Semileptonic $B \to \pi \ell \nu$ decays

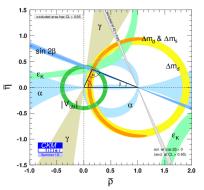
Ryan Hill

J. Flynn, A. Jüttner, A. Soni, J. T. Tsang, O. Witzel with the RBC-UKQCD collaborations

 $5^{\rm th}$ August 2020 Asia-Pacific Symposium for Lattice Field Theory

Motivation

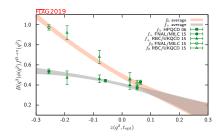
- Test unitarity of CKM matrix
- 2-3 σ discrepancy between exclusive $(B \to \pi \ell \nu)$ and inclusive $(B \to X_u \ell \nu)$
- Lepton universality ratio predictions.



CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41,

1-131 (2005) [hep-ph/0406184], updated results and plots available at: http://ckmfitter.in2p3.fr

Motivation



 Relatively little data for heavy-light decays in 2019 FLAG averages

[Flavour Lattice Averaging Group: http://flag.unibe.ch/2019/MainPage]

Goal

• Differential $B \to \pi \ell \nu$ decay rate:

$$\underbrace{\frac{d\Gamma(B\to\pi\ell\nu)}{dq^2}}_{Evacure} = \eta_{EW} \frac{G_F^2}{24\pi^3} \times \underbrace{|V_{ub}|^2}_{CKM} \times \left(\frac{(q^2-m_\ell^2)^2 \sqrt{E_\pi^2-M_\pi^2}}{q^4 M_B^2}\right)$$

Experiment

$$\times \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) M_B^2 (E_{\pi}^2 - M_{\pi}^2) \underbrace{|f_{+}(q^2)|^2}_{non-pert.} + \frac{3m_{\ell}^2}{8q^2} (M_B^2 - M_{\pi}^2)^2 \underbrace{|f_{0}(q^2)|^2}_{non-pert.} \right] \right)$$

 q^2 — momentum transfer to $\ell
u$

Requires a theoretical computation of the form factors.

Heavy Quark Action

• RHQ Action for b quarks, Columbia interpretation

[Christ et al. PRD 76 (2007) 074505] [Lin and Christ PRD 76 (2007) 074506]

- Builds on original Fermilab action [El-Khadra et al. PRD 55 (1997) 3933]
- Related to Tsukuba interpretation [S. Aoki et al. PTP 109 (2003) 383]
- Clover action with anisotropic clover term
- Uses 3 parameters $(m_0 a, c_p, \zeta)$ that can be non-pertubatively tuned to remove $\mathcal{O}((m_0 a)^n)$, $\mathcal{O}(\vec{p}a)$, $\mathcal{O}((\vec{p}a)(m_0 a)^n)$ errors [PRD 86 (2012) 116003]
- We can use current improvement terms to get $\mathcal{O}(a)$ improved discretisation errors

- Simulate form factors at various lattice spacings, masses, daughter energies
- 2 Extrapolate the results to the continuum
- Assess sources of systematic errors and factor these into the error budget
- Extrapolate continuum result over full q^2 range.

- In order to find f_+ , f_0 , seek to compute the hadronic matrix element for the flavour-changing vector currents $\langle \pi | \mathcal{V}^{\mu} | B \rangle$
- Standard parameterisation in terms of the scalar and vector form factors f₊ and f₀:

$$\langle \pi | \mathcal{V}^{\mu} | B \rangle = \mathbf{f_{+}(q^2)} \bigg(p_B^{\mu} + p_{\pi}^{\mu} - \frac{\mathbf{M}_B^2 - \mathbf{M}_{\pi}^2}{q^2} \, q^{\mu} \bigg) + \mathbf{f_{0}(q^2)} \bigg(\frac{\mathbf{M}_B^2 - \mathbf{M}_{\pi}^2}{q^2} \, q^{\mu} \bigg)$$

• Parallel and perpendicular form factors f_{\parallel} and f_{\perp} are simpler to relate to lattice data in the rest frame of the *B*-meson:

$$\langle \pi | \mathcal{V}^{\mu} | B \rangle = \sqrt{2 M_B} \left[v^{\mu} f_{\parallel}(E_{\pi}) + p_{\perp}^{\mu} f_{\perp}(E_{\pi}) \right]$$

with

 v^{μ} — B-meson 4-velocity

$$p_{\perp}^{\mu}$$
 — p_{π}^{μ} — $(p_{\pi}\cdot v)v^{\mu}$

 p_{π}^{μ} — momentum of pseudoscalar particle

$$f_{\parallel} = rac{\langle \pi | \mathcal{V}^0 | B \rangle}{\sqrt{2 M_B}}$$
 $f_{\perp} = rac{\langle \pi | \mathcal{V}^i | B \rangle}{\sqrt{2 M_B}} rac{1}{p^i}$

Neatly separates into spatial and temporal components.

- The matrix elements can be extracted from three-point correlation functions by cancelling off the other contributions.
- These other contributions involve two-point correlation functions of the involved mesons and their energies.
- Energies can be extracted from the two-point correlation functions.

Matrix Element Ratios

• Three-point functions:

$$C_{3,\mu} = \sum_{n,m} \langle 0 | \mathcal{O}_{\pi}^{\dagger} | \pi_n \rangle \langle \pi_n | \mathcal{V}^{\mu} | B_m \rangle \langle B_m | \mathcal{O}_B | 0 \rangle \frac{e^{-tE_{\pi}^{(n)}} e^{-(t-t_{\text{sink}})E_B^{(m)}}}{4E_{\pi}^{(n)}E_B^{(m)}}$$

• Two-point functions:

$$C_2^X = \sum_n \langle 0 | \mathcal{O}_X^{\dagger} | X_n \rangle \langle X_n | \mathcal{O}_X | 0 \rangle \frac{e^{-E_X^{(n)}}}{2E_X^{(n)}}$$

Matrix Element Ratio

• Make plateau fits to the ratio

$$\frac{C_{3,\mu}}{\sqrt{C_2^{\pi}C_2^B}}\sqrt{\frac{4E_P^0E_B^0}{e^{-tE_{\pi}^0}e^{-(t-t_{\rm sink})E_B^0}}} = \langle \pi_0 | \mathcal{V}^{\mu} | B_0 \rangle$$

Alternatively, include excited states by making the substitution

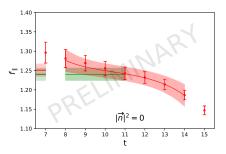
$$C_2^X \longrightarrow C_2^{\prime X} = \left(C_2^X - Z_X^1 e^{-tE_X^1}\right)$$

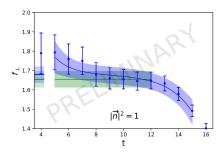
and include additional terms in the fit

$$\langle \pi_1 | \mathcal{V}^{\mu} | B_0 \rangle \sqrt{\frac{Z_{\pi}^1}{Z_0^0}} \sqrt{\frac{E_{\pi}^0}{E_{\pi}^1}} \sqrt{e^{-t\Delta E_{\pi}^1}} \ + \ \langle \pi_0 | \mathcal{V}^{\mu} | B_1 \rangle \sqrt{\frac{Z_B^1}{Z_0^0}} \sqrt{\frac{E_B^0}{E_B^1}} \sqrt{e^{-(t-t_{\text{sink}})\Delta E_B^1}}$$

Ratio Fits

• For this analysis, excited state fits preferred





Ground state + excited state fits on the C1 ensemble

Ensembles

	$L^3 imes T / a^4$	a^{-1} / GeV	m_π / MeV
C1	$24^{3} \times 64$	1.78	340
C2	$24^{3} \times 64$	1.78	430
M1	$32^{3} \times 64$	2.38	300
M2	$32^{3} \times 64$	2.38	360
M3	$32^3 \times 64$	2.38	410
F1S	$48^3 \times 96$	2.77	270
C0*	$48^{3} \times 96$	1.73	139

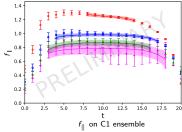
- 2+1f ensembles: Degenerate light quark
- Sea quarks: Domain-wall fermions
- F1S ensemble: New for this update of RBC-UKQCD 2015 analyses.
- *Physical pion ensemble C0 planned for future inclusion.

Motivation Strategy Analysis Summary

 $B o \pi$ analysis

$B \to \pi$ Form Factors

- Extract energies from two-point functions.
- Calculate f_{\parallel} and f_{\perp} from lattice data.
- Use this to find f_0 and f_+ :



$$f_0(q^2) = rac{\sqrt{2 M_B}}{M_B^2 + E_\pi^2} \left[(M_B - E_\pi) f_{\parallel}(q^2) + (E_\pi^2 - M_\pi^2) f_{\perp}(q^2)
ight] \ f_{+}(q^2) = rac{1}{\sqrt{2 M_B}} \left[f_{\parallel}(q^2) + (M_B - E_\pi) f_{\perp}(q^2)
ight]$$

$B \to \pi$ Chiral Continuum Fits

- Extrapolate to physical pion mass and zero lattice spacing simultaneously
- Use NLO hard-pion SU(2) HMχPT [PRD 67 (2003) 054010]

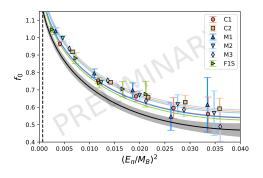
$$f(\textit{M}_{\pi},\textit{E}_{\pi},\textit{a}) = \frac{c_1 \Lambda}{\textit{E}_{\pi} + \Delta} \left(1 + \frac{\delta f}{(4\pi f_{\pi})^2} + c_2 \frac{\textit{M}_{\pi}^2}{\Lambda^2} + c_3 \frac{\textit{E}_{\pi}}{\Lambda} + c_4 \left(\frac{\textit{E}_{\pi}}{\Lambda} \right)^2 + c_5 \left(\textit{a} \Lambda \right)^2 \right)$$

where
$$\delta f = -\frac{3}{4}(3g_b^2+1)M_\pi^2\log\left(\frac{M_\pi^2}{\Lambda}\right)$$
 $\Delta_+ = M_B - M_{B^*} \approx 45.2~{
m MeV}$

• Don't include pole for f_0 : $M_{B^*}(0^+)$ predicted well above M_B+M_π

$B \to \pi$ Chiral Continuum Fits

- Four (for f_+) or five (for f_0) values of E_{π} per ensemble
- Six ensembles/pion masses over three lattice spacings
- Simultaneously fit coefficients c₁₋₅ to all data
- Continuum form factor given by $f(M_{\pi}^{\text{phys}}, E_{\pi}, a = 0)$



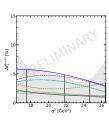
Systematic Error Analysis

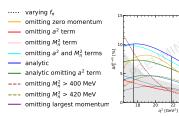
• In preparation for an extrapolation of the continuum results to the full q^2 range, we construct **synthetic data points**.

$$q^2 = (M_B^2 + M_\pi^2 - 2E_\pi M_B)$$

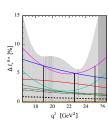
- The synthetic data points are constructed at **reference** q^2 values and account for both systematic and statistical errors.
- The extrapolation coefficients are lattice-independent as a result.
- Systematic error analysis required for this construction: discretisation error, lattice scale uncertainty, variations in chiral continuum fit ansatz...

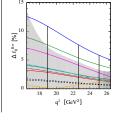
This analysis





2015





- -- varying g varying f_π
 - omitting zero momentum
- omitting a² term
- omitting M_{π}^2 term — omitting a^2 and M_{π}^2 terms
- analytic
- analytic omitting a² term

Motivation Strategy Analysis Summary

Full q^2 range extrapolation

z-expansion

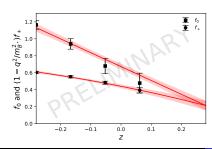
- Model-independent q^2 extrapolation scheme
- Change variables from q^2 to z with

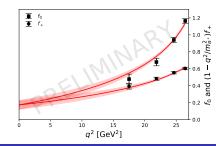
$$egin{split} z(q^2,t_0) &= rac{\sqrt{1-q^2/t_+} - \sqrt{1-t_0/t_+}}{\sqrt{1-q^2/t_+} + \sqrt{1-t_0/t_+}} \ & t_+ = (M_B + M_\pi)^2 \ & t_0 &= (M_B + M_\pi)(\sqrt{M_B} - \sqrt{M_\pi})^2 \end{split}$$

- Allows the form factors to be expanded as a power series in z
- Two common forms: Boyd-Grinstein-Lebed (BGL) and Bourrely-Caprini-Lellouch (BCL)

z-expansions

- z-expansions usually given the kinematic constraint that $f_0 = f_+$ at $q^2 = 0$.
- Can be combined with experimental data to determine $|V_{ub}|$.
- By integrating over q^2 , predictions of the lepton-universality ratios can be obtained.
- z-expansions shown are BCL fits





Summary

- Updates to RBC-UKQCD 2015 results in the pipeline
- More precisely determined lattice spacing and inclusion of third lattice spacing via F1S ensemble reduces errors
- More details available in conference proceedings: arXiv:1912.09946
- Currently still preliminary