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The software used for the evaluation, such as the compiler, is still

under development and its performance, which is obtained by

“performance estimation tool” and even actual execution on a

prototype machine, may be different when the supercomputer Fugaku

starts is operation.



Feature of Fugaku: TofuD interconnect
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https://postk-web.r-ccs.riken.jp/spec.html

Flops/node: 3TFlops[double]

( ×23 of K-computer)

injection BW/node 40.8GB/s

( only ×2 of K-computer)

communication is important

• 6D torus/mesh network with 10 nearest neighbors

(small 3d “torus” [2 × 3 × 2]) × (large 2d torus × 1d mesh),

• Each node (, process) can send data to 6 different directions

simultaneously [QCD has 8 directions]

• Latency: 0.49µs, > 90% efficiency for the nearest neighbor put
cf. https://www.fujitsu.com/global/Images/the-tofu-interconnect-d-for-supercomputer-fugaku.pdf

• interface for TofuD: uTofu QWS uses uTofu for neighboring comm.

keywords TNI: Tofu Network Interface (RDMA engine) RDMA: Remote Direct Memory Access

uTofu: Low Level Communcation API for TofuD

https://postk-web.r-ccs.riken.jp/spec.html
https://www.fujitsu.com/global/Images/the-tofu-interconnect-d-for-supercomputer-fugaku.pdf


QWS
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QCD Wide Simd Library: see Y.Nakamura’s talk

• Clover solver designed for Fugaku
also runs on other architectures s.t. intel

• https://github.com/RIKEN-LQCD/qws

https://github.com/RIKEN-LQCD/qws
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Algorithm and Implementation
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single buffering

• sender: 1 send buffer

• receiver: 1 recv. buffer

doulbe buffering

• sender: 1 send buffer

• receiver: 2 recv. buffers, used

alternatingly
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single buffering

• sender: 1 send buffer

• receiver: 1 recv. buffer

doulbe buffering

• sender: 1 send buffer

• receiver: 2 recv. buffers, used

alternatingly

• smaller overhead: no need to check if the recv. buffer is ready
the other buffer is always available

• robuster against load imbalance
no need to wait till the recv. buffer becomes available



Implementation: using uTofu interface
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• smaller latency than calling MPI

• we use RDMA put write directly to the memory in the target process

• can (or must) tune the TNI assignment
6 TNIs: 6 simultaneous RDMA put to different directions

the load to each TNI should be balanced

• the boundary size
depends on the direction: the local volume can be a hyper-rectangular

• the rank map
6-dim Tofu coordinate → 4-dim QCD proc. coordinate → 1-dim MPI rank id

a proper rank map is important

the logical “neighbor” may not be a physical neighbor



Implementation in QWS

I. Kanamori: APLAT 2020, Aug. 4, 2020 9/17

rdma utofu comlib.c: wrapper functions for calling uTofu
1 rdma comlib data buf;
2
3 // buf is to send data (of size) to dst rank and receive from rcv rank using TNI of tni id
4 // cf. MPI Recv init and MPI Send init
5 rdma comlib new(&buf, &tni id, &dst rank, &rcv rank, &size);
6 // start sending with RDMA put
7 rdma comlib isendrecv(&buf);
8 rdma comlib irecv check(&buf); // cf. MPI Wait for receiving
9 rdma comlib isend check(&buf); // cf. MPI Wait for sending

rdma comlib 2buf: a class for double buffering
built with functions in rdma utofu comlib.c

qws xbound rdma.cc: communication routines in QWS
(uTofu RDMA version)

1 rdma comlib 2buf buff rdma[8];
2 ...
3 // initialize communication in x−direction
4 buff rdma[0].init(tni list[0], pxb, pxf,size);
5 buff rdma[1].init(tni list[1], pxf, pxb,size);
6
7 buff rdma[req].isendrecv(); // in void xbound(int req, int prec)
8 buff rdma[req].irecv check(); // in void xbound wait(int req, int prec)



Some details of the implementation
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with a proper data alignment and suitable flags to uTofu interface

sender

• uTofu put is thread parallelized

receiver

• we monitor the last byte of the buffer to check the data has arrived

• received data goes directly to the cache cache injection
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As a Communication Library

Benchmark with a 2-dim Poisson equation on Fugaku



Target System
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base: http://theo.phys.sci.hiroshima-u.ac.jp/˜ishikawa/APL9WG/stencil_double_buffering_mpi-1.0.tar.gz

Mx = b with

(Mx )(i , j ) = (4 +m2)x (i , j )
︸            ︷︷            ︸

≡Dx

−x (i + 1, j ) − x (i − 1, j ) − x (i , j + 1) − x (i , j − 1)
︸                                                             ︷︷                                                             ︸

≡Hx
cont. limit
−−−−−−−−−→ (m2 − ∂2)x

Jacobi method

x (k ) → x (k+1) = D−1(b − Hx (k ))

Only the hopping H contains the communication

• fixed number of iterations: 1000

• calculation of the residual norm (MPI Allreduce) in every 10 iter.

• local lattice size: 60 × 60

• communication buffer (60 elements for each direction) in enlarged

by 1–8192 (+ a flag as the end of buffer + alignment)

http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/APL9WG/stencil_double_buffering_mpi-1.0.tar.gz


Theoretical Bandwidth for uTofu Communication
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4 MPI ranks/node (2 × 2 ranks in each node)

pattern 1

effective band width:

40.8 × 16

24
= 27.2GB/s

pattern 2 (round robin)

effective band width:

40.8 × 16

18
= 36.3GB/s

• a proper TNI assignment is important to maximize the effective BW

• if (boundary size for x ),(boundary size for y ), we can enjoy more

games with TNI assignment

• (TNI assignments for MPI communication is unclear)
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Summary and Outlooks



Neighboring Communication of QWS
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• algorithm: double buffering

• implemented with uTofu MPI version of QWS is available as well

• a proper TNI assignment is important rank map is also important

• can be used as a library: ex. with 2-dim Poisson eq.

• good saturation of the theoretical band width

• good weak scaling

• room (and/or freedom) for further optimization of TNI

Outlooks

• performance of QWS with practical system sizes

• [comm. part of] QWS + existing QCD code sets

TNI: Tofu Network Interface (RDMA engine) RDMA: Remote Direct Memory Access

uTofu: Low Level Communcation API for TofuD
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• algorithm: double buffering

• implemented with uTofu MPI version of QWS is available as well

• a proper TNI assignment is important rank map is also important

• can be used as a library: ex. with 2-dim Poisson eq.

• good saturation of the theoretical band width

• good weak scaling

• room (and/or freedom) for further optimization of TNI

Outlooks

• performance of QWS with practical system sizes

• [comm. part of] QWS + existing QCD code sets

TNI: Tofu Network Interface (RDMA engine) RDMA: Remote Direct Memory Access

uTofu: Low Level Communcation API for TofuD
Thank you.
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Backup Slides



Double Buffering Algorithm
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To hide a possible load imbalance btw. nodes, and to minimize the

latency, we use double buffering algorithm and implement it with uTofu.

send buf.

P : Packed

P : Sending

recv. buf.

R : Receiving

R : Recv. done

U : being Used

1 // 1st iter. send buffer

2 pack the boundary data
3 start sending
4 computation: bulk
5 wait for the boundary data comes
6 computation: boundary
7 clear the received flag
8 wait for sending is done
9 switch the buffer to send

10 // 2nd iter.
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 clear the received flag
17 wait for sending is done
18 switch the buffer to send
19 ...
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To hide a possible load imbalance btw. nodes, and to minimize the

latency, we use double buffering algorithm and implement it with uTofu.
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recv. buf.
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R : Recv. done

U : being Used

1 // 1st iter. send buffer

2 pack the boundary data
3 start sending
4 computation: bulk
5 wait for the boundary data comes
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10 // 2nd iter.
11 pack the boundary data
12 start sending
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14 wait for the boundary data comes
15 computation: boundary
16 clear the received flag
17 wait for sending is done
18 switch the buffer to send
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2 pack the boundary data
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6
7
8 wait for the boundary data comes
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10
11
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14 wait for sending is done
15
16
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18 // 2nd iter.
19 pack the boundary data
20 start sending
21 computation: bulk
22 wait for the boundary data comes
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24 wait for sending is done
25 switch the buffer to send
26 ...
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To hide a possible load imbalance btw. nodes, and to minimize the

latency, we use double buffering algorithm and implement it with uTofu.

send buf.

P : Packed

P : Sending

recv. buf.

R : Receiving

R : Recv. done

U : being Used

1 // 1st iter. send buffer

2 Ppack the boundary data
3 start sending
4 computation: bulk
5 wait for the boundary data comes
6 computation: boundary
7 clear the received flag
8 wait for sending is done
9 switch the buffer to send

10 // 2nd iter.
11 pack the boundary data
12 start sending
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14 wait for the boundary data comes
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17 wait for sending is done
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19 ...

1 // 1st iter. recv. buffers

2 pack the boundary data
3
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6
7
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24 wait for sending is done
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To hide a possible load imbalance btw. nodes, and to minimize the

latency, we use double buffering algorithm and implement it with uTofu.

send buf.

P : Packed

P : Sending

recv. buf.

R : Receiving

R : Recv. done

U : being Used

1 // 1st iter. send buffer

2 Ppack the boundary data
3 Sstart sending
4 computation: bulk
5 wait for the boundary data comes
6 computation: boundary
7 clear the received flag
8 wait for sending is done
9 switch the buffer to send

10 // 2nd iter.
11 pack the boundary data
12 start sending
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14 wait for the boundary data comes
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17 wait for sending is done
18 switch the buffer to send
19 ...

1 // 1st iter. recv. buffers

2 pack the boundary data
3
4 start sending
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6
7
8 wait for the boundary data comes
9 computation: boundary
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To hide a possible load imbalance btw. nodes, and to minimize the

latency, we use double buffering algorithm and implement it with uTofu.

send buf.

P : Packed

P : Sending

recv. buf.

R : Receiving

R : Recv. done

U : being Used

1 // 1st iter. send buffer

2 Ppack the boundary data
3 Sstart sending
4 computation: bulk
5 wait for the boundary data comes
6 computation: boundary
7 clear the received flag
8 wait for sending is done
9 switch the buffer to send

10 // 2nd iter.
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 clear the received flag
17 wait for sending is done
18 switch the buffer to send
19 ...

1 // 1st iter. recv. buffers

2 R Rpack the boundary data
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4 R Rstart sending
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8 R Rwait for the boundary data comes
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25 switch the buffer to send
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21 computation: bulk
22 wait for the boundary data comes
23 computation: boundary
24 wait for sending is done
25 switch the buffer to send
26 ...



Double Buffering Algorithm
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To hide a possible load imbalance btw. nodes, and to minimize the

latency, we use double buffering algorithm and implement it with uTofu.

send buf.

P : Packed

P : Sending

recv. buf.

R : Receiving

R : Recv. done

U : being Used

1 // 1st iter. send buffer

2 Ppack the boundary data
3 Sstart sending
4 computation: bulk
5 wait for the boundary data comes
6 Scomputation: boundary
7 clear the received flag
8 wait for sending is done
9 switch the buffer to send

10 // 2nd iter.
11 Ppack the boundary data
12 Sstart sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 clear the received flag
17 wait for sending is done
18 switch the buffer to send
19 ...

1 // 1st iter. recv. buffers

2 R Rpack the boundary data
3 R R
4 R Rstart sending
5 R Rcomputation: bulk
6 R R
7 R R
8 R Rwait for the boundary data comes
9 U Rcomputation: boundary

10 U R
11 U R
12 U R
13 clear the received flag
14 wait for sending is done
15
16
17 switch the buffer to send
18 // 2nd iter.
19 pack the boundary data
20 start sending
21 computation: bulk
22 wait for the boundary data comes
23 computation: boundary
24 wait for sending is done
25 switch the buffer to send
26 ...

even if the 1st buffer is still busy but the 2nd is available



Double Buffering Algorithm
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To hide a possible load imbalance btw. nodes, and to minimize the

latency, we use double buffering algorithm and implement it with uTofu.

send buf.

P : Packed

P : Sending

recv. buf.

R : Receiving

R : Recv. done

U : being Used

1 // 1st iter. send buffer

2 Ppack the boundary data
3 Sstart sending
4 computation: bulk
5 wait for the boundary data comes
6 Scomputation: boundary
7 clear the received flag
8 wait for sending is done
9 switch the buffer to send

10 // 2nd iter.
11 Ppack the boundary data
12 Sstart sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 clear the received flag
17 Swait for sending is done
18 switch the buffer to send
19 ...

1 // 1st iter. recv. buffers

2 R Rpack the boundary data
3 R R
4 R Rstart sending
5 R Rcomputation: bulk
6 R R
7 R R
8 R Rwait for the boundary data comes
9 U Rcomputation: boundary

10 U R
11 U R
12 U R
13 R Rclear the received flag
14 R Rwait for sending is done
15 R R
16 R R
17 switch the buffer to send
18 // 2nd iter.
19 pack the boundary data
20 start sending
21 R Rcomputation: bulk
22 R Rwait for the boundary data comes
23 R Ucomputation: boundary
24 wait for sending is done
25 switch the buffer to send
26 ...

even if the 1st buffer is still busy but the 2nd is available

no need to check if the recv. buf. is

available



Hopping (Mult of H )
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1. packing the boundary data

2. start sending/receiving the boundary data

3. calculate: internal area

4. wait for receiving

5. calculate: boundary area

6. wait for sending finished



Hopping (Mult of H )
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1. packing the boundary data

2. start sending/receiving the boundary data

3. calculate: internal area

4. wait for receiving

5. calculate: boundary area

6. wait for sending finished

comm.

overlap

non-overlap = comm. − overlap

= start sending/receiving + wait for receiving
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uTofu double buffering
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uTofu double buffering
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uTofu double buffering (round robin TNI)
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good weak scaling if the communication is fully overlapped
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uTofu double buffering
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if comm. becomes visible, good weak scaling for large # of nodes
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uTofu double buffering (upper) and mpi single buffering (lower)
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uTofu double buffering (upper) and mpi single buffering (lower)
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mult: uTofu double buf. (42 msec.) < MPI single buf. (52 msec.)
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