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Proton radius puzzle

JP Karr, Nature, 2019, 575, 61-62

Over 5σ discrepancy between muon and electron based measurements;

The debate over this puzzle mainly comes from experiments;

Lattice simulations have not been able to give a comparable result.
=⇒ Still affected by systematic uncertainties.

2 / 14



Pion charge radius

Why pion charge radius?

Pion structure is simple, no signal-to-noise problem, ...
=⇒ Well suited for a high precision benchmark of new methods.

What is charge radius?

Defined as the derivative of the form factor F(q2) at
zero momentum transfer

⟨r2⟩ = 6 dF(q2)/F(0)
dq2

∣∣∣∣
q2=0

Pion form factor ↔ matrix element of the vector current

⟨π+(p′)|Jµ|π+(p)⟩ = Fπ(q2)(p + p′)µ
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Traditional approach: form factor from lattice

Form factor under a certain momentum transfer

Construct ratio from two- and three-point functions

C(3) (t, t′, p⃗, −p⃗)
C(2)(t′, p⃗)

t→∞−−−−−−→
(t′−t)→∞

⟨π+(p′)|J4|π+(p)⟩
2Eπ (⃗p) = Fπ(q2)

C. Alexandrou, Phys. Rev. D 97, 014508 (2018)

Fit F(q2) to get charge radius → model dependence.

Widely used for over a decade!
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Basic idea

We start with this hadronic function
H(x) = ⟨0|Oπ(t, x⃗)Jµ(0)|π(⃗0)⟩

In principle, this function contains all information about EM interactions.

How to extract the part of interest?
By using an appropriate weight function ω(x)

⟨A⟩ =
∫

d3x⃗ ω(x)H(x)

E.g, ω(x) = ei⃗p·⃗x will extract the part under a certain momentum

H̃(t, p⃗) =
∫

d3x⃗ei⃗p·⃗xH(x) ∼ Fπ(q2)

Charge radius → derivative of the form factor → d
d|⃗p|2

∫
d3x⃗ei⃗p·⃗xH(x)

=⇒ ω(x) ∼ |⃗x|2
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Charge radius in the continuum theory

In the infinite volume, following the above idea, one can construct

D(t) ≡ −m2
π

3!

∫
d3x⃗|⃗x|2H(x), H̃(t, 0⃗) ≡

∫
d3x⃗H(x)

At large time t, the ratio of this two functions gives

R(t) ≡ D(t)
H̃(t, 0⃗)

→ 1
4 − mπt

2 − c1

where cn is the expansion coefficients of the form factor

Fπ(q2) =
∑

n

cn

(
q2

m2
π

)n

with c0 = 1 and c1 = m2
π

6 ⟨r2
π⟩.

One can determine c1 directly using H(x) as input.
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Charge radius in the continuum theory
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Figure: determine c1 from the formula in continuum theory

No plateau at all.

Typical lattice size mπL ≈ 4, the integrand in D(t) at the edge scales as
m2

π |⃗x|2 exp
(

−mπ

√
|⃗x|2 + t2

)
≈ 0.5 /≪ 1.

=⇒ Significant finite-volume effects!
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Charge radius on the lattice

On the lattice, one can still construct

D(L)(t) ≡ −m2
π

3!
∑
x∈L

|⃗x|2H(x), H̃(L)(t, 0⃗) ≡
∑
x∈L

H(x)

In continuum theory, the ratio only contains contributions to the first order

R(∞)(t) ≡ D(∞)(t)
H̃(∞)(t, 0⃗)

→ β
(∞)
0 (t) + β

(∞)
1 (t)c1

Now it contains contributions to all orders

R(L)(t) ≡ D(L)(t)
H̃(L)(t, 0⃗)

→
∑

n

β(L)
n (t)cn

with β
(L)
n (t) known explicitly and can be calculated numerically

β(L)
n (t) = −m2

π

3!
∑
x⃗∈L3

|⃗x|2In(x)

In(x) = 1
L3

∑
p⃗

Ê
Ẽ

m̃
m̂

Ê + m̂
2m̂

(
q̂2

m2
π

)n

e−(E−mπ)te−i⃗p·⃗x
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Charge radius on the lattice

Naively, one can determine c1 through
R(L)(t) − β

(L)
0 (t)

β
(L)
1 (t)

→ c1

(
1 +

∑
n>1

β
(L)
n (t)cn

β
(L)
1 (t)c1

)
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Figure: Residual terms as function of mπL with spacing a = 0 at fixed mπt = 1

Residual terms can be estimated by VMD model Fπ(q2) = (1 − q2/m2
ρ)−1

with cn = (mπ/mρ)2n.
At mπL = 4, the lowest order (n = 2) of residual term ∼ 5%.
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Error reduction: systematic effects

higher-order terms are not well suppressed at mπL ≈ 4.
=⇒ determine cn≥2 through weight function ω(x) = |⃗x|4, |⃗x|6, · · ·

one can generally construct

D(L)
k (t) ∼

∑
x⃗∈L

|⃗x|2kH(x), k = 1, 2, ...

with the ratio truncated to the m-th order

R(L)(t) ≡
∑m

i fiD(L)
i (t)

H̃(L)(t, 0⃗)
+ h → c1 + O(cn>m terms)

where parameters fi and h are chosen to remove the c0 and cm≥n≥2 terms.
Our final choice is m = 2.

- Contamination from cn≥3 are negligibly small. (≲ 0.1%)

- The signal-to-noise ratio decreases as m increases.
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Error reduction: statistical uncertainties

Lattice data near the boundary of the box mainly contribute to the noise
rather than signal since H(x) ∼ exp

(
−mπ

√
|⃗x|2 + t2

)
=⇒ introduce an integral range ξL to reduce the statistical error.

D(L,ξ)
k (t) ∼

∑
|⃗x|≤ξL

|⃗x|2kH(x)

The formula of the ratio is therefore changed to

R(L,ξ)
k (t) ≡

D(L,ξ)
k (t)

H̃(L)(t, 0⃗)
→
∑

n

β
(L,ξ)
k,n (t)cn

with

β
(L,ξ)
k,n (t) ∼

∑
|⃗x|≤ξL

|⃗x|2kIn(x)

with our final choice ξL = 1.5fm, the statistical uncertainties are reduced
by a factor of 1.3 − 1.8.

We expect the error reduction can be much more significant in the study
of nucleon charge radius!
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Results

Ensemble mπ[MeV] L T a−1[GeV] Nconf

24D 141.2(4) 24 64 1.015 47
32D 141.3(3) 32 64 1.015 47
32D-fine 143.2(3) 32 64 1.378 52
48I 139.1(3) 48 96 1.730 31
24D-340 340.9(4) 24 64 1.015 36

We use 5 DWF ensembles from RBC/UKQCD. Phys. Rev. D 93, 074505 (2016)

Relatively small statistics nconf ≈ 30 − 50.

Now we can observe clear plateau for each ensemble!
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Results

Ensemble Parameters New Traditional
mπ[MeV] L a−1[GeV] ⟨r2

π⟩ [fm2] ⟨r2
π⟩ [fm2]

24D 141.2(4) 24 1.015 0.476(18) 0.466(30)
32D 141.3(3) 32 1.015 0.480(10) 0.479(15)
32D-fine 143.2(3) 32 1.378 0.423(15) 0.409(28)
48I 139.1(3) 48 1.730 0.434(20) 0.395(32)
24D-340 340.9(4) 24 1.015 0.3485(27) 0.3495(44)

Traditional: fit Fπ(q2) = 1 + 1
6 ⟨r2

π⟩q2 + cV(q2)2. (To the same order)
Statistical errors are 1.5 − 1.9 times larger than the new method.

24D and 32D: finite volume effects are mild.
Our final result

⟨r2
π⟩ = 0.434(20)(13) [fm2]

is very consistent with the PDG value 0.434(5)fm2.
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Conclusions and outlook

Model-independent method

Start with a basic idea: ⟨A⟩ =
∑

x⃗

ω(x)H(x), where the weight function

ω(x) contains all the non-QCD information.

Overcome the problem of finite-volume effects.

It also has advantages in statistical uncertainties.

Next step: nucleon charge radius

Finite-volume effects become insignificant since mN ≫ mπ.

Error reduction techniques should be more effective.

We aim at a result that can be compared with experiments.

Thank you!
14 / 14


	Introduction and motivation
	What is charge radius?
	Traditional lattice approach: fitting the form factor

	Model-independent method
	Calculating the slope directly on lattice
	Results: smaller statistical errors

	Conclusions and outlook

