Implementation of neighboring
communication in QWS

Issaku Kanamori (RIKEN)

August 4th, 2020
Asia-Pacific Symposium for Lattice Field Theory (APLAT 2020)

Center for
RIK=N R-CCS Computational Science

1. Introduction specification of Fugaku

2. Algorithm and Implementation double buffering

3. As acommunication library benchmark with a 2-dim Poisson equation
4. Summary and Outlooks

|. Kanamori: APLAT 2020, Aug. 4, 2020 2/17

1. Introduction specification of Fugaku

2. Algorithm and Implementation double buffering

3. As acommunication library benchmark with a 2-dim Poisson equation
4. Summary and Outlooks

Acknowledgments
This talk is based on discussion with the LQCD codesign team in flagship 2020 project:
RIKEN) Y.Nakamura, |.K, K.Nitadori, M. Tsuij
Fujitsu) |.Miyoshi, Y.Mukai, T.Nishiki
Hiroshima) K.-l.Ishikawa
KEK) H.Matsufuru

|.K. also thanks the MEXT as “Program for Promoting Researches on the
Supercomputer Fugaku” (Simulation for basic science: from fundamental laws of
particles to creation of nuclei) and JICFuS.

|. Kanamori: APLAT 2020, Aug. 4, 2020 2/17

The software used for the evaluation, such as the compiller, is still
under development and its performance, which is obtained by
“performance estimation tool” and even actual execution on a
prototype machine, may be different when the supercomputer Fugaku
starts is operation.

|. Kanamori: APLAT 2020, Aug. 4, 2020 3/17

Feature of Fugaku: TofuD interconnect

(3388888888 unesxropons .

TNR(Tofu Network Router)

Flops/node: 3TFlops[double]

40.8 GB/s g) e
------ o lnmuf’ﬂ “EEll (<23 of K-computer)

TNI: Tofu Network Interface (RDMA englne)j ‘ ‘HEHEEH i nj eCtiO n BW/n Od e 40 . SG B/S

https://postk-web.r-ccs. rlken jp/spec html

Lode

=

Y
= ==

e -

x| i
8 D - b=
E i II'
= Il

(only x2 of K-computer)
communication is important

e 6D torus/mesh network with 10 nearest neighbors

(small 3d “torus™ [2 X 3 X 2]) X

(large 2d torus x 1d mesh),

e Each node (# process) can send data to 6 different directions
simultaneously [QCD has 8 directions]
e Latency: 0.49us, > 90% efficiency for the nearest neighbor put

cf. https://www.fujitsu.com/global/Images/the-tofu-interconnect-d-for-supercomputer-fugaku.pdf

e interface for TofuD: uTofu &

QWS uses uTofu for neighboring comm.

keywordS TNI: Tofu Network Interface (RDMA engine) RDMA: Remote Direct Memory Access
uTofu: Low Level Communcation API for TofuD

|. Kanamori: APLAT 2020, Aug. 4, 2020

4/17

https://postk-web.r-ccs.riken.jp/spec.html
https://www.fujitsu.com/global/Images/the-tofu-interconnect-d-for-supercomputer-fugaku.pdf

QWS

QCD Wide Simd Library: see Y.Nakamura’s talk

e Clover solver designed for Fugaku
also runs on other architectures s.t. intel

e https://github.com/RIKEN-LQCD/gws

|. Kanamori: APLAT 2020, Aug. 4, 2020 5/17

https://github.com/RIKEN-LQCD/qws

Algorithm and Implementation

|. Kanamori: APLAT 2020, Aug. 4, 2020 6/17

Double Buffering

doulbe buffering

e sender: 1 send buffer
receiver: 2 recv. buffers, used
alternatingly

single buffering

e sender: 1 send buffer
e receiver: 1 recv. buffer

|. Kanamori: APLAT 2020, Aug. 4, 2020 7117

Double Buffering

doulbe buffering

e sender: 1 send buffer
e receiver: 2 recv. buffers, used
alternatingly

single buffering

e sender: 1 send buffer
e receiver: 1 recv. buffer

e smaller overhead: no need to check if the recv. buffer is ready
the other buffer is always available

e robuster against load imbalance
no need to wait till the recv. buffer becomes available

|. Kanamori: APLAT 2020, Aug. 4, 2020 7117

Implementation: using uTofu interface

e smaller latency than calling MPI
e we use RDMA put write directly to the memory in the target process

e can (or must) tune the TNI assignment
6 TNIs: 6 simultaneous RDMA put to different directions

the load to each TNI should be balanced

e the boundary size
depends on the direction: the local volume can be a hyper-rectangular

e the rank map
6-dim Tofu coordinate — 4-dim QCD proc. coordinate — 1-dim MPI rank id

a proper rank map is important
the logical “neighbor” may not be a physical neighbor

|. Kanamori: APLAT 2020, Aug. 4, 2020 8/17

Implementation in QWS

rdma_utofu_comlib.c: wrapper functions for calling uTofu

1| rdma_comlib_data buf;
2
3| //bufis to send data (of size) to dst_rank and receive from rcv_rank using TNI of tni_id
4 | //cf. MPI_Recv_init and MPIl_Send_init
5| rdma_comlib_new(&buf, &tni_id, &dst_rank, &rcv_rank, &size);
6 | // start sending with RDMA put
7 | rdma_comlib_isendrecv(&buf);
8 | rdma_comlib_irecv_check(&buf); // cf. MPI_Wait for receiving
9 | rdma_comlib_isend_check(&buf); // cf. MPI_Wait for sending
rdma_comlib_ 2buf: a class for double buffering
built with functions in rdma utofu comlib.c
gqws_xbound_rdma.cc: communication routines in QWS
(uTofu RDMA version)
1 rdma_comlib_2buf buff_rdma[8];
2
3 // initialize communication in x—direction
4 buff_rdma[0].init(tni_list[0], pxb, pxf,size);
3 buff_rdma[1].init(tni_list[1], pxf, pxb,size);
6
7 | buff_rdma[req].isendrecv(); // in void xbound(int req, int prec)
8 | buff_-rdma[req].irecv_check(); // in void xbound_wait(int req, int prec)

|. Kanamori: APLAT 2020, Aug. 4, 2020 9/17

Some details of the implementation

with a proper data alignment and suitable flags to uTofu interface
sender

e uTofu put is thread parallelized
receiver

e we monitor the last byte of the buffer to check the data has arrived
e received data goes directly to the cache cache injection

|. Kanamori: APLAT 2020, Aug. 4, 2020 10/17

As a Communication Library

Benchmark with a 2-dim Poisson equation on Fugaku

|. Kanamori: APLAT 2020, Aug. 4, 2020 11/17

Target System

base: http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/APLIWG/stencil_double_buffering mpi-1.0.tar.gz

M x = b with
(Mx)(i,j) = (4 + mz)x(i,j) —x(i+1,))=x(G=-1,)—x(i,j+1)=x(,j—1)

—_———
=D x =H x
cont. limit

> (m? — 9%)x
Jacobi method

x(K) — xk+D) = p=T(p — Hxk))

Only the hopping H contains the communication

fixed number of iterations: 1000

calculation of the residual norm (MPI_Allreduce) in every 10 iter.
local lattice size: 60 x 60

communication buffer (60 elements for each direction) in enlarged
by 1-8192 (+ a flag as the end of buffer + alignment)

|. Kanamori: APLAT 2020, Aug. 4, 2020 12/17

http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/APL9WG/stencil_double_buffering_mpi-1.0.tar.gz

Theoretical Bandwidth for uTofu Communication

4 MPI ranks/node (2 x 2 ranks in each node)

pattern 1 pattern 2 (round robin)
g bl L. 0 [elwl=
1 [z]-=z] | 1 |+z| +y | +=
2 [tyl+yl 4 2 [y -z [+y
3 [wlwl § 3 [tyl+tz]-y
4 [+z]+z] -z 4 =]yl
5 [ty[+tv]-v]-y 5 [+zl+yl
effective band width: effective band width:
40.8 x 15 = 27.2GB/s 40.8 x -2 = 36.3GB/s

e aproper TNl assignment is important to maximize the effective BW

e If (boundary size for x)#(boundary size for y), we can enjoy more
games with TN| assignment

e (TNI assignments for MP| communication is unclear)

|. Kanamori: APLAT 2020, Aug. 4, 2020 13/17

Elapsed Time vs. Amount of Communication: 96 nodes

msec.

utofu double buffering: 96 nodes (384 ranks)

1000

100 |

10

rlnult | |

comm. non-overlap
comm. overlap
allreduce

27.4 GB/s

36.2GB/s — - - -
¥ B

> oo X

0.1

msec. .

1000 ¢
100

10

0.1

1x10° 1x10° 1x10° 1x10%°
byte

MPI double buffering: 96 nodes (384 ranks)

rlnult X | |

comm. non-overlap O
comm. overlap B
allreduce A

27.4 GB/s

f_éé

1x10’ 1x108 1x10°
byte

|. Kanamori: APLAT 2020, Aug. 4, 2020

msec. .

utofu double buffering: 96 nodes (384 ranks), TNI round robin

1000 -

100 |

R

™1 ' 1 '] ']
mult X

comm. non-overlap O
comm. overlap O
allreduce A
27.4 GB/s
36.2GB/s — — —
5 8 X

B B

10 A .
- A
1t]
Ol ~ 1)) L)) 1)) 1
1x10’ 1x108 1x10° 1x10%°
byte
MPI single buffering: 96 nodes (384 ranks)
msec. _ — , — , —
mult X
T | comm. non-overlap O
[comm. overlap O)
allreduce A A
I 27.4 GBIs A
100 A
0] o]
10
1¢
0.1 L | Ll | Ll .
1x10’ 1x108 1x10° 1x10%°
byte

u Tofu

MPI

14/17

Elapsed Time vs. Amount of Communication: 96 nodes

msec.

utofu double buffering: 96 nodes (384 ranks)

1000

™1 '] ']
mult

comm. non-overlap

comm. overlap
allreduce
27.4 GB/s

> oo X

o]

is h

Q A A A A A A

0.1

msec. .

1000 ¢
100

10

0.1

1x10° 1x10%°
byte

MPI double buffering: 96 nodes (384 ranks)

msec. .

utofu double buffering: 96 nodes (384 ranks), TNI round robin

1000

100

idden.,

0.1

™1 ' 1 '] ']
mult

comm. non-overlap

comm. overlap
allreduce
27.4 GB/s

> oo X

mult X
comm. non-overlap O
comm. overlap O]
allreduce A A A
27.4 GB/s |
A
O. O

0.1

1x10°
byte

1x10’ 1x108

|. Kanamori: APLAT 2020, Aug. 4, 2020

Al
c E |
A -
| | | |
1x10° 1x10%°
byte

MPI single buffering: 96 nodes (384 ranks)

u Tofu

msec. .

1000

™1 '] ']
mult

comm. non-overlap

comm. overlap
allreduce
27.4 GB/s

> oo X

A]
D] | o]
P | L L L .
1x10° 1x10° 1x10° 1x10%°
byte

MPI

14/17

Elapsed Time vs. Amount of Communication: 96 nodes

utofu double buffering: 96 nodes (384 ranks)

utofu double buffering: 96 nodes (384 ranks), TNI round robin

msec. - , — , — msec.—— , — — , —
mult X mult X
1000 L comm. non-overlap O 1000 [comm. non-overlap O
comm. overlap O [comm. overlap O
allreduce A allreduce A
27.4 GB/s) I 27.4 GB/s
100 S =GR 7 100
@ﬁﬁﬁ 4°® m @ o©_@ @] <’?§§§§§§ ’Iél) o g
// - e
comm. IS hidden,[— A
- A

1F

g

0.1

msec. .

1000 ¢
100

10

0.1

1x10° 1x10%°
byte

MPI double buffering: 96 nodes (384 ranks)

msec. .

1x10° 1x10° 1x10%°
byte

MPI single buffering: 96 nodes (384 ranks)

mult X
comm. non-overlap O
comm. overlap B
allreduce A

27.4 GBIs A

1000

mult X
comm. non-overlap O
i comm. overlap @
allreduce A
27.4 GB/s A
A
O @

0.1

1x10°
byte

1x108

1x10’

|. Kanamori: APLAT 2020, Aug. 4, 2020

FER e <t 25 0 s 2 2 = smaller overhead

u Tofu

MPI

14/17

Elapsed Time vs. Amount of Communication: 96 nodes

utofu double buffering: 96 nodes (384 ranks) utofu double buffering: 96 nodes (384 ranks), TNI round robin
msec. - - , — , — msec.—— , —_— , —
mult X mult X
I comm. non-overla I comm. non-overla
1000 | teikh © 1000 | WEIED @
[comm. overlap O [comm. overlap O
allreduce A allreduce A
27.4 GB/s | i 27.4 GB/s
100 S =GR) - 100 SA--E R
<EERE g8 ¥ ¥ ¥
1Idd '\
10 |[adeN |
L A
7 A
A i
O /8/
/// B / /
// T = -
O.l//" . L . L . L . . O.l/" . L . L . L .
1x10’ 1x108 1x10° 1x10%° 1x10’ 1x108 1x10° 1x10%°
byte byte u Tofu
MPI double buffering: 96 nodes (384 ranks) MPI single buffering: 96 nodes (384 ranks)
msec. . - , — , — _— msec._ , —_— , —
mult X : ? mult X
1000 _ comm. non-overlap O / 1000 — comm. non-overlap O
[comm. overlap B comm. overlap O
allreduce A allreduce A d | .
I 27.4 GB/s 27.4 GB/s ' O Sca Ing
100 = 100 -
' Kidd < |
| jaaen
1t - 1t
0_1’/.| . L . L . L . ._ O.l//" . L . L . L .
1x10’ 1x108 1x10° 1x10%° 1x10’ 1x108 1x10° 1x10%°
byte byte I\/I P I

|. Kanamori: APLAT 2020, Aug. 4, 2020 14/17

Saturation of the bandwidth for large data size

ratio of
elap. times utofu double buffering: 96 nodes (384 ranks)
2.5 ™
2 = _
X
X X X
1.5 Q 6 8
o
_____________ O L _______.
1 USSR -
o) mult X
comm. non-overlap O
0.5 theo. 27.4 GB/s N
theo. 36.2 GB/s - - - -
theo. 40.8 BG/s
O | ! ! ! ! L
1x10° 1x10%°
byte
ratio of
elap. times mpi double buffering: 96 nodes (384 ranks)
2.5 ™
2 B x]
o
1.5 Q X
o & 0
1 USSR -
mult X
comm. non-overlap O
0.5 | theo. 27.4 GB/s N
theo. 36.2 GB/s - - - -
theo. 40.8 BG/s
O | ! ! ! ! L
1x10° 1x10™°
byte

. Kanamori: APLAT 2020, Aug.

4, 2020

ratio of
elap. timesofu double buffering (round robin TNI): 96 nodes (384 ranks)
2.5 ™
2 = _
1.5 > y y y
IR 5. %8
1 e e e T e SO S-S S -
© mult X
comm. non-overlap O
0.5 | O] theo. 27.4 GB/s n
theo. 36.2 GB/s — — —
theo. 40.8 BG/s
O | ! ! ! ! L
1x10° 1x10%°
byte
ratio of
elap. times mpi single buffering: 96 nodes (384 ranks)
2.5 ™
X
2 = _
% X
1.5 ° X 8
- O
o
© ©
1 USSR -
mult X
comm. non-overlap O
0.5 theo. 27.4 GB/s N
theo. 36.2 GB/s - - - -
theo. 40.8 BG/s
O | ! ! ! ! L
1x10° 1x10%°
byte

u Tofu

MPI

15/17

Saturation of the bandwidth for large data size

ratio of ratio of
elap. times utofu double buffering: 96 nodes (384 ranks) elap. timesofu double buffering (round robin TNI): 96 nodes (384 ranks)
2.5 - - — - - ——— 2.5 - - —
| gopd saturation of the theoreticaliband width
% X _—x— X% X 5~
o)
15 A @ D 15 ~ g -
X X o]
_____________ X s 3 ®D
e =] =
0) mult X o mult X
comm. non-overlap O comm. non-overlap O
05 | theo. 27.4 GB/s . 05 | 0] theo. 27.4 GB/s 8
theo. 36.2 GB/s - - - - theo. 36.2 GB/s — — —
theo. 40.8 BG/s theo. 40.8 BG/s
O ! ! ! ! MR ! ! ! ! L O ! ! ! ! MR ! ! ! ! L
1x10° 1x10%° 1x10° 1x10%°
u Tofu
ratio of ratio of
elap. times mpi double buffering: 96 nodes (384 ranks) elap. times mpi single buffering: 96 nodes (384 ranks)
2.5 - - — - - ——— 2.5 - - —
X
2 % = 2 - ~ =
o X
1.5 o) X e = X X
= o o) o) ©
I = e =
mult X mult X
comm. non-overlap © comm. non-overlap O
05 | theo. 27.4 GB/s q 05 | theo. 27.4 GB/s 8
theo. 36.2 GB/s - - - - theo. 36.2 GB/s - - - -
theo. 40.8 BG/s theo. 40.8 BG/s
O ! ! ! ! R ! ! ! ! L O ! ! ! ! MR ! ! ! ! L
1x10° 1x10™° 1x10° 1x10%°
byte byte I\/I P I

|. Kanamori: APLAT 2020, Aug. 4, 2020 15/17

Saturation of the bandwidth for large data size

ratio of ratio of
elap. times utofu double buffering: 96 nodes (384 ranks) elap. timesofu double buffering (round robin TNI): 96 nodes (384 ranks)
2.5 I 2.5 —
| gopd saturation of the theoretical
% X —x X 3 25—
o)
15 A @ D 15 ~ g -
X X o]
_____________ X s 3 ®D
e =] =
0) mult X o mult X
comm. non-overlap O comm. non-overlap O
05 | theo. 27.4 GB/s . 05 | 0] theo. 27.4 GB/s 8
theo. 36.2 GB/s - - - - theo. 36.2 GB/s — — —
theo. 40.8 BG/s theo. 40.8 BG/s
O ! ! ! ! MR ! ! ! ! L O | ! ! ! ! L
1x10° 1x10%° 1x10° 1x10%°
byte byte
ratio of ratio of
elap. times mpi double buffering: 96 nodes (384 ranks) elap. times mpi single buffering: 96 nodes (384 ranks)
25 L 25 |
X
2 % = 2 - ~ =
0) X
1.5 o) X e = X X
© o o & ©
1 = e =
MPI double buf. is il i
- comm. non-overlap © comm. non-overlap O
05 | theo. 27.4 GB/s q 05 | theo. 27.4 GB/s 8
also reasonable theo. 36.2 GBS - theo. 36.2 GBls -
theo. 40.8 BG/s theo. 40.8 BG/s
O ! ! ! ! R ! ! ! ! L O | ! ! ! ! L
1x10° 1x10™° 1x10° 1x10%°
byte byte

|. Kanamori: APLAT 2020, Aug. 4, 2020

u Tofu

MPI

band width

15/17

Summary and Outlooks

|. Kanamori: APLAT 2020, Aug. 4, 2020 16/17

Neighboring Communication of QWS

algorithm: double buffering

implemented with uTofu MPI version of QWS is available as well

a proper TNI assignment is important rank map is also important
can be used as a library: ex. with 2-dim Poisson eq.

e good saturation of the theoretical band width
e (good weak scaling
e room (and/or freedom) for further optimization of TNI

Outlooks

e performance of QWS with practical system sizes
e [comm. part of] QWS + existing QCD code sets

TNI: Tofu Network Interface (RDMA engine) RDMA: Remote Direct Memory Access
uTofu: Low Level Communcation API for TofuD

|. Kanamori: APLAT 2020, Aug. 4, 2020 17/17

Neighboring Communication of QWS

algorithm: double buffering

implemented with uTofu MPI version of QWS is available as well

a proper TNI assignment is important rank map is also important
can be used as a library: ex. with 2-dim Poisson eq.

e good saturation of the theoretical band width
e (good weak scaling
e room (and/or freedom) for further optimization of TNI

Outlooks

e performance of QWS with practical system sizes
e [comm. part of] QWS + existing QCD code sets

TNI: Tofu Network Interface (RDMA engine) RDMA: Remote Direct Memory Access
uTofu: Low Level Communcation API for TofuD

Thank you.

|. Kanamori: APLAT 2020, Aug. 4, 2020 17/17

Backup Slides

|. Kanamori: APLAT 2020, Aug. 4, 2020 appendix-i

Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the
latency, we use double buffering algorithm and implement it with uTofu.

send buf.
I : Packed

I : Sending

// 1st iter. send buffer|

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

clear the received flag

recv. bUf wait for sending is done

S . - switch the buffer to send
Rl : Recelving 10| 7/ 2nd iter.

=] - 11 | pack the boundary data
H ReCV- done 12 | start sending

_ 13 | computation: bulk
U) belng Used 14 | wait for the boundary data comes
15 | computation: boundary
16 | clear the received flag
17 | wait for sending is done
18 | switch the buffer to send

©CooO~NOOOTPR~WN —

|. Kanamori: APLAT 2020, Aug. 4, 2020 appendix-ii

Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the
latency, we use double buffering algorithm and implement it with uTofu.

send buf.
12 : Packed ;
12 : Sending ,
;
recv. buf. :
Rl : Receiving o
A : Recv. done s
. 13
M : being Used 14
16
17
18
19

|. Kanamori: APLAT 2020, Aug. 4, 2020

// 1st iter. send buffer

pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send

—h
Cwvwoo~NOoOOOGT,~,WLDN =

T AO TN O T 1O T O T 1 O T 'O J il i G G G Qi Qi Qi §
OO PP WON—-LQCO0ONOOOCOGITRARAPWDN —

// 1st iter. recv. buffers
pack the boundary data

start sending
computation: bulk

wait for the boundary data comes
computation: boundary

clear the received flag
wait for sending is done

switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
wait for sending is done
switch the buffer to send

lalaVaVYaVYa¥Ya
Vau B

IX-i

Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the

latency, we use double buffering algorithm and implement it with uTofu.

send buf.
12 : Packed :
12 : Sending ,
;
recv. buf. :
Rl : Receiving o
Il : Recv. done 12
. 13
M : being Used 14
16
17
18
19

|. Kanamori: APLAT 2020, Aug. 4, 2020

// 1st iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send

send buffer

P

—h
Cwvwoo~NOoOOOGT,~,WLDN =

T AO TN O T 1O T O T 1 O T 'O J il i G G G Qi Qi Qi §
OO PP WON—-LQCO0ONOOOCOGITRARAPWDN —

// 1st iter.
pack the boundary data

start sending
computation: bulk

wait for the boundary data comes
computation: boundary

clear the received flag
wait for sending is done

switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
wait for sending is done
switch the buffer to send

recv. buffers

lalaVaVYaVYa¥Ya
Vau B

IX-i

Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the
latency, we use double buffering algorithm and implement it with uTofu.

send buf. | | |
5] - 1| // 1stiter. send buffer 1| // 1stiter. recv. buffers
I - PaCked 2 | pack the boundary data E 2 | pack the boundary data
. : 3 | start sending T3
12 - Sendmg 4 | computation: bulk 4 | start sending
5 | wait for the boundary data comes 5 | computation: bulk
6 | computation: boundary 6
7 | clear the received flag 7
recv. bUf 8 | wait for sending is done 8 | wait for the boundary data comes
S - "\ 9 | switch the buffer to send 9 | computation: boundary
Rl : Receiving 10| / 2nd iter. 10
] 11 | pack the boundary data 11
Il : Recv. done 12 | start sending 12
_ 13 | computation: bulk 13 | clear the received flag
U) belng Used 14 | wait for the boundary data comes 14 | wait for sending is done
15 | computation: boundary 15
16 | clear the received flag 16
17 | wait for sending is done 17 | switch the buffer to send
18 | switch the buffer to send 18 | //2nd iter.
19 | ... 19 | pack the boundary data
20 | start sending
21 | computation: bulk
22 | wait for the boundary data comes
23 | computation: boundary
24 | wait for sending is done
25 | switch the buffer to send
26 | ...
|. Kanamori: APLAT 2020, Aug. 4, 2020 appendix-ii

Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the
latency, we use double buffering algorithm and implement it with uTofu.

send buf.
12 : Packed :
12 : Sending ,
;
recv. buf. :
Rl : Receiving o
Il : Recv. done 12
. 13
M : being Used 14
16
17
18
19

|. Kanamori: APLAT 2020, Aug. 4, 2020

// 1st iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send

send buffer

P

m\-

14
15
16
17
18
19

20

21
22
23
24
25

26

wait for sending is done

switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
wait for sending is done
switch the buffer to send

1| // 1stiter. recv. buffers
2 | pack the boundary data RIRI
3 RIR

| startsengmg—— AR
5| computation: bulk RIR!
6 RIR
7 RIR
8 | wait for the boundary data comes I21R]
9 | computation: boundary

10

11

12

13 | clear the received flag

lalaVaVYaVYa¥Ya
Vau B

IX-i

Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the
latency, we use double buffering algorithm and implement it with uTofu.

send buf.
12 : Packed :
12 : Sending ,
:
recv. buf. :
Rl : Receiving o
IA1 : Recv. done e
. 13
M : being Used 14
16
17
18
19

|. Kanamori: APLAT 2020, Aug. 4, 2020

// 1st iter. send buffer

pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send

P

m\-

—h
C)LC)CX)\ICDO'I-h(Z\I\)—L

11
12
13
14
15
16
17
18
19

20

21
22
23
24
25

// 1st iter. recv. buffers
pack the boundary data RIR
RIR
startsengig—— AR
computation: bulk RIR!
RIR
RIR
wait for the boundary data comes RIS
computation: boundary WIR!
UI=]
ISl
UI=]

clear the received flag
wait for sending is done

switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
wait for sending is done
switch the buffer to send

26

lalaVaVYaVYa¥Ya
Vau B

IX-i

Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the
latency, we use double buffering algorithm and implement it with uTofu.

send buf.
12 : Packed :
12 : Sending ,
:
recv. buf. :
Rl : Receiving o
IA1 : Recv. done e
. 13
M : being Used 14
16
17
18
19

|. Kanamori: APLAT 2020, Aug. 4, 2020

// 1st iter. send buffer|

pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send

| 2 2

——

—h
C)LC)CX)\ICDO'I-h(Z\I\)—L

11
12
13
14
15
16
17
18
19

20

21
22
23
24
25

// 1st iter. recv. buffers
pack the boundary data RIR
RIR
startsengig—— AR
computation: bulk RIR!
RIR
RIR
wait for the boundary data comes RIS
computation: boundary WIR!
UI=]
ISl
UI=]

clear the received flag
wait for sending is done

switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
wait for sending is done
switch the buffer to send

26

lalaVaVYaVYa¥Ya
Vau B

IX-i

Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the
latency, we use double buffering algorithm and implement it with uTofu.

send buf. | | |
2] - 1| // 1stiter. send buffer 1| // 1st iter. recv. buffers
= - PaCked 2 | pack the boundary data E 2 | pack the boundary data : 3: 3:
. : 3 | start sending T3
12 - Sendlng 4 | computation: bulk 4 W{ﬁ" R
5 | wait for the boundary data comes 5 | computation: bulk RIR!
6 | computation: boundary S 6 : 3: 2:
7 | clear the received flag 7
recv. bUf 8 | wait for sending is done L] 8 | wait for the boundary data comes E%
D - U 9 | switch the buffer to send 9 | computation: boundary
Rl : Receiving 10| // 2nd iter. - 10 %%
— 11 | pack the boundary data = 11
I3l : Recv. done 12| start sending < 2 LSl
_ 13 | computation: bulk 13 clear the received flag
) belng Used 14 | wait for the boundary data comes wait for sending is done
even if the 1st buffer is still busy but the 2nd is available
17 | wait for sending is done 17 | switch the buffer to send
18 | switch the buffer to send 18 | //2nd iter.
19 | ... 19 | pack the boundary data
20 | start sending

21 | computation: bulk

22 | wait for the boundary data comes
23 | computation: boundary

24 | wait for sending is done

25 | switch the buffer to send

26

|. Kanamori: APLAT 2020, Aug. 4, 2020 appendix-i

Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the
latency, we use double buffering algorithm and implement it with uTofu.

send buf. | | |
2] - 1| // 1stiter. send buffer 1| // 1st iter. recv. buffers
= - PaCked 2 | pack the boundary data E 2 | pack the boundary data : 3: 3:
. : 3 | start sending T3
12 - Sendlng 4 | computation: bulk 4 W{ﬁ" R
5 | wait for the boundary data comes 5 | computation: bulk RIR!
6 | computation: boundary S 6 BRI
recv. buf 7 | clear the received flag 7 RIR|
- - 8 | wait for sending is done L] 8 | wait for the boundary data comes E%
D - U 9 | switch the buffer to send 9 | computation: boundary
Rl : Receiving 10| // 2nd iter. 10 BIR]
REE 11 | pack the boundary data P 11 [B1R!
2l : Recv. done 12| start sending S 2 izl
_ 13 | computation: bulk 13 clear the received flag BRI
) belng Used 14 | wait for the boundary data comes wait for sending is done RIR
even If the 1st buffer | s stlll busy but the 2nd is available
17 | wait for sending is done 17 | switch the buffer to send
18 | switch the buffer to send 18 | //2nd iter.
19 | ... 19 | pack the boundary data
20 | start sending pete)
" " 21 | computation: bulk
. 23 | computation: boundary
dval |ab|e 24 | wait for sending is done
25 | switch the buffer to send
26 | ...
|. Kanamori: APLAT 2020, Aug. 4, 2020 appendix-ii

Hopping (Mult of H)

packing the boundary data

start sending/receiving the boundary data
calculate: internal area

wait for receiving

calculate: boundary area

wait for sending finished

SERCLE S

|. Kanamori: APLAT 2020, Aug. 4, 2020 appendix-iii

Hopping (Mult of H)

packing the boundary data -
start sending/receiving the boundary data
calculate: internal area ~ | overlap

wait for receiving | comm.
calculate: boundary area

wait for sending finished

SERCLE S

non-overlap = comm. — overlap
= start sending/receiving + walit for receiving

|. Kanamori: APLAT 2020, Aug. 4, 2020 appendix-iii

weak scaling with different data size

uTofu double buffering

utofu double buffering: 60 byte/direction/rank utofu double buffering: 7680 byte/direction/rank utofu double buffering: 491520 byte/direction/rank
100 ———— ‘ — 200 ———] ‘ — 6000 —
mult X mult X mult X
comm. non-overlap O comm. non-overlap O 5000 I comm. non-overlap O)
80 comm. overlap © . comm. overlap O comm. overlap O
allreduce A 150 - allreduce A g allreduce A
theo. 27.4 GB/s theo. 27.4 GB/s 4000 - theo. 27.4 GB/s —— f
60 |- theo. 36.2 GB/s - - - - = theo. 36.2 GB/s - - - - theo. 36.2 GB/s - - - -
& » < X >< J 100 |- f 3000 |) f
40 g o o o o X 2 & & & 5 &
o 2000 | .
50
N | X X X X X X X
20 O — E— S O—m—~f 1000 |- .
A
Y ‘ Y N . N - N .0 . A 0h ‘ . .. QA a2 . . .A 0 . om S T T |
1 10 100 1 10 100 1 10 100
nodes # nodes # nodes
[ofu double buftfering (d robin TNI)
utofu double buffering: 60 byte/direction/rank (TNI: round robin) utofu double buffering: 7680 byte/direction/rank (TNI: round robin) utofu double buffering: 491520 byte/direction/rank (TNI: round robin)
100 ———— ‘ — 200 ———] ‘ — 6000 —
mult X mult X mult X
comm. non-overlap O comm. non-overlap O 5000 I comm. non-overlap O)
80 comm. overlap © . comm. overlap O comm. overlap O
allreduce A 150 - allreduce A g allreduce A
theo. 27.4 GB/s theo. 27.4 GB/s 4000 - theo. 27.4 GB/s f
60 |- theo. 36.2 GB/s — — — = theo. 36.2 GB/s — — — theo. 36.2 GB/s — — —
100 = 3000 X ® .
X X X X X X
40 7 o} o O o o &
2000& B & a
50 X 2
N | X X X X X
2 Lo C S P 1000 |]
YA\
Om " " AN D " ‘Q‘A“‘{? 0@ i i Q\ N) . \@_\@_\\\ A of\ . . o G \\\\\A . N U - ¢ L
1 10 100 1 10 100 1 10 100
nodes # nodes # nodes

|. Kanamori: APLAT 2020, Aug. 4, 2020 appendix-iv

weak scaling with different data size

JTofu doubl g%a e\’\r’ﬁ%k scaling If the communication is fully overlapped

utofu double buffering: 60 byte/direction/rank utofu double buffering: 7680 byte/direction/rank utofu double buffering: 491520 byte/direction/rank
100 ———— ‘ — 200 ———] ‘ — 5000 — —
mult X mult X mult X
comm. non-overlap O comm. non-overlap O -00 - comm. non-overlap O)
80 comm. overlap © . comm. overlap O g comm. overlap O
allreduce A 150 - allreduce A g allreduce A
theo. 27.4 GB/s theo. 27.4 GB/s 1000 theo. 27.4 GB/s f
60 |- theo. 36.2 GB/s - - - - = theo. 36.2 GB/s - - - - theo. 36.2 GB/s - - - -
& » < X >< J 100 |- f 3000 |-) f
40 g o o o o X 2 & & & 5 &
o 2000 .
50
N | X X X X X X X
20 O — E— S O—m—~f 1000 |- .
A
Y A Y . N - N a0 . £ 0h ‘ . .. QA a2 . . .A 0 . om S T T |
1 10 100 1 10 100 1 10 100
nodes # nodes # nodes
[ofu double buftfering (d robin TNI)
utofu double buffering: 60 byte/direction/rank (TNI: round robin) utofu double buffering: 7680 byte/direction/rank (TNI: round robin) utofu double buffering: 491520 byte/direction/rank (TNI: round robin)
100 ———— ‘ — 200 ———] ‘ — 5000 —
mult X mult X mult X
comm. non-overlap O comm. non-overlap O -00 - comm. non-overlap O)
80 comm. overlap © . comm. overlap O g comm. overlap O
allreduce A 150 - allreduce A g allreduce A
theo. 27.4 GB/s theo. 27.4 GB/s 1000 theo. 27.4 GB/s f
60 |- theo. 36.2 GB/s — — — = theo. 36.2 GB/s — — — theo. 36.2 GB/s — — —
100 = 8000 X ® .
X X X X X X
40 7 o} o O o o &
2000 ps S & (s
50 X 2
N | X X X X X
2 Lo C S P 1000]
YA\
Om " " AN D " ‘Q‘A“‘{? 0@ i i Q\ N) . \@_\@_\\\ A of\ . . o G \\\\\A . N U - ¢ L
1 10 100 1 10 100 1 10 100
nodes # nodes # nodes

|. Kanamori: APLAT 2020, Aug. 4, 2020 appendix-iv

weak scaling with different data size

uTofu d rnI B 8%%63 visible, good weak scaling for large # of nodes

utofu double buffering: 60 byte/direction/rank utofu double buffering: 7680 byte/direction/rank utofu double buffering: 491520 byte/direction/rank
100 ‘ —— ‘ — 200 ‘ —] ‘ — 6000 ‘ —— T
mult X mult X mult X
comm. non-overlap O comm. non-overlap O 5000 I comm. non-overlap O)
80 comm. overlap © . comm. overlap O comm. overlap O
allreduce A 150 - allreduce A g allreduce A
theo. 27.4 GB/s theo. 27.4 GB/s 4000 - theo. 27.4 GB/s f
60 |- theo. 36.2 GB/s - - - - = theo. 36.2 GB/s - - - - theo. 36.2 GB/s - - - -
& » < X >< J 100 |- f 3000 |) f
40 g o o o o X 2 & & & 5 &
o 2000 | .
50
N | X X X X X X X
20 O — E— S O—m—~f 1000 |- .
A
Y ‘ Y N . N - N .0 . A 0h ‘ . .. A @ a2 . . .A 0 . om I S T |
1 10 100 1 10 100 1 10 100
nodes # nodes # nodes
[ofu double buftfering (d robin TNI)
utofu double buffering: 60 byte/direction/rank (TNI: round robin) utofu double buffering: 7680 byte/direction/rank (TNI: round robin) utofu double buffering: 491520 byte/direction/fank (TNI: round robin)
100 ‘ —— ‘ — 200 ‘ —] ‘ — 6000 ‘ —— T
mult X mult X mult X
comm. non-overlap O comm. non-overlap O 5000 I comm. non-overlap O)
80 comm. overlap © . comm. overlap O comm. overlap O
allreduce A 150 - allreduce A g allreduce A
theo. 27.4 GB/s theo. 27.4 GB/s 4000 - theo. 27.4 GB/s f
60 |- theo. 36.2 GB/s — — — = theo. 36.2 GB/s — — — theo. 36.2 GB/s — — —
100 = 3000 X ® .
X X X X X X
40 7 o} o O o o &
2000& B & a
50 X 2
N | X X X X X
2 Lo C S P 1000 |]
YA\
Om " " AN D " ‘Q‘A“‘{? 0@ i i Q\ N) . \@_\@_\\\ A of\ . . o G \\\\\A . N U - ¢ L
1 10 100 1 10 100 1 10 100
nodes # nodes # nodes

|. Kanamori: APLAT 2020, Aug. 4, 2020 appendix-iv

weak scaling with different data size

uTofu double buffering (upper) and mpi single buffering (lower)

utofu double buffering: 60 byte/direction/rank

100 ——]
mult X
comm. non-overlap O
80 comm. overlap © .
allreduce A
theo. 27.4 GB/s
60 - theo. 36.2 GB/s - - - - n
X X X X X . X
40 i o O o | o
o}
20 - .
A
ol ® . . D . Y0) 5
1 10 100
nodes
MPI single buffering: 60 byte/direction/rank
100 ——]
mult X
comm. non-overlap O
80 comm. overlap © .
allreduce A
theo. 27.4 GB/s
60 - theo. 36.2 GB/s - - - - n
X X X X X X X
40 |- .
[o] o o o o cl
20 - .
) 0] (OJN©) o O g
0A A LA A LA A A
1 10 100
nodes

. Kanamori: APLAT 2020, Aug. 4, 2020

utofu double buffering: 7680 byte/direction/rank

200 ——]
mult X
comm. non-overlap O
comm. overlap ©
150 |- allreduce A 5
theo. 27.4 GB/s
theo. 36.2 GB/s - - - -
100 | =
50 X X X X X X
[l 1 o o] 1 m 0
od a LA A . A 2 A
1 10 100
nodes
MPI single buffering: 7680 byte/direction/rank
200 ——]
mult X
comm. non-overlap O
comm. overlap ©
150 |- allreduce A 5
theo. 27.4 GB/s
theo. 36.2 GB/s - - - -
N X |
100 X . 5 X N
X o o
50 | o (0] d
I o O O o o :
o
0 AN 1A A ‘ A‘ A ! ‘A‘
1 10 100
nodes

utofu double buffering: 491520 byte/direction/rank

6000 —
mult X
comm. non-overlap O
S = comm. overlap ©)
allreduce A
4000 - theo. 27.4 GB/s f
theo. 36.2 GB/s - - - -
3000 |) o
& & & & &
2000 .
1000 [.
)1 i1 L& B 1 i
1 10 100
nodes
MPI single buffering: 491520 byte/direction/rank
6000 —
mult X
comm. non-overlap O
S = comm. overlap ©)
allreduce A
4000 - theo. 27.4 GB/s —— f
theo. 36.2 GB/s - - - -
X
3000 |- X o -
o] X & X
O
2000 e
________________________________ oo omes et
1000€§ .
o s I S -
1 10 100
nodes

appendix-v

weak scaling with different data size

uTofu double buffering (upper) and mpi single buffering (lower)

utofu double buffering: 60 byte/direction/rank
100 ——]
mult X
comm. non-overlap O
80 comm. overlap © .
allreduce A
theo. 27.4 GB/s
60 - theo. 36.2 GB/s - - - - n
X X X X X . X
40 i o O o | o
o}
20 - .
A
ol ® . . D . Y0) 5
1 10 100
nodes
MPI single buffering: 60 byte/direction/rank
100 ——]
mult X
comm. non-overlap O
80 comm. overlap © .
allreduce A
theo. 27.4 GB/s
60 - theo. 36.2 GB/s - - - - n
X X X X X X X
40 |- .
[o] o o o o cl
20 - .
) 0] (OJN©) o O g
0A A 1A A LA A A
1 10 100
nodes

mult: uTofu double buf. (42

|. Kanamori: APLAT 2020, Aug. 4, 2020

utofu double buffering: 7680 byte/direction/rank

200 ——]
mult X
comm. non-overlap O
comm. overlap ©
150 |- allreduce A 5
theo. 27.4 GB/s
theo. 36.2 GB/s - - - -
100 | =
50 X X X X X X
[l 1 o o] 1 m 0
od a LA A . A 2 A
1 10 100
nodes
MPI single buffering: 7680 byte/direction/rank
200 ——]
mult X
comm. non-overlap O
comm. overlap ©
150 |- allreduce A 5
theo. 27.4 GB/s
theo. 36.2 GB/s - - - -
N X |
100 X . 5 X N
X o o
50 | o (0] d
I o O O o o :
o
0 AN 1A A ‘ A‘ A ! ‘A‘
1 10 100
nodes

utofu double buffering: 491520 byte/direction/rank

6000 —
mult X
comm. non-overlap O
S = comm. overlap ©)
allreduce A
4000 - theo. 27.4 GB/s f
theo. 36.2 GB/s - - - -
3000 |) o
& & & & &
2000 .
1000 [.
)1 i1 L& B 1 i
1 10 100
nodes
MPI single buffering: 491520 byte/direction/rank
6000 —
mult X
comm. non-overlap O
S = comm. overlap ©)
allreduce A
4000 - theo. 27.4 GB/s —— f
theo. 36.2 GB/s - - - -
X
3000 |- X o -
o] X & X
O
2000 e
________________________________ oo omes et
1000€§ .
o s I S -
1 10 100
nodes

msec.) < MPI single buf. (52 msec.)

appendix-v

	Outline
	Disclaimer
	Feature of Fugaku: TofuD interconnect
	QWS
	
	Double Buffering
	Implementation: using uTofu interface
	Implementation in QWS
	Some details of the implementation
	
	Target System
	Theoretical Bandwidth for uTofu Communication
	Elapsed Time vs. Amount of Communication: 96 nodes
	Saturation of the bandwidth for large data size
	
	Neighboring Communication of QWS
	
	Double Buffering Algorithm
	Hopping (Mult of H)
	weak scaling with different data size
	weak scaling with different data size

