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Lefschetz thimble method



1.  Introduction



The last part (application to Stephanov model) will be discussed
in Matsumoto’s talk (next talk) with a refinement of the algorithm

Overview

Typical examples:
① Finite density QCD
② Quantum Monte Carlo simulations of quantum statistical systems
③ θ vacuum with finite θ
④ Real time QM/QFT

- (0+1)-dim massive Thirring model
- 1-dim and 2-dim Hubbard model
- chiral random matrix model (Stephanov model)

Today, I would like to show that
a new algorithm “Tempered Lefschetz Thimble Method” (TLTM)
may be a promising method towards solving the sign problem, 
by exemplifying its effectiveness for various models 

The numerical sign problem is one of the major obstacles
when performing numerical calculations in various fields of physics

[MF-Umeda, PTEP2017(2017)073B01, arXiv:1703.00861]

(such as the Hubbard model)

[MF-Umeda, arXiv:1703.00861]
[MF-Matsumoto-Umeda, arXiv:1906.04243]

[MF-Matsumoto-Umeda, arXiv:1912.13303]

[MF-Matsumoto-Umeda, in preparation]



Sign problem
Our main concern is to estimate:

( )
( ) ( )

: dynamical variable (real-val
: action, : observab

ued)
le

i Nx x
S x x
 = ∈







( )

( )

( )
( )

S x

S S x

dx e x
x

dxe

−

−
〈 〉 ≡ ∫

∫




Markov chain Monte Carlo (MCMC) simulation:
( ) ( )( /( ) )eqWhen   as a PDF:, one can regard S x S xS x p x e dxe− −∈ ≡ ∫

0 ( ) 1, ( ) 1eq eq  p x dx p x≤ ≤ =∫
( )

1, ,{ } ( )
conf eqGenerate a samp  from le N

k
kx p x= …

Sign problem:
( ) ( )( ) ( ) ( /)When , one cannot regard  as a PDFS x S x

R IS x S x i S x e dxe− −= + ∈ ∫

Reweighting method : 

probability distribution function

( )

1

1( ) ( )
conf

conf
S

N
k

kN
x x

=

〈 〉 ≈ ∑ 



Sign problem
Our main concern is to estimate:

( )
( ) ( )

: dynamical variable (real-val
: action, : observab

ued)
le

i Nx x
S x x
 = ∈







Markov chain Monte Carlo (MCMC) simulation:
( ) ( )( /( ) )eqWhen   as a PDF:, one can regard S x S xS x p x e dxe− −∈ ≡ ∫

0 ( ) 1, ( ) 1eq eq  p x dx p x≤ ≤ =∫
( )

1, ,{ } ( )
conf eqGenerate a samp  from le N

k
kx p x= …

( )

1

1( ) ( )
conf

conf
S

N
k

kN
x x

=

〈 〉 ≈ ∑ 

Sign problem:
( ) ( )( ) ( ) ( /)When , one cannot regard  as a PDFS x S x

R IS x S x i S x e dxe− −= + ∈ ∫

Reweighting method : 

probability distribution function

( )

(

( )

( )

)

()

(

)

( )
(

( )
)

R I

IR

S x

S S x

i S x

i

S x

S Sx x

dx e x
x

dxe

dx e

dxe

e x

e

−

− −−

−−

〈 〉 ≡ =∫
∫

∫
∫

 




Sign problem
Our main concern is to estimate:

( )
( ) ( )

: dynamical variable (real-val
: action, : observab

ued)
le

i Nx x
S x x
 = ∈







Markov chain Monte Carlo (MCMC) simulation:
( ) ( )( /( ) )eqWhen   as a PDF:, one can regard S x S xS x p x e dxe− −∈ ≡ ∫

( )
1, ,{ } ( )

conf eqGenerate a samp  from le N
k

kx p x= …

Sign problem:
( ) ( )( ) ( ) ( /)When , one cannot regard  as a PDFS x S x

R IS x S x i S x e dxe− −= + ∈ ∫

( ) ( )/Reweighting method : treat  as a PDFR RS x S xe d ex− −∫

probability distribution function

0 ( ) 1, ( ) 1eq eq  p x dx p x≤ ≤ =∫

( )

1

1( ) ( )
conf

conf
S

N
k

kN
x x

=

〈 〉 ≈ ∑ 

( )

(

( )

( )

)

()

(

)

( )
(

( )
)

R I

IR

S x

S S x

i S x

i

S x

S Sx x

dx e x
x

dxe

dx e

dxe

e x

e

−

− −−

−−

〈 〉 ≡ =∫
∫

∫
∫

 




Sign problem
Our main concern is to estimate:

( )
( ) ( )

: dynamical variable (real-val
: action, : observab

ued)
le

i Nx x
S x x
 = ∈







Markov chain Monte Carlo (MCMC) simulation:
( ) ( )( /( ) )eqWhen   as a PDF:, one can regard S x S xS x p x e dxe− −∈ ≡ ∫

( )
1, ,{ } ( )

conf eqGenerate a samp  from le N
k

kx p x= …

Sign problem:
( ) ( )( ) ( ) ( /)When , one cannot regard  as a PDFS x S x

R IS x S x i S x e dxe− −= + ∈ ∫

( )

( )

( )

( )

( )
( ) (1) 

I

R

I

R

i S x
S

S i S x
S

O N

O N

e e
e

x
x O

e

−

−

−

−

〈 〉
〈 〉 ≡ = =

〈 〉




( ) ( )/Reweighting method : treat  as a PDFR RS x S xe d ex− −∫

probability distribution function

( ) : DOFN

0 ( ) 1, ( ) 1eq eq  p x dx p x≤ ≤ =∫

( )

1

1( ) ( )
conf

conf
S

N
k

kN
x x

=

〈 〉 ≈ ∑ 

( )

(

( )

( )

)

()

(

)

( )
(

( )
)

R I

IR

S x

S S x

i S x

i

S x

S Sx x

dx e x
x

dxe

dx e

dxe

e x

e

−

− −−

−−

〈 〉 ≡ =∫
∫

∫
∫

 




Sign problem
Our main concern is to estimate:

( )
( ) ( )

: dynamical variable (real-val
: action, : observab

ued)
le

i Nx x
S x x
 = ∈







Markov chain Monte Carlo (MCMC) simulation:
( ) ( )( /( ) )eqWhen   as a PDF:, one can regard S x S xS x p x e dxe− −∈ ≡ ∫

( )
1, ,{ } ( )

conf eqGenerate a samp  from le N
k

kx p x= …

Sign problem:
( ) ( )( ) ( ) ( /)When , one cannot regard  as a PDFS x S x

R IS x S x i S x e dxe− −= + ∈ ∫

( )

( )

( )

( )

( ) (1 / )
( )

(1 / )
conf

conf

 
I

R

I

R

i S x
S

S i S x
S

O N

O N
e N
e N

e x O
x

e O

−

−

−

−≈
〈 〉 ±

〈 〉 ≡
〈 〉 ±




( ) ( )/Reweighting method : treat  as a PDFR RS x S xe d ex− −∫

probability distribution function

( )
conf

O NN e

conf

 : DOF
 : sample size

N
N

 
 
 

( )(1 / )confRequire O NNO e−<

0 ( ) 1, ( ) 1eq eq  p x dx p x≤ ≤ =∫

sign problem!

( )

1

1( ) ( )
conf

conf
S

N
k

kN
x x

=

〈 〉 ≈ ∑ 

( )

(

( )

( )

)

()

(

)

( )
(

( )
)

R I

IR

S x

S S x

i S x

i

S x

S Sx x

dx e x
x

dxe

dx e

dxe

e x

e

−

− −−

−−

〈 〉 ≡ =∫
∫

∫
∫

 




Approaches to the sign problem
Various approaches:

(1) Complex Langevin method (CLM)
(2) (Generalized) Lefschetz thimble method ((G)LTM)
(3) Others (tensor network, path-optimization, quantum computation, ...)

Advantages/disadvantages:
(1) CLM

(2) LTM

( ):
Cons: 

O N∝Pros   fast
"wrong convergence problem"

[Parisi 1983] [Cristoforetti et al. 2012, ...]
[Fujii et al. 2013, ...]
[Alexandru et al. 2015, ...]

Jacobian determinant + tempering

(2’) TLTM (Tempered Lefschetz thimble method) [MF-Umeda 1703.00861,
MF-Matsumoto-Umeda 1906.04243, ...]

We facilitate transitions among thimbles
by tempering the system with the flow time

43~( )O N∝
Pros:  Works well even when multiple thimbles are relevant
Cons: Expensive

[Ambjørn-Yang 1985, Aarts et al. 2011,
Nagata-Nishimura-Shimasaki 2016]

( :DOF)N

3( )
            

O N∝

Pros:  No wrong convergence problem
          only a single thimble is relevant
Cons: Expensive

Ergodicity problem if more than one thimble are relevant

iff

(wrong convergence de facto)

Jacobian determinant

(giving incorrect values with small errors) 

[Kuramashi, Takeda, Kadoh, ...][Kashiwa-Mori-Ohnishi, Alexandru et al, ...]
[Chakraborty-Honda-Izubuchi-Kikuchi-Tomiya,
Kharzeev-Kikuchi, ...]



Plan

1. Introduction  (done)
2. Tempered Lefschetz thimble method (TLTM)
3. Applying TLTM to various models
4. Conclusion and outlook



2.  Tempered Lefschetz thimble method (TLTM)
[MF-Umeda PTEP2017(2017)073B01, 1703.00861]
[MF-Matsumoto-Umeda PRD100(2019)114510, 1906.04243]
[MF-Matsumoto-Umeda 1912.13303]



Basic idea in Lefschetz thimble methods

Cauchy’s theorem
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[Cristoforetti et al. 1205.3996, 1303.7204, 1308.0233]
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[Alexandru et al. 1512.08764]



Construction of Σ
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Comments on Lefschetz thimble method
Common misunderstanding on Lefschetz thimble methods:

“The method eventually will encounter the sign problem for large DOF
because it is based on the reweighting...”

But this is NOT true !
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Ergodicity problem in Lefschetz thimble methods

Dilemma between the sign problem and the ergodicity problem
(for small )T (for large )T
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Tempered Lefschetz thimble method (TLTM) (1/3)
[MF-Umeda 1703.00861]

In order to solve the dilemma between the sign problem and the ergodicity problem,
(for small )T (for large )T

we implement the parallel tempering (= replica exchange MCMC) method.
[Swendsen-Wang 1986, Geyer 1991, Hukushima-Nemoto 1996]

( ) ( 1)(3) Construct a Markov chain  s.t. it gives the equilib distribution:k kz z +→ 
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Tempered Lefschetz thimble method (TLTM) (2/3)
The Markov chain consists of the following two processes:

( 0,1, , )(A) Transitions on 
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Matsumoto’s talk (next talk)
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Tempered Lefschetz thimble method (TLTM) (3/3)
Important points in TLTM:

NO "tiny overlap problem" in TLTM

We can expect significant overlap between adjacent replicas!

t

Distribution functions have peaks at the same positions 
for varying tempering parameter (which is  in our case)

x
t

σ

The growth of computational cost due to the tempering
can be compensated by the increase of parallel processes

(1)

(2)

[MF-Umeda 1703.00861, MF-Matsumoto-Umeda 1906.04243]
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Analysis

The LHS must be independent o  due to Cauchy's the mf orea

The RHS must be the same for all 's within the statistical error margin
if the system is in global equilibrium and the sample size is large enough

a

This gives a method with a criterion for precise estimation in the TLTM!
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(taking account of covariance)



3.  Applying TLTM to various models
[MF-Matsumoto-Umeda, work in progress]
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 θ-vacuum of 2-dim & 4-dim pure Yang-Mills with finite θ
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We apply the Tempered LTM to this system ,) ( )

1, (
(

),  

i N

s

x
i N

x
N NNτ

φ = ∈
 = … =

=

 
x 



Results for 1D lattice (1/2)
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Results for 1D lattice (1/2)
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Results for 1D lattice (2/2)

peaked at several angles
because of sufficient transitions
among thimbles
(errors become a bit larger
due to the small size of sampling)

peaked at a single angle ~0.8 π
due to the trap to a single thimble
(errors become small
because the thimble is well sampled)

0.4
(projected on a plane)

T =Distribution of flowed configs at flow time 
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distributing uniformly
from –π to +π

severe sign problem

Histogram of ImS(z)/π
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Results for 2D lattice (0/2)
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Results for 2D lattice (1/2)
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due to the sign problem
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Results for 2D lattice (1/2)
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Results for 2D lattice (2/2)
[MF-Matsumoto-Umeda 1906.04243]
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(projected on a plane)

T βµ= =Distribution of flowed configs at flow time 
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distributed widely
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distributed over only
a small number of thimbles



Comment on the Generalized LTM
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5Example: βµ = large stat errors
(due to sign problem)

wrong value
(due to multimodality)

It is a hard task to find an intermediate flow time
that solves both sign problem and multimodality
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4.  Conclusion and outlook



Conclusion and outlook
What we have done:

- We proposed the tempered Lefschetz thimble method (TLTM)
as a versatile method towards solving the numerical sign problem

- We further developed it and found an algorithm for a precise estimation
with a criterion ensuring global equilibrium and the sample size

- TLTM works nicely in various models
avoiding both the sign and ergodicity problems simultaneously

Outlook:
- Investigate the Stephanov model of larger sizes

to understand the computational scaling
- Apply TLTM to the following four typical subjects:
① Finite density QCD
② Quantum Monte Carlo
③ θ vacuum
④ Real time QFT

- Keep developing more efficient algorithms with less computational cost

 should not depend on replica  due to Cauch(the key: y's th )em eora a

3~4( )][expected to be DOFO



Conclusion and outlook

[MF-Matsumoto, work in progress]

What we have done:
- We proposed the tempered Lefschetz thimble method (TLTM)

as a versatile method towards solving the numerical sign problem
- We further developed it and found an algorithm for a precise estimation

with a criterion ensuring global equilibrium and the sample size

- TLTM works nicely in various models
avoiding both the sign and ergodicity problems simultaneously

Outlook:
- Investigate the Stephanov model of larger sizes

to understand the computational scaling
- Apply TLTM to the following four typical subjects:
① Finite density QCD (Stephanov model ⇒ ...)
② Quantum Monte Carlo (Hubbard model, frustrated spin systems ⇒ ...)
③ θ vacuum (2 dim ⇒ 4 dim)
④ Real time QFT (QM ⇒ QFT)

- Keep developing more efficient algorithms with less computational cost

 should not depend on replica  due to Cauch(the key: y's th )em eora a

3~4( )][expected to be DOFO



Thank you.
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