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Quantum computer sounds growing well...

Article

Quantumsupremacy using a programmable
superconducting processor

This talk = How can we use it for particle physics?
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Th |S ta I k |S on [See also talks by Hanada, Kawai, Lamm, Meurice, Sturzu, Wang]

Application of Quantum Computation
to
Quantum Field Theory (QFT)

*Generic motivation:

simply would like to use powerful computers?

- Specific motivation:
Quantum computation is suitable for Hamiltonian formalism
—— We don’t perform (path) integral

—— Liberation from sign problem in Monte Carlo?

(Fvarious approaches & talks within the framework of path integral but | skip it )



Cost of Hamiltonian formalism

We have to play with huge vector space

since QFT typically has co-dim. Hilbert space

reqularization needed!

Technically, computers have to

memorize huge vector & multiply huge matrices



Cost of Hamiltonian formalism

We have to play with huge vector space

since QFT typically has co-dim. Hilbert space

reqularization needed!

Technically, computers have to

memorize huge vector & multiply huge matrices

Quantum computers do this job?
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topological “theta term”

supposed to be difficult in the conventional approach:

"real time
- sign problem even in Euclidean case when 6 isn’t small



In this talk, we focus on

Schwinger model with topological term in Minkowski space
7+7d QED

1 0 — _
L= _ZF,LWF’UJV‘I‘i—ﬂ_E,uVF'uV‘Fiw’V'UJ(8M+igAM)¢_m¢¢

—

topological “theta term”

supposed to be difficult in the conventional approach:

"real time
- sign problem even in Euclidean case when 6 isn’t small

RESUltS: [Tensor Network approach:

Banuls-Cichy-Jansen-Saito ‘16 , Funcke-Jansen-Kuhn ’19, etc.]

—

 Construction of true vacuum

- =Computation of (1) & consistency check/prediction

* Estimation of computational resource

—




Contents

1. Introduction

2. Schwinger model as qubits

3. Algorithm to prepare vacuum
4. Results

5. Summary & Outlook



QFT as Quantum Bit (=Qubit) ?

Qubit = Quantum system w/ 2-dim. Hilbert space

(ex. up/down spin system)

Quantum computer = a combination of qubits




QFT as Quantum Bit (=Qubit) ?

Qubit = Quantum system w/ 2-dim. Hilbert space

(ex. up/down spin system)

Quantum computer = a combination of qubits

To put QFT on quantum computer,

g

1. “Regularize” Hilbert space (make it finite-dim.!)

2. Rewrite the regularized theory in terms of qubits

—



QFT as Quantum Bit (=Qubit) ?
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(ex. up/down spin system)

Quantum computer = a combination of qubits

To put QFT on quantum computer,

g

1. “Regularize” Hilbert space (make it finite-dim.!)

2. Rewrite the regularized theory in terms of qubits

—

the simplest nontrivial example

SChW'nger model = w/ gauge interaction in this context

— 1+1d gauge field has only 1-dim. physical Hilbert sp.

— Lattice fermion has finite-dim. Hilbert sp.



Schwinger model w/ topological term

Continuum:

1 0 — _
L= ——FWFW—I-Z—WGWFW-I—WW”“(%-I—’igAu)w—mww

4

Using “chiral anomaly”, the same physics can be studied by  [Fuiikawa'79]
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Schwinger model w/ topological term

Continuum:

1 0 — _
L= ——FWFW—I-Z—WGWFW-I—WW”“(%-I—’igAu)w—mww

4

Using “chiral anomaly”, the same physics can be studied by  [Fuiikawa'79]

1 _ .
L=~ B PP 4 iy (0 + ig A — mipe’ !

Taking temporal gauge 4, = 0, (=AY
. _ — 1
A = [ do|-idy 1 FigAD)p+mie ™ y4-2n3

Physical states are constrained by Gauss law:

0 = —81M — gpy 4



Lattice theory w/ staggered fermion

H a m i |t0 n Ia n . [Susskind, Kogut-Susskind ’75]

N-—1
H=—-i) (fw — (—1)”% sin 9) [X;Llew”)(n—h.c.]
n=1

N N1 . 2a
+mcos6 > (=) xtxn + J L [w =, J= 2}

n=1 n=1

Commutation relation:

Gauss law:

1 (—1)"

Ln—Ly_1 = Xl,Xn —



Schwinger model as qubits

1- Ta ke Open b.c. & SOIVe Gauss |aw: [cf. Martinez-Muschik-Schindler-Nigg-Erhard '16]

n—1 ]
Ly, = Z[\Iu 1o ;_1){?] (took Lo = 0)
=1



Schwinger model as qubits

1- Ta ke Open b.c. & SOIVe Gauss |aw: [cf. Martinez-Muschik-Schindler-Nigg-Erhard '16]

n—1 . :
oS Y] ook Lo=0)
=1

2. Redefine fermion to absorb én : xn — I |7 xn
<n



Schwinger model as qubits

1- Ta ke Open b.c. & SOIVe Gauss |aw: [cf. Martinez-Muschik-Schindler-Nigg-Erhard '16]

n—1 . ¢ -
L — ZN\E 1= (—l)"”] (took Lo = 0)
=1

2

2. Redefine fermion to absorb én : xn — I |7 xn
<n

. Xn—1Yn
3. Map to spin system: x. = (H iZe) = (Xoy, Yy, Zp: 0y 5 5 at site n)
i<n

“Jordan-Wigner transformation”
[Jordan-Wigner’28]



Schwinger model as qubits

1- Ta ke Open b.c. & SOIVe Gauss |aw: [cf. Martinez-Muschik-Schindler-Nigg-Erhard '16]

n—1
L,= Z[\g\f e 9_1) ] (took Lo =0)
2. Redefine fermion to absorb ¢n : xn — ]I [G_W} Xn
<n
. . Xn —1Yn :
3. Map to Spin system: Xn = (H @Z£> 5 (Xn, Y, Z: 01 2 3 at site n)
f=n “Jordan-Wigner transformation”
. . [Jordan-Wigner’28]
Finally, H=Hy;,+ Hy+ Hy
JN-1 Qubit description of
HZZ =5 Z > ZyZy, the Schwinger model !!

’I’L_2 1<k<t<n

1N 1 m
— H:t = 5 Z (’w — (—1)”5 sin 9) [Xan—I—l—I_Y?’LY’n,—I—l}
n=1
mcosf & JN=L

Hy = Z (~1)"Zn~ Z (n mod 2) Z Z,
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“Rule” of Quantum Computation

Use only the following 2 operations:

* Action of unitary operator:

)

*Measurement:

)
= a|0) + 8/1)

) — Uly)
U Ul)
A
ﬂ C  (classical number)

c = 0 w/ probability |a/?
c =1 w/ probability |5]?

How can we obtain the vacuum?
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Adiabatic state preparation of vacuum

Step 1: Choose an initial Hamiltonian H, of a simple system
whose ground state |vacgy) is known and unique

Step 2: Consider the time evolution

T exp (—i /OT dt HA(t)> lvacg > w/ HA(0) = Hgy, Hy(T) = H

Step 3: Use the adiabatic theorem

If the system w/ the Hamiltonian H,(t) has a unique gapped vacuum,
then the desired ground state is obtained by

T
lvac >= Iim T exp (—72/0 dt HA(t)>|vaco >

T—00



Adiabatic state preparation of vacuum (Cont’d)

T
lvac >= lim T exp (—i/o dt HA(t)>|vaco >

T—00
~ U(T)U(T — ot)---U(26t)U(6t)|vacy >

(U(t) — e—iHA(t)5t>
Here we choose

——

Ho = Hzz + Hzlm—mpo—0 mmp |vacy) =[0101---01)

HA(t) — H‘w—ﬂu(t) 0—0(¢),m—m(t)

w(t) = ;w, o) = ;9, m(t) = (1 _ ;) mo—l-;m

—

mg can be any positive number in principle
but it is practically chosen to have small systematic error



Quantum circuit for time evolution op. (N=4)

e—zHét
n =4 — RE;:'
Y3Y, X3Xy
n=3 — R?j |
2Y3 XoX3 ZoZs
n =2 — R?j Z1Z3 |
Y1Ys X1X5 YAVZ:
n=1— szlj




Results

4 Skipped contents:

-

“processes of taking oo volume & continuum limits

“how to estimate systematic errors, etc...

\
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Qubits in quantum circuit # isolated system
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(Classical) simulator for Quantum computer

In real quantum computer,

Qubits in quantum circuit # isolated system

mm) Interactions w/ environment cause errors

Here we use

Simulator = tool to simulate quantum computer
by classical computer

—

Doesn’t have errors - ideal answers

— (More precisely, classical computer also has errors but its error correction is established)

*The same code can be run in qguantum computer w/ speed-up

—

Useful to test algorithm & estimate computational resources
(~# of qubits, gates)



Massless case (after continuum & oo volume limit)

T =100,6t = 0.1, Ny, = 16,1M shots

[Chakraborty-MH-Kikuchi-lzubuchi-Tomiya '20]

#(measurements)
0.0 -
-0.1 /ct result
S _02-
S 0.2
—0.31
—0.4 - | | |
0.0 0.5 1.0 1.5 2.0



Result for massive caseat g =1

[Chakraborty-MH-Kikuchi-lzubuchi-Tomiya '20]

0.05
<——— mass perturbation
0.00- =0
—0.05- % f
S 6 =3mn/5
2 -0.10- i
—0.15-
-020{  TTTeeal_
—0.25 T T T hhlhh‘-’h T
0.0 0.2 0.4 0.6 0.8 1.0



0 dependenceatm =0.1& g =1

(YY)

—0.124
—0.14 1
—0.16-
~0.18-
—0.20-

—0.22 -

mass perturbation

/

0.0

0.1

0.2

0/2n

0.3

0.4 0.5



Summary & Outlook



Summarv: [See also talks by Hanada, Kawai, Lamm, Meurice, Sturzu, Wang]

* Quantum computation is suitable for Hamiltonian formalism
which is free from sign problem

*Instead we have to deal with huge vector space
(Quantum computer may do this job?)

*constructed the vacuum of Schwinger model w/ 6 term
by adiabatic state preparation

found agreement with the exact result for m = 0 & mass perturb.

(A part of) Works in progress:

- Sea rChlng Crltlcal p0|nt at 9 =T [Chakraborty-MH-Kikuchi-lzubuchi-Tomiya]

Confinement/screening  vi-itou-kikuchi-Nagano-okuda)

. Matnx QM & (nOn-)SUSY QFTS [Hanada’s talk, Buser-Gharibyan-Hanada-MH-Liu] Th a n kS I




Appendix



Estimation of systematic errors

[Chakraborty-MH-Kikuchi-lzubuchi-Tomiya 20]

Approximation of vacuum:
vac >~ U(T)U(T-6t)---U(26t)U(dt)|vacgy >= |vacy)

Approximation of VEV:

(O) = (vac|O|vac) ~ (vac4|O|vacy)

Introduce the quantity
(O) 4(t) = (vac4|et Tt Oe ™t vac,)

—

independent of t if [vac4) = |vac)

dependent on t if [vaca) # |vac)

—

This quantity describes intrinsic ambiguities in prediction

mm) Useful to estimate systematic errors



(Py)alt)

Estimation of systematic errors (Cont’d)

—0.232

[ 3K )
-0.236 1 -0.234{ % ¢
LY S 5t=0.4
~0.2381 - —0.236§
= Y [ - [) )
3 -0.2381
~0.240 = T o= 012
-0.240% 4 ] f—.% ________ III
—-0.242 + —0.242 ot=0.1
0 1 2 3 4 5 0 1 2
t t

Oscillating around the correct value

mm) Define central value & error as

i (max(O0)4(t) + min(O)a(t)) & % (max(O) 4(t) — min(O) 4 (t))

|



Thermodynamic & Continuum limit

g=1,m =0, Nmax = 16,7 = 100,46t = 0.1, 1 M shots

#(measurements)
—0.20 0.0
"""""""""""""""""""""""""" PESEECO BT I Ob S b I8
~0.211 ~0.1+ g=0.5
3
- — =1.0
0.23 _03. g
~0.24 el i
—0.4 - TTeeee g=2.0
~0.25 1 e 5 2 5 S SN
T T T _0.5 T T T T T
0.00 0.05 0.10 0.15 0.20 0.00 0.25 0.50 0.75 1.00 1.25 1.50

w/N ag



