Abelian and monopole dominance without gauge fixing in pure SU(3) gauge theory

Katsuya Ishiguro (Kochi Univ.), Atsuki Hiraguchi (Kochi Univ.) Tsuneo Suzuki (RCNP, Osaka Univ.)

6 August 2020, at APLAT 2020 online

Introduction

Color confinement in QCD is still an important unsolved problem.

Color confinement (dual Meissner picture)

```
[G. 't Hooft (1976), S. Mandelstam (1976)]
```

- The QCD vacuum is a kind of a dual superconducting state caused by condensation of magnetic monopoles.
- The color charges are then confined inside hadrons due to formation of the color-electric flux tube through the dual Meissner effect.
- Abelian projection [G. 't Hooft (1981)]
 - SU(3) (SU(2)) QCD can be reduced to an Abelian U(1)xU(1) (U(1)) theory by adopting a partial gauge fixing, and the color-magnetic monopoles appear.
- Violation of non-Abelian Bianchi identities (VNABI) [T. Suzuki (2014)]
 - The VNABI can be regarded as Abelian-like monopole currents in the continuum QCD. (N^2 -1 Abelian monopoles appear in SU(N)

Introduction

- Previous works
 - The confining properties are dominated by the Abelian fields in Maximally Abelian (MA) gauge in SU(2) and SU(3) gauge theories. (Abelian dominance)

 [T. Suzuki and I. Yotsuyanagi (1990), etc.]
 - The confining properties are also dominated by monopoles in MA gauge (monopole dominance) [H. Shiba et al. (1994), J. D. Stack et al. (1994), etc.]
 - Abelian dominance and monopole dominance without gauge fixing are observed in SU(2) gauge theory. [T. Suzuki et al. (2007)]
 - SU(2) -> three Abelian and monopole components
 - Scaling behaviors of monopole densities based on the VNABI are observed in various smooth gauge fixing conditions like MA gauge and maximal center gauge in SU(2) gauge theory. [T. Suzuki et al. (2018)]
- Based on the idea of the VNABI, it is important to study the case of SU(3) gauge theory without gauge fixing.

VNABI and Abelian monopoles

• Using a covariant derivative $D_\mu = \partial_\mu - igA_\mu$, we get the following commutation relation,

$$[D_{\mu}, D_{\nu}] = -igG_{\mu\nu} + [\partial_{\mu}, \partial_{\nu}]$$

where $G_{\mu\nu}$ is a non-Abelian field strength.

- The second term $[\partial_{\mu},\partial_{\nu}]$ can not be neglected when a line singularity exists.
- The Jacobi identities $\epsilon_{\mu\nu\rho\sigma}[D_{\nu},[D_{\rho},D_{\sigma}]]=0$

→ VNABI is equivalent to eight Abelian-like magnetic monopole currents in SU(3) gauge theory.

Abelian projection

- Definition of Abelian link variables
 - Non-Abelian SU(3) link variable $U_{\mu}(s)$
 - Abelian link variables $u_\mu^a(s)=\exp(i\theta_\mu^a(s)\lambda^a)$ using Gell-Mann matrices (a=1-8) are extracted from SU(3) link variable to maximize the overlap R for each index a

$$R = \sum_{s,\mu} \operatorname{ReTr}\{u_{\mu}^{a}(s)U_{\mu}^{\dagger}(s)\}$$

Example for a=1

$$\theta_{\mu}^{1}(s) = \tan^{-1} \left\{ \frac{\operatorname{Im}(U_{\mu}^{12}(s) + U_{\mu}^{12}(s))}{\operatorname{Re}(U_{\mu}^{11}(s) + U_{\mu}^{22}(s))} \right\}$$

Polyakov loop correlation function (PCLF)

Polyakov loop and PLCF

$$P(s) = \prod_{k=0}^{N_t - 1} U_4(s + k\hat{4}) \quad \Longrightarrow \quad -\frac{1}{T} \ln \langle \text{Tr} P(\vec{s}_1) \text{Tr} P(\vec{s}_2)^* \rangle = V(r) \quad (r = |\vec{s}_2 - \vec{s}_1|)$$

$$V(r) : \text{ static potential}$$

Abelian, monopole and photon parts of Polyakov loop

$$P_{\mathbf{A}}^{a}(s) = \exp\{i\sum_{k=0}^{N_{t}-1}\theta_{4}^{a}(s+k\hat{4})\} \qquad \qquad -\frac{1}{T}\ln\langle P_{A}^{a}(\vec{s}_{1})P_{A}^{a}(\vec{s}_{2})^{*}\rangle = V_{A}^{a}(r)$$

$$V_{A}^{a}(r) : \text{ Abelian static potential }$$

$$\theta_{4}^{a}(s) = -\sum_{s'}D(s-s')[\partial_{\nu}'\Theta_{\nu 4}^{a}(s') + \partial_{4}(\partial_{\nu}'\theta_{\nu}^{a}(s'))] \qquad D(s-s') : \text{ lattice Coulomb propagator }$$

$$\Theta_{\mu\nu}^{a}(s) = \partial_{\mu}\theta_{\nu}^{a}(s) - \partial_{\nu}\theta_{\mu}^{a}(s) = \bar{\Theta}_{\mu\nu}^{a}(s) + 2\pi n_{\mu\nu}^{a}(s) : \text{ Abelian field strength }$$

$$\bar{\Theta}_{\mu\nu}^{a}(s) \in [-\pi,\pi], \quad n_{\mu\nu}^{a}(s) : \text{ integer }$$

$$P_{\rm A}^{a} = P_{\rm ph}^{a} \cdot P_{\rm mon}^{a}$$

$$P_{\rm ph}^{a}(s) = \exp\{-i \sum_{k=0}^{s} \sum_{s'} D(s + k\hat{4} - s') \partial_{\nu}' \bar{\Theta}_{\nu 4}^{a}(s')\} \Longrightarrow -\frac{1}{T} \ln \langle P_{ph}^{a}(\vec{s}_{1}) P_{ph}^{a}(\vec{s}_{2})^{*} \rangle = V_{ph}^{a}(r)$$

$$V_{Ph}^{a}(r) : \text{ photon static potential }$$

$$P_{\rm mon}^{a}(s) = \exp\{-2\pi i \sum_{k=0}^{s} \sum_{s'} D(s + k\hat{4} - s') \partial_{\nu}' n_{\nu 4}^{a}(s')\} \Longrightarrow -\frac{1}{T} \ln \langle P_{mon}^{a}(\vec{s}_{1}) P_{mon}^{a}(\vec{s}_{2})^{*} \rangle = V_{mon}^{a}(r)$$

$$V_{mon}^{a}(r) : \text{ monopole static potential } 6$$

Numerical simulations

- T=0 system
 - PLCF at zero-temperature is very noisy.
 - Calculate PLCF and APLCF by applying multilevel algorithm to reduce the errors.

```
M. Lüscher and P. Weisz, JHEP 0109 (2001) 010, [hep-lat/0108014].
M. Lüscher and P. Weisz, JHEP 0207 (2002) 049, [hep-lat/0207003].
Y. Koma and M. Koma, Phys. Rev. D 95, 094513 (2017), [hep-lat/170306247]
```

- <u>T ≠ 0 system</u>
 - Monopole and photon Polyakov loops are non-local operators.
 - Evaluate APLCF, MPLCF and PPLCF by employing random gauge transformations at finite temperature in the confinement phase.

```
T. Suzuki et al., Phys.Rev.D77:034502,2008, [hep-lat/07064366].
T. Suzuki et al., Phys.Rev.D80:054504,2009, [hep-lat/09070583].
```

T. Sekiguchi and K. I., Int. J. Mod. Phys. A31, 1650149 (2016), [hep-lat/161201670]

In both cases, it does not impose any gauge fixing conditions.

Numerical results (T=0)

SU(3) Wilson action, 16^4 , $\beta = 5.60$

Multilevel algorithm

- 1. Divide the lattice volume into several sublattices along the time direction.
- 2. Take the average of a parts of PLCF over internal update (iupd) on each sublattice.
- 3. Compute the PLCF from the product of sublattice average of its components

A huge number of internal updates are needed for the calculation of APLCF.

Numerical results (static potential)

T=0 (multilevel algorithm)

SU(3) Wilson action

$$16^4$$
, $\beta = 5.60$

Abelian: color-1 component

iupd: 10,000 for PLCF

7,000,000 for APLCF

fitting function

$$V(r) = \sigma r - \frac{\alpha}{r} + C$$

	σ	α	С	fit- range
non- Abelian	0.249(2)	0.29(1)	0.73(1)	1-6
Abelian	0.23(2)	0.3(1)	2.7(1)	1-6

This result show Abelian dominance only for one-color component. 9

$T \neq 0$ (random gauge transformation)

 $V(r) = \sigma r - \frac{\alpha}{r} + C$

non-Abelian and Abelian static potential

SU(3) Wilson action 24^3x4 , $\beta = 5.60$, $T \sim 0.8Tc$,

of conf.=60,000, # of random gauge transformation = 4000

$T \neq 0$ (random gauge transformation)

Monopole and photon static potential

$$V(r) = \sigma r - \frac{\alpha}{r} + C$$

photon potential

Results $(T \neq 0)$

• Fitting function for static potentials $V(r) = \sigma r - \frac{\alpha}{r} + C$

FPLCF	nconf=	=60000				
fit range	σ	α	C	WSSR/ndf		
[1:7]	0.1934(37)	0.4219(26)	1.1463(203)	0.9917		
APLCF nconf=60000 ngf=4000						
fit range	σ	α	C	WSSR/ndf		
[1:8]	0.1836(151)	0.4576(971)	2.9120(797)	1.1001		
MPLCF nconf=60000 ngf=4000						
fit range	σ	α	C	WSSR/ndf		
[1:8]	0.1882(156)	0.4526(993)	2.9061(817)	0.9666		
PPLCF nconf=60000 ngf=4000						
fit range	σ	α	C	$\sqrt{WSSR/ndf}$		
[1:11]	-0.0014(2)	0.073(5)	1.521(3)	0.9965		

 These results show perfect Abelian dominance and monopole dominance for string tension

Summary

- Calculate static potentials in SU(3) gauge theory at zero(16⁴, beta=5.6, multilevel) and finite temperature(24³x4, beta=5.6, random gauge transformation)
- Perfect Abelian dominance for string tension without gauge fixing are observed only for one-color component.
- Perfect monopole dominance are also obtained in finite temperature system.
- It is necessary to check scaling behaviors and finite volume effects.
- Study the contribution of monopole for various physical quantities (hadron mass, chiral symmetry breaking, etc.)