QCD sum rule from lattice correlators

Tsutomu Ishikawa (KEK, SOKENDAI)

S. Hashimoto

for JLQCD collaboration

Outline

- We propose a method to compute a spectral sum in the QCD sum rule from lattice correlators.
- The lattice results can replace OPE to extract the QCD parameters.

1. Borel transformation in QCD sum rule
2. Chebyshev expansion
3. Numerical result
4. Summary

Determination of the QCD parameters

the QCD parameters, such as α_{s} and m_{q}, can be determined by the matching:

$$
\langle O\rangle_{\mathrm{OPE}}=\langle O\rangle_{\text {lat }}
$$

It requires

in OPE

in LQCD

- the typical energy scale is large enough to use perturbation theory
- discretization error under control

Determination of the QCD parameters

the QCD parameters, such as α_{s} and m_{q}, can be determined by the matching:
we compute the Borel transform
It re $\Pi\left(M^{2}\right)=\frac{1}{M^{2}} \int d s e^{-s / M^{2}} \rho(s)$ from $\quad C(t)=\sum_{\mathbf{x}}\langle J(t, \mathbf{x}) J(0, \mathbf{0})\rangle$ following QCD sum rule (SVZ)

- Why $\Pi\left(M^{2}\right)$?
- the 1 larg
- How can we compute it?

Borel transform and OPE

$\Pi\left(M^{2}\right)$ is the Borel transform of HVP $\Pi\left(Q^{2}\right)=\int_{0}^{\infty} d s \frac{\rho(s)}{s+Q^{2}}$ def. of the Borel transformation $\left(Q^{2}=-q^{2}\right)$

$$
\begin{aligned}
& \mathscr{B}_{M}:=\lim _{\substack{n, Q^{2} \rightarrow \infty \\
Q^{2} / n=M^{2}}} \frac{Q^{2 n}}{(n-1)!}\left(-\frac{\partial}{\partial Q^{2}}\right)^{n}\left[\frac{1}{s+Q^{2}}\right]=\frac{1}{M^{2}} e^{-s / M^{2}} \\
& \mathscr{B}_{M}\left[\Pi\left(Q^{2}\right)\right]=\frac{1}{M^{2}} \int_{0}^{\infty} d s e^{-s / M^{2}} \rho(s)=\Pi\left(M^{2}\right)
\end{aligned}
$$

in large $Q^{2}>0$ region
$\Pi\left(Q^{2}\right)=\Pi^{\text {pert }}\left(Q^{2}\right)+\frac{c_{2}}{Q^{2}}+\frac{c_{4}}{Q^{4}}+\frac{c_{6}}{Q^{6}}+\cdots$

$$
\mathscr{B}_{M}\left[\frac{1}{Q^{2 n}}\right]=\frac{1}{(n-1)!} \frac{1}{M^{2 n}}
$$

OPE more convergent
$\Pi\left(M^{2}\right)=\Pi^{\text {pert }}\left(M^{2}\right)+\frac{c_{2}}{M^{2}}+\frac{c_{4}}{M^{4}}+\frac{c_{6}}{2!M^{6}}+\cdots$

Spectral rep. of correlator

current-current correlators

$$
C(t)=\sum_{\mathbf{x}}\left\langle J_{i}(t, \mathbf{x}) J_{i}(0, \mathbf{0})\right\rangle
$$

spectral rep.

$$
\begin{aligned}
& C(t)=\int d \omega e^{-\omega t} \omega^{2} \rho\left(\omega^{2}\right) \quad\left(\omega^{2}=s\right) \\
& \Pi\left(M^{2}\right)=\frac{2}{M^{2}} \int d \omega e^{-\omega^{2} / M^{2}} \omega \rho\left(\omega^{2}\right)
\end{aligned}
$$

$$
e^{-\omega} \approx e^{-H}: \text { transfer matrix }
$$

expansion in $e^{-\omega}$

$$
\int d \omega \rho(\omega)\left(\begin{array}{cl}
\frac{2 \omega}{M^{2}} e^{-\omega^{2} / M^{2}} & =a_{0}\left(M^{2}\right) \omega^{2}+a_{1}\left(M^{2}\right) \omega^{2} e^{-\omega}+a_{2}\left(M^{2}\right) \omega^{2} e^{-2 \omega}+\cdots \\
\Pi\left(M^{2}\right) & =a_{0}\left(M^{2}\right) C(0)+a_{1}\left(M^{2}\right) C(1)+a_{2}\left(M^{2}\right) C(2)+\cdots
\end{array}\right.
$$

Chebyshev expansion

Chebyshev expansion:

$$
\begin{aligned}
& \frac{2 \omega}{M^{2}} e^{-\omega^{2} / M^{2}} \simeq \frac{c_{0}^{*}\left(M^{2}\right)}{2} \omega^{2}+\sum_{j=1} c_{j}^{*}\left(M^{2}\right) T_{j}^{*}\left(e^{-\omega}\right) \omega^{2} \\
& \Pi\left(M^{2}\right) \simeq \frac{c_{0}^{*}\left(M^{2}\right)}{2} C(0)+\sum_{j=1} c_{j}^{*}\left(M^{2}\right)\left\langle T_{j}^{*}\right\rangle
\end{aligned}
$$

$c_{j}^{*}\left(M^{2}\right)$ determined by the form $\frac{2}{M^{2} \omega} e^{-\omega^{2} / M^{2}}$
(shifted) Chebyshev polynomial

$$
\left\{\begin{array}{l}
T_{1}^{*}(x)=2 x-1, T_{2}^{*}(x)=8 x^{2}-8 x+1, \cdots \\
\left\langle T_{1}^{*}\right\rangle=2 \underline{C(1)}-\underline{C(0)},\left\langle T_{2}^{*}\right\rangle=8 \underline{C(2)}-8 \underline{C(1)}+\underline{C(0)}, \cdots
\end{array}\right.
$$

correlators from lattice simulations

Setup

JLQCD ensemble
$N f=2+1$ Möbius domain-wall fermion

β	$a^{-1}[\mathrm{GeV}]$	$L^{3} \times T\left(\times L_{5}\right)$	\#meas	$a m_{u d}$	$a m_{s}$
4.17	$2.453(4)$	$32^{3} \times 64(\times 12)$	800	0.007	0.04
4.35	$3.610(9)$	$48^{3} \times 96(\times 8)$	600	0.0042	0.025
4.47	$4.496(9)$	$64^{3} \times 96(\times 8)$	400	0.0030	0.015

$a m_{s}$ is also valence quark mass.

- $J_{i}=\bar{s} \gamma_{i} s$
ground state: ϕ meson
- $m_{\phi} \sim 1 \mathrm{GeV}$

$$
\begin{gathered}
\Pi^{\mathrm{lat}}\left(M^{2}\right)=\frac{c_{0}^{*}\left(M^{2}\right)}{2}+\sum_{j=1}^{N} c_{j}^{*}\left(M^{2}\right)\left\langle T_{j}^{*}\right\rangle \\
\begin{array}{c}
\text { Chebyshev } \\
\text { expansion }
\end{array} \\
\begin{array}{c}
\text { lattice } \\
\text { simulatio, }
\end{array}
\end{gathered}
$$

Convergence of expansion

$$
\frac{2}{M^{2} \omega} e^{-\omega^{2} / M^{2}} \tanh \left(\omega / \omega_{0}\right) \simeq \frac{c_{0}^{*}\left(M^{2}\right)}{2}+\sum_{j=1}^{N} c_{j}^{*}\left(M^{2}\right) T_{j}^{*}\left(e^{-\omega}\right)
$$

introduced to regularize infrared div.

Nearly perfect approximation with $N=12$.

Convergence of expansion

$$
\frac{2}{M^{2} \omega} e^{-\omega^{2} / M^{2}} \tanh \left(\omega / \omega_{0}\right) \simeq \frac{c_{0}^{*}\left(M^{2}\right)}{2}+\sum_{j=1}^{N} c_{j}^{*}\left(M^{2}\right) T_{j}^{*}\left(e^{-\omega}\right)
$$

introduced to regularize infrared div.

Nearly perfect approximation with $N=12$.

Lattice results

Lattice results

Lattice results

Comparison with OPE

Comparison with OPE

Comparison with OPE

Comparison with OPE

Uncertainties of condensates

- uncertainty in $\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle \times 10^{2}$

charmonium	$1.20(36)$	[SVZ]
tau decay	$0.6(12) \quad[G e s h k e n b e i n ~ e t ~ a l, ~ 01] ~$	
	$-3.4 \sim-0.5 \quad[$ Davier et al, 14]	

Summary

OPE
$\mathscr{B}_{M}\left[\Pi^{\mathrm{OPE}}\left(Q^{2}\right)\right]=\Pi^{\mathrm{OPE}}\left(M^{2}\right)$

$$
\Pi^{\mathrm{lat}}\left(M^{2}\right)=\frac{c_{0}^{*}\left(M^{2}\right)}{2}+\sum_{j=1}^{N} c_{j}^{*}\left(M^{2}\right)\left\langle T_{j}^{*}\right\rangle
$$

- We propose a method to compute the Borel transform of HVP in the QCD sum rule from lattice correlator.
- The scale parameter M^{2} is continuous and easily adjustable in our method.
- can be used to extract physical parameters including the condensates and to renormalize lattice operators.

