Lattice Calculation of the Pion Light-Cone Distribution Amplitude

William Detmold, **Anthony Grebe**, David Lin, Issaku Kanamori, Santanu Mondal, Robert Perry, Yong Zhao

August 7, 2020

Outline

1 Lattice Measurements

2 Matching to OPE

3 Lattice Artifacts

Overview of Calculation

 Want to study light-cone distribution amplitude of pion by computing its moments

Overview of Calculation

- Want to study light-cone distribution amplitude of pion by computing its moments
- Can calculate moments using operator product expansion (OPE) of hadronic tensor

$$U^{[\mu\nu]} = \frac{2if_{\pi}\varepsilon_{\mu\nu\rho\lambda}q^{\rho}\rho^{\lambda}}{\tilde{Q}^{2}} \left[\mathcal{C}_{W}^{(0)} + \langle \xi^{2} \rangle \frac{6(\rho \cdot q)^{2} - \rho^{2}q^{2}}{6(\tilde{Q}^{2})^{2}} \mathcal{C}_{W}^{(2)} + \dots + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{\tilde{Q}}\right) \right]$$

Overview of Calculation

Lattice Measurements

- Want to study light-cone distribution amplitude of pion by computing its moments
- Can calculate moments using operator product expansion (OPE) of hadronic tensor

$$U^{[\mu\nu]} = \frac{2if_{\pi}\varepsilon_{\mu\nu\rho\lambda}q^{\rho}\rho^{\lambda}}{\tilde{Q}^{2}} \left[\mathcal{C}_{W}^{(0)} + \langle \xi^{2} \rangle \frac{6(\rho \cdot q)^{2} - \rho^{2}q^{2}}{6(\tilde{Q}^{2})^{2}} \mathcal{C}_{W}^{(2)} + \dots + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{\tilde{Q}}\right) \right]$$

where

$$U^{\mu
u}(p,q) \equiv \int d^4z \, \mathrm{e}^{iq\cdot z} \left\langle 0 \left| \mathcal{T} \left[J^\mu \left(rac{z}{2}
ight) J^
u \left(-rac{z}{2}
ight)
ight] \right| \pi(\mathbf{p})
ight
angle$$
 $J^\mu \equiv ar{\Psi} \gamma^\mu \gamma^5 \psi + ar{\psi} \gamma^\mu \gamma^5 \Psi$

and where Ψ is an artifically heavy valence quark

Lattice Artifacts

Correlator on Lattice

$$\tau = \tau_m - \tau_e, \ p = p_e + p_m, \ q = (p_m - p_e)/2$$

Correlator on Lattice

$$\tau = \tau_m - \tau_e, \ p = p_e + p_m, \ q = (p_m - p_e)/2$$

• Fix τ_e, \mathbf{p}_e and allow τ_m, \mathbf{p}_m to vary

Correlator on Lattice

$$\tau = \tau_m - \tau_e$$
, $p = p_e + p_m$, $q = (p_m - p_e)/2$

- Fix τ_e , \mathbf{p}_e and allow τ_m , \mathbf{p}_m to vary
- Fourier transforming over the spatial components gives

$$R^{\mu
u}(au;\mathbf{p},\mathbf{q}) = \int d^3\mathbf{z} \, \mathrm{e}^{i\mathbf{q}\cdot\mathbf{z}} \left\langle 0 \left| \mathcal{T} \left[J^{\mu} \left(rac{z}{2}
ight) J^{
u} \left(-rac{z}{2}
ight)
ight] \right| \pi(\mathbf{p})
ight
angle$$

Lattice Details

- Heavy quark mass requires fine lattice spacing
 - Quark masses: $m_{\Psi}^{(0)} \approx 1.6, 2.5 \text{ GeV}$
 - Lattice spacings used: a = 0.060, 0.048, 0.041 fm

Lattice Details

- Heavy quark mass requires fine lattice spacing
 - Quark masses: $m_W^{(0)} \approx 1.6, 2.5 \text{ GeV}$
 - Lattice spacings used: a = 0.060, 0.048, 0.041 fm
- Cost of dynamical gauge configurations $\sim a^{-7}$ or worse
- Dynamical quarks prohibitively expensive, especially for preliminary simulation
 - Use quenched configurations, at least for now

Lattice Details

- Heavy quark mass requires fine lattice spacing
 - Quark masses: $m_{\Psi}^{(0)} \approx 1.6, 2.5 \text{ GeV}$
 - Lattice spacings used: a = 0.060, 0.048, 0.041 fm
- Cost of dynamical gauge configurations $\sim a^{-7}$ or worse
- Dynamical quarks prohibitively expensive, especially for preliminary simulation
 - Use quenched configurations, at least for now
- ullet $m_\pi \sim$ 560 MeV and $L \sim 1.92$ fm, so $m_\pi L \gtrsim 5$
- Wilson-clover fermions with c_{SW} set non-perturbatively

Ensembles Used

a (fm)	$L^3 \times T$	$N_{\rm cfg}$	$N_{\rm src}$	Light Props	Heavy Props
0.060	$32^{3} \times 64$	450	6	2700	108,000
0.048	$40^{3} \times 80$	250	2	500	20,000
0.041	$48^{3} \times 96$	341	2	682	27,280

 At the kinematics used, $\langle \xi^2 \rangle$ determined by Re $\left(\mathit{U}^{[12]} \right)$

0000000

• At the kinematics used, $\langle \xi^2 \rangle$ determined by $Re(U^{[12]}) \sim 10^{-2} \times Im(U^{[12]})$

- At the kinematics used, $\langle \xi^2 \rangle$ determined by Re $\left(U^{[12]} \right) \sim 10^{-2} imes {
 m Im} \left(U^{[12]} \right)$
- Since $R^{[12]}(\tau) \in i\mathbb{R}$, Im(U) comes from the symmetric part of $R(\tau)$, and Re(U) comes from the antisymmetric part of $R(\tau)$:

- At the kinematics used, $\langle \xi^2 \rangle$ determined by Re $(U^{[12]}) \sim 10^{-2} imes {
 m Im} (U^{[12]})$
- Since $R^{[12]}(\tau) \in i\mathbb{R}$, Im(U) comes from the symmetric part of $R(\tau)$, and Re(U) comes from the antisymmetric part of $R(\tau)$:

$$Re[U(\mathbf{p}, q)] = Re \left[\int_{-\infty}^{\infty} d\tau \, R(\tau; \mathbf{p}, \mathbf{q}) e^{-iq_4\tau} \right]$$

$$\propto \int_{0}^{\infty} d\tau \, \left[R(\tau; \mathbf{p}, \mathbf{q}) - R(-\tau; \mathbf{p}, \mathbf{q}) \right] \sin(q_4\tau)$$

Lattice Measurements

- At the kinematics used, $\langle \xi^2 \rangle$ determined by Re $(U^{[12]}) \sim 10^{-2} imes {
 m Im} (U^{[12]})$
- Since $R^{[12]}(\tau) \in i\mathbb{R}$, Im(U) comes from the symmetric part of $R(\tau)$, and Re(U) comes from the antisymmetric part of $R(\tau)$:

$$Re[U(\mathbf{p}, q)] = Re \left[\int_{-\infty}^{\infty} d\tau \, R(\tau; \mathbf{p}, \mathbf{q}) e^{-iq_4\tau} \right]$$

$$\propto \int_{0}^{\infty} d\tau \, \left[R(\tau; \mathbf{p}, \mathbf{q}) - R(-\tau; \mathbf{p}, \mathbf{q}) \right] \sin(q_4\tau)$$

• τ_e is fixed during calculations, and $C^{\mu\nu}(\tau_e, \tau_e + \tau; \mathbf{p}, \mathbf{q})$ is poorly correlated with $C^{\mu\nu}(\tau_e, \tau_e - \tau; \mathbf{p}, \mathbf{q})$

Lattice Artifacts

$$\mathsf{Re}[U(\mathbf{p},q)] \propto \int_0^\infty d au \left[R(au;\mathbf{p},\mathbf{q}) - R(- au;\mathbf{p},\mathbf{q})\right] \sin(q_4 au)$$

• γ_5 -hermiticity tells us, configuration by configuration,

$$C_3^{\mu\nu}(\tau_e,\tau_m,\mathbf{p}_e,\mathbf{p}_m)^* = C_3^{\nu\mu}(\tau_m,\tau_e,-\mathbf{p}_m,-\mathbf{p}_e)$$

$$\mathsf{Re}[U(\mathbf{p},q)] \propto \int_0^\infty d au \; [R(au;\mathbf{p},\mathbf{q}) - R(- au;\mathbf{p},\mathbf{q})] \sin(q_4 au)$$

ullet γ_5 -hermiticity tells us, configuration by configuration,

$$C_3^{\mu\nu}(\tau_e,\tau_m,\mathbf{p}_e,\mathbf{p}_m)^*=C_3^{\nu\mu}(\tau_m,\tau_e,-\mathbf{p}_m,-\mathbf{p}_e)$$

This lets us compute

$$R(\tau; \mathbf{p}, \mathbf{q}) - R(-\tau; \mathbf{p}, \mathbf{q}) = R(\tau; \mathbf{p}, \mathbf{q}) + R(\tau; -\mathbf{p}, \mathbf{q})$$

The RHS is the correlated difference of two quantities measured at the same τ_e, τ_m , so correlated errors will cancel.

Measurement of $R(\tau; \mathbf{p}, \mathbf{q}) + R(\tau, -\mathbf{p}, \mathbf{q})$ (blue) and $R(\tau; \mathbf{p}, \mathbf{q}) - R(-\tau; \mathbf{p}, \mathbf{q})$ (earth)

$$U^{[\mu\nu]} = \frac{2if_{\pi}\varepsilon_{\mu\nu\rho\lambda}q^{\rho}p^{\lambda}}{\tilde{Q}^{2}} \left[\mathcal{C}_{W}^{(0)} + \langle \xi^{2} \rangle \frac{6(p \cdot q)^{2} - p^{2}q^{2}}{6(\tilde{Q}^{2})^{2}} \mathcal{C}_{W}^{(2)} + \dots + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{\tilde{Q}}\right) \right]$$

- $ilde{Q}^2 = -m_{\Psi}^2 q^2$, where m_{Ψ} is the (renormalized) heavy quark mass
- ullet $\mathcal{C}_W^{(n)}$ are perturbatively calculable Wilson coefficients

$$U^{[\mu\nu]} = \frac{2if_{\pi}\varepsilon_{\mu\nu\rho\lambda}q^{\rho}p^{\lambda}}{\tilde{Q}^{2}} \left[\mathcal{C}_{W}^{(0)} + \langle \xi^{2} \rangle \frac{6(p \cdot q)^{2} - p^{2}q^{2}}{6(\tilde{Q}^{2})^{2}} \mathcal{C}_{W}^{(2)} + \dots + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{\tilde{Q}}\right) \right]$$

- $ilde{Q}^2 = -m_{\Psi}^2 q^2$, where m_{Ψ} is the (renormalized) heavy quark mass
- ullet $\mathcal{C}_W^{(n)}$ are perturbatively calculable Wilson coefficients
- $f_{\pi}, m_{\Psi}, \langle \xi^2 \rangle$ are fit parameters
- f_π , m_Ψ fit from imaginary part of $U^{[\mu\nu]}$, while $\langle \xi^2 \rangle$ determined by real part

$$U^{[\mu\nu]} = \frac{2if_{\pi}\varepsilon_{\mu\nu\rho\lambda}q^{\rho}p^{\lambda}}{\tilde{Q}^{2}} \left[\mathcal{C}_{W}^{(0)} + \langle \xi^{2} \rangle \frac{6(p \cdot q)^{2} - p^{2}q^{2}}{6(\tilde{Q}^{2})^{2}} \mathcal{C}_{W}^{(2)} + \dots + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{\tilde{Q}}\right) \right]$$

- $ilde{Q}^2 = -m_{\Psi}^2 q^2$, where m_{Ψ} is the (renormalized) heavy quark mass
- ullet $\mathcal{C}_W^{(n)}$ are perturbatively calculable Wilson coefficients
- $f_{\pi}, m_{\Psi}, \langle \xi^2 \rangle$ are fit parameters
- f_{π} , m_{Ψ} fit from imaginary part of $U^{[\mu\nu]}$, while $\langle \xi^2 \rangle$ determined by real part
- Comparing continuum OPE to discretized lattice data will mean $\langle \xi^2 \rangle$ is $\mathcal{O}(a)$ -contaminated
 - Need to extrapolate this away at end of calculation

$$a = 0.06$$
 fm, $\mathbf{p}_e = (0, 0, -1)$, $\mathbf{p}_m = (1, 0, 1)$

$$f_\pi=153\pm 2$$
 MeV $m_\Psi=2.42\pm 0.01$ GeV

$$\langle \xi^2 \rangle = 0.21 \pm 0.01$$

(Errors are statistical and exclude $\mathcal{O}\left(a, \frac{\Lambda_{\text{QCD}}}{m_{\Psi}}\right)$ corrections)

Artifacts

- Excited-state contamination
- Lattice spacing
- Higher-twist effects
- Heavy pion (560 MeV)
- Quenching

Artifacts

- Excited-state contamination
- Lattice spacing
- Higher-twist effects
- Heavy pion (560 MeV)
- Quenching

Excited States (a = 0.060 fm)

Excited States (a = 0.060 fm, $\tau = 0$)

Preliminary Extrapolation $(m_{\Psi}^{(0)} = 2.5 \text{ GeV})$

Conclusions

- HOPE method allows computation of moments of pion LCDA via hadronic tensor
 - Amenable to lattice calculations
- At finite lattice spacing, we can extract $\langle \xi^2 \rangle$ using multiple m_Ψ

Conclusions

- HOPE method allows computation of moments of pion LCDA via hadronic tensor
 - Amenable to lattice calculations
- ullet At finite lattice spacing, we can extract $\langle \xi^2
 angle$ using multiple m_Ψ
- Currently in the process of increasing statistics, moving to finer lattices to facilitate continuum extrapolation

Conclusions

- HOPE method allows computation of moments of pion LCDA via hadronic tensor
 - Amenable to lattice calculations
- ullet At finite lattice spacing, we can extract $\langle \xi^2
 angle$ using multiple m_Ψ
- Currently in the process of increasing statistics, moving to finer lattices to facilitate continuum extrapolation
- Investigating potential of this method for computation of $\langle \xi^4 \rangle$

References

- W. Detmold and C.-J. D. Lin, "Deep-Inelastic Scattering and the Operator Product Expansion for Lattice QCD," arXiv:hep-lat/0507007v2
- W. Detmold, I. Kanamori, C.-J. David Lin, S. Mondal, Y. Zhao, "Moments of Pion Distribution Amplitude Using Operator Product Expansion on the Lattice," arXiv:hep-lat/1810.12194

Higher-Twist Effects

$$U^{[\mu\nu]} = \frac{2if_{\pi}\varepsilon_{\mu\nu\rho\lambda}q^{\rho}p^{\lambda}}{\tilde{Q}^{2}} \left[\mathcal{C}_{W}^{(0)} + \langle \xi^{2} \rangle \frac{6(p \cdot q)^{2} - p^{2}q^{2}}{6(\tilde{Q}^{2})^{2}} \mathcal{C}_{W}^{(2)} + \dots + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{\tilde{Q}}\right) \right]$$

- Twist-2 OPE is only valid up to $\frac{\Lambda_{\rm QCD}}{\tilde{Q}}$ corrections
- Higher-twist effects suppressed as m_{Ψ}^{-1}
- ullet Cannot take $m_\Psi o \infty$ on lattice due to $\mathcal{O}(am_\Psi)$ effects
- Must do combined fit to lattice spacing and m_{Ψ} with preliminary fit form:

$$\langle \xi^2 \rangle_{\text{data}} = \langle \xi^2 \rangle_{\text{cont.}} + \frac{A}{m_{\text{M}}} + Ba + Cam_{\text{W}}$$

(a = lattice spacing, $\langle \xi^2 \rangle_{\text{cont.}}$, A, B, C = fit parameters)

Preliminary Extrapolation (Combined)

