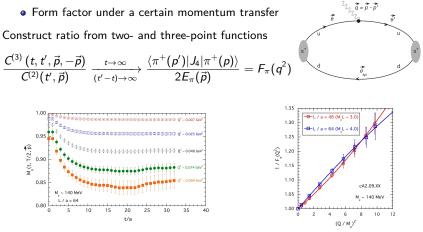
$$\langle r^2 \rangle = 6 \left. \frac{dF(q^2)/F(0)}{dq^2} \right|_{q^2=0}$$



 \bullet Pion form factor \leftrightarrow matrix element of the vector current

$$\langle \pi^+(p')|J_\mu|\pi^+(p)
angle = F_\pi(q^2)(p+p')_\mu$$

Traditional approach: form factor from lattice



C. Alexandrou, Phys. Rev. D 97, 014508 (2018)

- Fit $F(q^2)$ to get charge radius \rightarrow model dependence.
- Widely used for over a decade!

Basic idea

• We start with this hadronic function

$$H(x)=\langle 0|O_{\pi}(t,ec{x})J_{\mu}(0)|\pi(ec{0})
angle$$

In principle, this function contains all information about EM interactions.

• How to extract the part of interest?

By using an appropriate weight function $\omega(x)$

$$\langle A \rangle = \int \mathrm{d}^3 \vec{x} \; \omega(x) H(x)$$

• E.g, $\omega(x) = e^{i \vec{p} \cdot \vec{x}}$ will extract the part under a certain momentum

$$ilde{ extsf{ extsf} extsf{ extsf{ extsf{ extsf} extsf{ extsf{ extsf{ extsf{ extsf{ extsf{ extsf{ extsf} extsf{ extsf{ extsf{ extsf} extsf{ extsf} extsf{ extsf} extsf{$$

• Charge radius \rightarrow derivative of the form factor $\rightarrow \frac{d}{d|\vec{p}|^2} \int d^3 \vec{x} e^{\vec{p} \cdot \vec{x}} H(x)$ $\implies \omega(x) \sim |\vec{x}|^2$ • In the infinite volume, following the above idea, one can construct

$$D(t) \equiv -\frac{m_\pi^2}{3!} \int \mathrm{d}^3 \vec{x} |\vec{x}|^2 H(x), \quad \tilde{H}(t,\vec{0}) \equiv \int \mathrm{d}^3 \vec{x} H(x)$$

• At large time t, the ratio of this two functions gives

$${\it R}(t)\equiv rac{D(t)}{\widetilde{H}(t,ec{0})}
ightarrow rac{1}{4}-rac{m_{\pi}\,t}{2}-c_{1}$$

where c_n is the expansion coefficients of the form factor

$$F_{\pi}(q^2) = \sum_n c_n \left(\frac{q^2}{m_{\pi}^2}\right)^n$$

with $c_0 = 1$ and $c_1 = \frac{m_\pi^2}{6} \langle r_\pi^2 \rangle$.

• One can determine c_1 directly using H(x) as input.

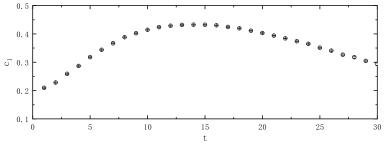


Figure: determine c_1 from the formula in continuum theory

- No plateau at all.
- Typical lattice size $m_{\pi}L \approx 4$, the integrand in D(t) at the edge scales as $m_{\pi}^2 |\vec{x}|^2 \exp\left(-m_{\pi}\sqrt{|\vec{x}|^2 + t^2}\right) \approx 0.5 \ll 1.$
- ⇒ Significant finite-volume effects!

Charge radius on the lattice

• On the lattice, one can still construct

$$D^{(L)}(t)\equiv -rac{m_\pi^2}{3!}\sum_{x\in\mathbb{L}}|ec{x}|^2H(x), \quad ilde{H}^{(L)}(t,ec{0})\equiv \sum_{x\in\mathbb{L}}H(x)$$

In continuum theory, the ratio only contains contributions to the first order

$$R^{(\infty)}(t)\equiv rac{D^{(\infty)}(t)}{ ilde{H}^{(\infty)}(t,ec{0})} o eta_0^{(\infty)}(t) + eta_1^{(\infty)}(t)c_1$$

• Now it contains contributions to all orders

$$\mathcal{R}^{(L)}(t)\equiv rac{D^{(L)}(t)}{ ilde{\mathcal{H}}^{(L)}(t,ec{0})}
ightarrow \sum_neta_n^{(L)}(t)c_n$$

with $\beta_n^{(L)}(t)$ known explicitly and can be calculated numerically

$$\beta_{n}^{(L)}(t) = -\frac{m_{\pi}^{2}}{3!} \sum_{\vec{x} \in \mathbb{L}^{3}} |\vec{x}|^{2} I_{n}(x)$$
$$I_{n}(x) = \frac{1}{L^{3}} \sum_{\vec{p}} \frac{\hat{E}}{\tilde{E}} \frac{\tilde{m}}{\hat{m}} \frac{\hat{E} + \hat{m}}{2\hat{m}} \left(\frac{\hat{q}^{2}}{m_{\pi}^{2}}\right)^{n} e^{-(E-m_{\pi})t} e^{-i\vec{p}\cdot\vec{x}}$$

Charge radius on the lattice

Naively, one can determine c₁ through

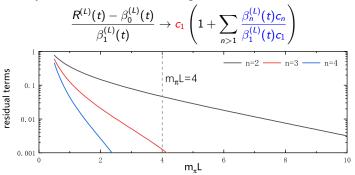


Figure: Residual terms as function of $m_{\pi}L$ with spacing a = 0 at fixed $m_{\pi}t = 1$

• Residual terms can be estimated by VMD model $F_{\pi}(q^2) = (1 - q^2/m_{\rho}^2)^{-1}$ with $c_n = (m_{\pi}/m_{\rho})^{2n}$.

• At $m_{\pi}L = 4$, the lowest order (n = 2) of residual term $\sim 5\%$.

Error reduction: systematic effects

- higher-order terms are not well suppressed at $m_{\pi}L \approx 4$.
- \implies determine $c_{n\geq 2}$ through weight function $\omega(x) = |\vec{x}|^4, |\vec{x}|^6, \cdots$
 - one can generally construct

$$D_k^{(L)}(t) \sim \sum_{\vec{x} \in \mathbb{L}} |\vec{x}|^{2k} H(x), \quad k = 1, 2, ...$$

with the ratio truncated to the *m*-th order

$$\mathcal{R}^{(L)}(t)\equiv rac{\sum_i^m f_i \mathcal{D}_i^{(L)}(t)}{ ilde{\mathcal{H}}^{(L)}(t,ec{0})}+h
ightarrow c_1+\mathcal{O}(c_{n>m} ext{ terms})$$

where parameters f_i and h are chosen to remove the c_0 and $c_{m \ge n \ge 2}$ terms.

- Our final choice is m = 2.
 - Contamination from $c_{n\geq 3}$ are negligibly small. ($\lesssim 0.1\%$)
 - The signal-to-noise ratio decreases as *m* increases.

Error reduction: statistical uncertainties

- Lattice data near the boundary of the box mainly contribute to the noise rather than signal since $H(x) \sim \exp\left(-m_{\pi}\sqrt{|\vec{x}|^2 + t^2}\right)$
- \implies introduce an integral range ξL to reduce the statistical error.

$$D_k^{(L,\xi)}(t) \sim \sum_{|\vec{x}| \leq \xi L} |\vec{x}|^{2k} H(x)$$

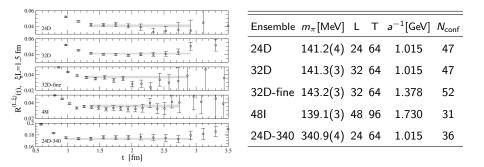
• The formula of the ratio is therefore changed to

$$\mathcal{R}_{k}^{(L,\xi)}(t)\equivrac{D_{k}^{(L,\xi)}(t)}{\widetilde{\mathcal{H}}^{(L)}(t,ec{0})}
ightarrow\sum_{n}eta_{k,n}^{(L,\xi)}(t)c_{n}$$

with

$$\beta_{k,n}^{(L,\xi)}(t) \sim \sum_{|\vec{x}| \leq \xi L} |\vec{x}|^{2k} I_n(x)$$

- with our final choice $\xi L = 1.5$ fm, the statistical uncertainties are reduced by a factor of 1.3 - 1.8.
- We expect the error reduction can be much more significant in the study of nucleon charge radius!



- We use 5 DWF ensembles from RBC/UKQCD. Phys. Rev. D 93, 074505 (2016)
- Relatively small statistics $n_{\rm conf} \approx 30 50$.
- Now we can observe clear plateau for each ensemble!

Results

Ensemble	Parameters			New	Traditional
	m_{π} [MeV]	L	a^{-1} [GeV]	$\langle r_{\pi}^2 \rangle$ [fm ²]	$\langle r_{\pi}^2 \rangle$ [fm ²]
24D	141.2(4)	24	1.015	0.476(18)	0.466(30)
32D	141.3(3)	32	1.015	0.480(10)	0.479(15)
32D-fine	143.2(3)	32	1.378	0.423(15)	0.409(28)
48 I	139.1(3)	48	1.730	0.434(20)	0.395(32)
24D-340	340.9(4)	24	1.015	0.3485(27)	0.3495(44)

• Traditional: fit $F_{\pi}(q^2) = 1 + \frac{1}{6} \langle r_{\pi}^2 \rangle q^2 + c_V(q^2)^2$. (To the same order) Statistical errors are 1.5 – 1.9 times larger than the new method.

- 24D and 32D: finite volume effects are mild.
- Our final result

$$\langle r_{\pi}^2 \rangle = 0.434(20)(13) \, [\text{fm}^2]$$

is very consistent with the PDG value 0.434(5)fm².

Model-independent method

- Start with a basic idea: $\langle A \rangle = \sum_{\vec{x}} \omega(x) H(x)$, where the weight function $\omega(x)$ contains all the non-QCD information.
- Overcome the problem of finite-volume effects.
- It also has advantages in statistical uncertainties.

Next step: nucleon charge radius

- Finite-volume effects become insignificant since $m_N \gg m_{\pi}$.
- Error reduction techniques should be more effective.
- We aim at a result that can be compared with experiments.

Thank you!