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The software used for the evaluation, such as the compiller, is still
under development and its performance, which is obtained by
“performance estimation tool” and even actual execution on a
prototype machine, may be different when the supercomputer Fugaku
starts is operation.
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Feature of Fugaku: TofuD interconnect
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communication is important

e 6D torus/mesh network with 10 nearest neighbors

(small 3d “torus™ [2 X 3 X 2]) X

(large 2d torus x 1d mesh),

e Each node (# process) can send data to 6 different directions
simultaneously [QCD has 8 directions]
e Latency: 0.49us, > 90% efficiency for the nearest neighbor put

cf. https://www.fujitsu.com/global/Images/the-tofu-interconnect-d-for-supercomputer-fugaku.pdf

e interface for TofuD: uTofu &

QWS uses uTofu for neighboring comm.

keywordS TNI: Tofu Network Interface (RDMA engine) RDMA: Remote Direct Memory Access
uTofu: Low Level Communcation API for TofuD
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QWS

QCD Wide Simd Library: see Y.Nakamura’s talk

e Clover solver designed for Fugaku
also runs on other architectures s.t. intel

e https://github.com/RIKEN-LQCD/gws

|. Kanamori: APLAT 2020, Aug. 4, 2020 5/17


https://github.com/RIKEN-LQCD/qws

Algorithm and Implementation
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Double Buffering

doulbe buffering

e sender: 1 send buffer
receiver: 2 recv. buffers, used
alternatingly

single buffering

e sender: 1 send buffer
e receiver: 1 recv. buffer
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Double Buffering

doulbe buffering

e sender: 1 send buffer
e receiver: 2 recv. buffers, used
alternatingly

single buffering

e sender: 1 send buffer
e receiver: 1 recv. buffer

e smaller overhead: no need to check if the recv. buffer is ready
the other buffer is always available

e robuster against load imbalance
no need to wait till the recv. buffer becomes available
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Implementation: using uTofu interface

e smaller latency than calling MPI
e we use RDMA put write directly to the memory in the target process

e can (or must) tune the TNI assignment
6 TNIs: 6 simultaneous RDMA put to different directions

the load to each TNI should be balanced

e the boundary size
depends on the direction: the local volume can be a hyper-rectangular

e the rank map
6-dim Tofu coordinate — 4-dim QCD proc. coordinate — 1-dim MPI rank id

a proper rank map is important
the logical “neighbor” may not be a physical neighbor
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Implementation in QWS

rdma_utofu_comlib.c: wrapper functions for calling uTofu

1| rdma_comlib_data buf;
2
3| //bufis to send data (of size) to dst_rank and receive from rcv_rank using TNI of tni_id
4 | //cf. MPI_Recv_init and MPIl_Send_init
5| rdma_comlib_new(&buf, &tni_id, &dst_rank, &rcv_rank, &size);
6 | // start sending with RDMA put
7 | rdma_comlib_isendrecv(&buf);
8 | rdma_comlib_irecv_check(&buf); // cf. MPI_Wait for receiving
9 | rdma_comlib_isend_check(&buf); // cf. MPI_Wait for sending
rdma_comlib_ 2buf: a class for double buffering
built with functions in rdma utofu comlib.c
gqws_xbound_rdma.cc: communication routines in QWS
(uTofu RDMA version)
1 rdma_comlib_2buf buff_rdma[8];
2
3 // initialize communication in x—direction
4 buff_rdma[0].init(tni_list[0], pxb, pxf,size);
3 buff_rdma[1].init(tni_list[1], pxf, pxb,size);
6
7 | buff_rdma[req].isendrecv(); // in void xbound(int req, int prec)
8 | buff_-rdma[req].irecv_check(); // in void xbound_wait(int req, int prec)
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Some details of the implementation

with a proper data alignment and suitable flags to uTofu interface
sender

e uTofu put is thread parallelized
receiver

e we monitor the last byte of the buffer to check the data has arrived
e received data goes directly to the cache cache injection
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As a Communication Library

Benchmark with a 2-dim Poisson equation on Fugaku
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Target System

base: http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/APLIWG/stencil_double_buffering mpi-1.0.tar.gz

M x = b with
(Mx)(i,j) = (4 + mz)x(i,j) —x(i+1,))=x(G=-1,)—x(i,j+1)=x(,j—1)

—_———
=D x =H x
cont. limit

> (m? — 9%)x
Jacobi method

x(K) — xk+D) = p=T(p — Hxk))

Only the hopping H contains the communication

fixed number of iterations: 1000

calculation of the residual norm (MPI_Allreduce) in every 10 iter.
local lattice size: 60 x 60

communication buffer (60 elements for each direction) in enlarged
by 1-8192 (+ a flag as the end of buffer + alignment)
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Theoretical Bandwidth for uTofu Communication

4 MPI ranks/node (2 x 2 ranks in each node)

pattern 1 pattern 2 (round robin)
g bl L. 0 [elwl=
1 [z]-=z] | 1 |+z| +y | +=
2 [tyl+yl 4 2 [y -z [+y
3 [wlwl § 3 [tyl+tz]-y
4 [+z]+z] -z 4 =]yl
5 [ty[+tv]-v]-y 5 [+zl+yl
effective band width: effective band width:
40.8 x 15 = 27.2GB/s 40.8 x -2 = 36.3GB/s

e aproper TNl assignment is important to maximize the effective BW

e If (boundary size for x)#(boundary size for y), we can enjoy more
games with TN| assignment

e (TNI assignments for MP| communication is unclear)

|. Kanamori: APLAT 2020, Aug. 4, 2020 13/17



Elapsed Time vs. Amount of Communication: 96 nodes
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utofu double buffering: 96 nodes (384 ranks)
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utofu double buffering: 96 nodes (384 ranks), TNI round robin
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Elapsed Time vs. Amount of Communication: 96 nodes

utofu double buffering: 96 nodes (384 ranks)

utofu double buffering: 96 nodes (384 ranks), TNI round robin
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Elapsed Time vs. Amount of Communication: 96 nodes

utofu double buffering: 96 nodes (384 ranks) utofu double buffering: 96 nodes (384 ranks), TNI round robin
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Saturation of the bandwidth for large data size
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Saturation of the bandwidth for large data size
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Saturation of the bandwidth for large data size
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Summary and Outlooks
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Neighboring Communication of QWS

algorithm: double buffering

implemented with uTofu MPI version of QWS is available as well

a proper TNI assignment is important rank map is also important
can be used as a library: ex. with 2-dim Poisson eq.

e good saturation of the theoretical band width
e (good weak scaling
e room (and/or freedom) for further optimization of TNI

Outlooks

e performance of QWS with practical system sizes
e [comm. part of] QWS + existing QCD code sets

TNI: Tofu Network Interface (RDMA engine) RDMA: Remote Direct Memory Access
uTofu: Low Level Communcation API for TofuD
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Neighboring Communication of QWS

algorithm: double buffering

implemented with uTofu MPI version of QWS is available as well

a proper TNI assignment is important rank map is also important
can be used as a library: ex. with 2-dim Poisson eq.

e good saturation of the theoretical band width
e (good weak scaling
e room (and/or freedom) for further optimization of TNI

Outlooks

e performance of QWS with practical system sizes
e [comm. part of] QWS + existing QCD code sets

TNI: Tofu Network Interface (RDMA engine) RDMA: Remote Direct Memory Access
uTofu: Low Level Communcation API for TofuD

Thank you.
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Backup Slides
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Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the
latency, we use double buffering algorithm and implement it with uTofu.

send buf.
I : Packed

I : Sending

// 1st iter. send buffer|

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

clear the received flag

recv. bUf wait for sending is done

S . - switch the buffer to send
Rl : Recelving 10| 7/ 2nd iter.

=] - 11 | pack the boundary data
H ReCV- done 12 | start sending

_ 13 | computation: bulk
U ) belng Used 14 | wait for the boundary data comes
15 | computation: boundary
16 | clear the received flag
17 | wait for sending is done
18 | switch the buffer to send

©CooO~NOOOTPR~WN —
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Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the
latency, we use double buffering algorithm and implement it with uTofu.

send buf.
12 : Packed ;
12 : Sending ,
;
recv. buf. :
Rl : Receiving o
A : Recv. done s
. 13
M : being Used 14
16
17
18
19
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// 1st iter. send buffer

pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send

—h
Cwvwoo~NOoOOOGT,~,WLDN =

T AO TN O T 1O T O T 1 O T 'O J il i G G G Qi Qi Qi §
OO PP WON—-LQCO0ONOOOCOGITRARAPWDN —

// 1st iter. recv. buffers
pack the boundary data

start sending
computation: bulk

wait for the boundary data comes
computation: boundary

clear the received flag
wait for sending is done

switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
wait for sending is done
switch the buffer to send

lalaVaVYaVYa¥Ya
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Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the

latency, we use double buffering algorithm and implement it with uTofu.

send buf.
12 : Packed :
12 : Sending ,
;
recv. buf. :
Rl : Receiving o
Il : Recv. done 12
. 13
M : being Used 14
16
17
18
19
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// 1st iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send

send buffer

P

—h
Cwvwoo~NOoOOOGT,~,WLDN =

T AO TN O T 1O T O T 1 O T 'O J il i G G G Qi Qi Qi §
OO PP WON—-LQCO0ONOOOCOGITRARAPWDN —

// 1st iter.
pack the boundary data

start sending
computation: bulk

wait for the boundary data comes
computation: boundary

clear the received flag
wait for sending is done

switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
wait for sending is done
switch the buffer to send

recv. buffers

lalaVaVYaVYa¥Ya
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Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the
latency, we use double buffering algorithm and implement it with uTofu.

send buf. | | |
5] - 1| // 1stiter. send buffer 1| // 1stiter. recv. buffers
I - PaCked 2 | pack the boundary data E 2 | pack the boundary data
. : 3 | start sending T3
12 - Sendmg 4 | computation: bulk 4 | start sending
5 | wait for the boundary data comes 5 | computation: bulk
6 | computation: boundary 6
7 | clear the received flag 7
recv. bUf 8 | wait for sending is done 8 | wait for the boundary data comes
S - "\ 9 | switch the buffer to send 9 | computation: boundary
Rl : Receiving 10| / 2nd iter. 10
] 11 | pack the boundary data 11
Il : Recv. done 12 | start sending 12
_ 13 | computation: bulk 13 | clear the received flag
U ) belng Used 14 | wait for the boundary data comes 14 | wait for sending is done
15 | computation: boundary 15
16 | clear the received flag 16
17 | wait for sending is done 17 | switch the buffer to send
18 | switch the buffer to send 18 | //2nd iter.
19 | ... 19 | pack the boundary data
20 | start sending
21 | computation: bulk
22 | wait for the boundary data comes
23 | computation: boundary
24 | wait for sending is done
25 | switch the buffer to send
26 | ...
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Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the
latency, we use double buffering algorithm and implement it with uTofu.

send buf.
12 : Packed :
12 : Sending ,
;
recv. buf. :
Rl : Receiving o
Il : Recv. done 12
. 13
M : being Used 14
16
17
18
19
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// 1st iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send

send buffer

P

m\-

14
15
16
17
18
19

20

21
22
23
24
25

26

wait for sending is done

switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
wait for sending is done
switch the buffer to send

1| // 1stiter. recv. buffers
2 | pack the boundary data RIRI
3 RIR

| startsengmg—— AR
5| computation: bulk RIR!
6 RIR
7 RIR
8 | wait for the boundary data comes I21R]
9 | computation: boundary

10

11

12

13 | clear the received flag
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Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the
latency, we use double buffering algorithm and implement it with uTofu.

send buf.
12 : Packed :
12 : Sending ,
:
recv. buf. :
Rl : Receiving o
IA1 : Recv. done e
. 13
M : being Used 14
16
17
18
19
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// 1st iter. send buffer

pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send

P

m\-

—h
C)LC)CX)\ICDO'I-h(Z\I\)—L

11
12
13
14
15
16
17
18
19

20

21
22
23
24
25

// 1st iter. recv. buffers
pack the boundary data RIR
RIR
startsengig—— AR
computation: bulk RIR!
RIR
RIR
wait for the boundary data comes RIS
computation: boundary WIR!
UI=]
ISl
UI=]

clear the received flag
wait for sending is done

switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
wait for sending is done
switch the buffer to send

26
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Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the
latency, we use double buffering algorithm and implement it with uTofu.

send buf.
12 : Packed :
12 : Sending ,
:
recv. buf. :
Rl : Receiving o
IA1 : Recv. done e
. 13
M : being Used 14
16
17
18
19
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// 1st iter. send buffer|

pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send

| 2 2

——

—h
C)LC)CX)\ICDO'I-h(Z\I\)—L

11
12
13
14
15
16
17
18
19

20

21
22
23
24
25

// 1st iter. recv. buffers
pack the boundary data RIR
RIR
startsengig—— AR
computation: bulk RIR!
RIR
RIR
wait for the boundary data comes RIS
computation: boundary WIR!
UI=]
ISl
UI=]

clear the received flag
wait for sending is done

switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
wait for sending is done
switch the buffer to send

26
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Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the
latency, we use double buffering algorithm and implement it with uTofu.

send buf. | | |
2] - 1| // 1stiter. send buffer 1| // 1st iter. recv. buffers
= - PaCked 2 | pack the boundary data E 2 | pack the boundary data : 3: 3:
. : 3 | start sending T3
12 - Sendlng 4 | computation: bulk 4 W{ﬁ" R
5 | wait for the boundary data comes 5 | computation: bulk RIR!
6 | computation: boundary S 6 : 3: 2:
7 | clear the received flag 7
recv. bUf 8 | wait for sending is done L] 8 | wait for the boundary data comes E%
D - U 9 | switch the buffer to send 9 | computation: boundary
Rl : Receiving 10| // 2nd iter. - 10 %%
— 11 | pack the boundary data = 11
I3l : Recv. done 12| start sending < 2 LSl
_ 13 | computation: bulk 13 clear the received flag
) belng Used 14 | wait for the boundary data comes wait for sending is done
even if the 1st buffer is still busy but the 2nd is available
17 | wait for sending is done 17 | switch the buffer to send
18 | switch the buffer to send 18 | //2nd iter.
19 | ... 19 | pack the boundary data
20 | start sending

21 | computation: bulk

22 | wait for the boundary data comes
23 | computation: boundary

24 | wait for sending is done

25 | switch the buffer to send

26
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Double Buffering Algorithm

To hide a possible load imbalance btw. nodes, and to minimize the
latency, we use double buffering algorithm and implement it with uTofu.

send buf. | | |
2] - 1| // 1stiter. send buffer 1| // 1st iter. recv. buffers
= - PaCked 2 | pack the boundary data E 2 | pack the boundary data : 3: 3:
. : 3 | start sending T3
12 - Sendlng 4 | computation: bulk 4 W{ﬁ" R
5 | wait for the boundary data comes 5 | computation: bulk RIR!
6 | computation: boundary S 6 BRI
recv. buf 7 | clear the received flag 7 RIR|
- - 8 | wait for sending is done L] 8 | wait for the boundary data comes E%
D - U 9 | switch the buffer to send 9 | computation: boundary
Rl : Receiving 10| // 2nd iter. 10 BIR]
REE 11 | pack the boundary data P 11 [B1R!
2l : Recv. done 12| start sending S 2 izl
_ 13 | computation: bulk 13 clear the received flag BRI
) belng Used 14 | wait for the boundary data comes wait for sending is done RIR
even If the 1st buffer | s stlll busy but the 2nd is available
17 | wait for sending is done 17 | switch the buffer to send
18 | switch the buffer to send 18 | //2nd iter.
19 | ... 19 | pack the boundary data
20 | start sending pete)
" " 21 | computation: bulk
. 23 | computation: boundary
dval |ab|e 24 | wait for sending is done
25 | switch the buffer to send
26 | ...
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Hopping (Mult of H)

packing the boundary data

start sending/receiving the boundary data
calculate: internal area

wait for receiving

calculate: boundary area

wait for sending finished

SERCLE S

|. Kanamori: APLAT 2020, Aug. 4, 2020 appendix-iii



Hopping (Mult of H)

packing the boundary data -
start sending/receiving the boundary data
calculate: internal area ~ | overlap

wait for receiving | comm.
calculate: boundary area

wait for sending finished

SERCLE S

non-overlap = comm. — overlap
= start sending/receiving + walit for receiving
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weak scaling with different data size

uTofu double buffering

utofu double buffering: 60 byte/direction/rank utofu double buffering: 7680 byte/direction/rank utofu double buffering: 491520 byte/direction/rank
100 ———— ‘ — 200 ——— ] ‘ — 6000 —
mult X mult X mult X
comm. non-overlap O comm. non-overlap O 5000 I comm. non-overlap O )
80 comm. overlap © . comm. overlap O comm. overlap O
allreduce A 150 - allreduce A g allreduce A
theo. 27.4 GB/s theo. 27.4 GB/s 4000 - theo. 27.4 GB/s —— f
60 |- theo. 36.2 GB/s - - - - = theo. 36.2 GB/s - - - - theo. 36.2 GB/s - - - -
& » < X >< J 100 |- f 3000 | ) f
40 g o o o o X 2 & & & 5 &
o 2000 | .
50
N | X X X X X X X
20 O — E— S O—m—~f 1000 |- .
A
Y ‘ Y N . N - N .0 . A 0h ‘ . .. QA a2 . . .A 0 . om S T T |
1 10 100 1 10 100 1 10 100
# nodes # nodes # nodes
[ofu double buftfering ( d robin TNI)
utofu double buffering: 60 byte/direction/rank (TNI: round robin) utofu double buffering: 7680 byte/direction/rank (TNI: round robin) utofu double buffering: 491520 byte/direction/rank (TNI: round robin)
100 ———— ‘ — 200 ——— ] ‘ — 6000 —
mult X mult X mult X
comm. non-overlap O comm. non-overlap O 5000 I comm. non-overlap O )
80 comm. overlap © . comm. overlap O comm. overlap O
allreduce A 150 - allreduce A g allreduce A
theo. 27.4 GB/s theo. 27.4 GB/s 4000 - theo. 27.4 GB/s f
60 |- theo. 36.2 GB/s — — — = theo. 36.2 GB/s — — — theo. 36.2 GB/s — — —
100 = 3000 X ® .
X X X X X X
40 7 o} o O o o &
2000& B & a
50 X 2
N | X X X X X
2 Lo C S P 1000 | ]
YA\
Om " " AN D " ‘Q‘A“‘{? 0@ i i Q\ N ) . \@_\@_\\\ A of\ . . o G \\\\\A . N U - ¢ L
1 10 100 1 10 100 1 10 100
# nodes # nodes # nodes
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weak scaling with different data size

JTofu doubl g%a e\’\r’ﬁ%k scaling If the communication is fully overlapped

utofu double buffering: 60 byte/direction/rank utofu double buffering: 7680 byte/direction/rank utofu double buffering: 491520 byte/direction/rank
100 ———— ‘ — 200 ——— ] ‘ — 5000 — —
mult X mult X mult X
comm. non-overlap O comm. non-overlap O -00 - comm. non-overlap O )
80 comm. overlap © . comm. overlap O g comm. overlap O
allreduce A 150 - allreduce A g allreduce A
theo. 27.4 GB/s theo. 27.4 GB/s 1000 theo. 27.4 GB/s f
60 |- theo. 36.2 GB/s - - - - = theo. 36.2 GB/s - - - - theo. 36.2 GB/s - - - -
& » < X >< J 100 |- f 3000 |- ) f
40 g o o o o X 2 & & & 5 &
o 2000 .
50
N | X X X X X X X
20 O — E— S O—m—~f 1000 |- .
A
Y A Y . N - N a0 . £ 0h ‘ . .. QA a2 . . .A 0 . om S T T |
1 10 100 1 10 100 1 10 100
# nodes # nodes # nodes
[ofu double buftfering ( d robin TNI)
utofu double buffering: 60 byte/direction/rank (TNI: round robin) utofu double buffering: 7680 byte/direction/rank (TNI: round robin) utofu double buffering: 491520 byte/direction/rank (TNI: round robin)
100 ———— ‘ — 200 ——— ] ‘ — 5000 —
mult X mult X mult X
comm. non-overlap O comm. non-overlap O -00 - comm. non-overlap O )
80 comm. overlap © . comm. overlap O g comm. overlap O
allreduce A 150 - allreduce A g allreduce A
theo. 27.4 GB/s theo. 27.4 GB/s 1000 theo. 27.4 GB/s f
60 |- theo. 36.2 GB/s — — — = theo. 36.2 GB/s — — — theo. 36.2 GB/s — — —
100 = 8000 X ® .
X X X X X X
40 7 o} o O o o &
2000 ps S & (s
50 X 2
N | X X X X X
2 Lo C S P 1000 ]
YA\
Om " " AN D " ‘Q‘A“‘{? 0@ i i Q\ N ) . \@_\@_\\\ A of\ . . o G \\\\\A . N U - ¢ L
1 10 100 1 10 100 1 10 100
# nodes # nodes # nodes
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weak scaling with different data size

uTofu d rnI B 8%%63 visible, good weak scaling for large # of nodes

utofu double buffering: 60 byte/direction/rank utofu double buffering: 7680 byte/direction/rank utofu double buffering: 491520 byte/direction/rank
100 ‘ —— ‘ — 200 ‘ — ] ‘ — 6000 ‘ —— T
mult X mult X mult X
comm. non-overlap O comm. non-overlap O 5000 I comm. non-overlap O )
80 comm. overlap © . comm. overlap O comm. overlap O
allreduce A 150 - allreduce A g allreduce A
theo. 27.4 GB/s theo. 27.4 GB/s 4000 - theo. 27.4 GB/s f
60 |- theo. 36.2 GB/s - - - - = theo. 36.2 GB/s - - - - theo. 36.2 GB/s - - - -
& » < X >< J 100 |- f 3000 | ) f
40 g o o o o X 2 & & & 5 &
o 2000 | .
50
N | X X X X X X X
20 O — E— S O—m—~f 1000 |- .
A
Y ‘ Y N . N - N .0 . A 0h ‘ . .. A @ a2 . . .A 0 . om I S T |
1 10 100 1 10 100 1 10 100
# nodes # nodes # nodes
[ofu double buftfering ( d robin TNI)
utofu double buffering: 60 byte/direction/rank (TNI: round robin) utofu double buffering: 7680 byte/direction/rank (TNI: round robin) utofu double buffering: 491520 byte/direction/fank (TNI: round robin)
100 ‘ —— ‘ — 200 ‘ — ] ‘ — 6000 ‘ —— T
mult X mult X mult X
comm. non-overlap O comm. non-overlap O 5000 I comm. non-overlap O )
80 comm. overlap © . comm. overlap O comm. overlap O
allreduce A 150 - allreduce A g allreduce A
theo. 27.4 GB/s theo. 27.4 GB/s 4000 - theo. 27.4 GB/s f
60 |- theo. 36.2 GB/s — — — = theo. 36.2 GB/s — — — theo. 36.2 GB/s — — —
100 = 3000 X ® .
X X X X X X
40 7 o} o O o o &
2000& B & a
50 X 2
N | X X X X X
2 Lo C S P 1000 | ]
YA\
Om " " AN D " ‘Q‘A“‘{? 0@ i i Q\ N ) . \@_\@_\\\ A of\ . . o G \\\\\A . N U - ¢ L
1 10 100 1 10 100 1 10 100
# nodes # nodes # nodes
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weak scaling with different data size

uTofu double buffering (upper) and mpi single buffering (lower)

utofu double buffering: 60 byte/direction/rank

100 ——]
mult X
comm. non-overlap O
80 comm. overlap © .
allreduce A
theo. 27.4 GB/s
60 - theo. 36.2 GB/s - - - - n
X X X X X . X
40 i o O o | o
o}
20 - .
A
ol ® . . D . Y0) 5
1 10 100
# nodes
MPI single buffering: 60 byte/direction/rank
100 ——]
mult X
comm. non-overlap O
80 comm. overlap © .
allreduce A
theo. 27.4 GB/s
60 - theo. 36.2 GB/s - - - - n
X X X X X X X
40 |- .
[ o] o o o o cl
20 - .
) 0] (OJN©) o O g
0A A LA A LA A A
1 10 100
# nodes
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utofu double buffering: 7680 byte/direction/rank

200 ——]
mult X
comm. non-overlap O
comm. overlap ©
150 |- allreduce A 5
theo. 27.4 GB/s
theo. 36.2 GB/s - - - -
100 | =
50 X X X X X X
[l 1 o o] 1 m 0
od a LA A . A 2 A
1 10 100
# nodes
MPI single buffering: 7680 byte/direction/rank
200 ——]
mult X
comm. non-overlap O
comm. overlap ©
150 |- allreduce A 5
theo. 27.4 GB/s
theo. 36.2 GB/s - - - -
N X |
100 X . 5 X N
X o o
50 | o (0] d
I o O O o o :
o
0 AN 1A A ‘ A‘ A ! ‘A‘
1 10 100
# nodes

utofu double buffering: 491520 byte/direction/rank

6000 —
mult X
comm. non-overlap O
S = comm. overlap © )
allreduce A
4000 - theo. 27.4 GB/s f
theo. 36.2 GB/s - - - -
3000 | ) o
& & & & &
2000 .
1000 [ .
)1 i1 L& B 1 i
1 10 100
# nodes
MPI single buffering: 491520 byte/direction/rank
6000 —
mult X
comm. non-overlap O
S = comm. overlap © )
allreduce A
4000 - theo. 27.4 GB/s —— f
theo. 36.2 GB/s - - - -
X
3000 |- X o -
o ] X & X
O
2000 e
________________________________ oo omes et
1000€§ .
o s I S -
1 10 100
# nodes
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weak scaling with different data size

uTofu double buffering (upper) and mpi single buffering (lower)

utofu double buffering: 60 byte/direction/rank
100 ——]
mult X
comm. non-overlap O
80 comm. overlap © .
allreduce A
theo. 27.4 GB/s
60 - theo. 36.2 GB/s - - - - n
X X X X X . X
40 i o O o | o
o}
20 - .
A
ol ® . . D . Y0) 5
1 10 100
# nodes
MPI single buffering: 60 byte/direction/rank
100 ——]
mult X
comm. non-overlap O
80 comm. overlap © .
allreduce A
theo. 27.4 GB/s
60 - theo. 36.2 GB/s - - - - n
X X X X X X X
40 |- .
[ o] o o o o cl
20 - .
) 0] (OJN©) o O g
0A A 1A A LA A A
1 10 100
# nodes

mult: uTofu double buf. (42
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utofu double buffering: 7680 byte/direction/rank

200 ——]
mult X
comm. non-overlap O
comm. overlap ©
150 |- allreduce A 5
theo. 27.4 GB/s
theo. 36.2 GB/s - - - -
100 | =
50 X X X X X X
[l 1 o o] 1 m 0
od a LA A . A 2 A
1 10 100
# nodes
MPI single buffering: 7680 byte/direction/rank
200 ——]
mult X
comm. non-overlap O
comm. overlap ©
150 |- allreduce A 5
theo. 27.4 GB/s
theo. 36.2 GB/s - - - -
N X |
100 X . 5 X N
X o o
50 | o (0] d
I o O O o o :
o
0 AN 1A A ‘ A‘ A ! ‘A‘
1 10 100
# nodes

utofu double buffering: 491520 byte/direction/rank

6000 —
mult X
comm. non-overlap O
S = comm. overlap © )
allreduce A
4000 - theo. 27.4 GB/s f
theo. 36.2 GB/s - - - -
3000 | ) o
& & & & &
2000 .
1000 [ .
)1 i1 L& B 1 i
1 10 100
# nodes
MPI single buffering: 491520 byte/direction/rank
6000 —
mult X
comm. non-overlap O
S = comm. overlap © )
allreduce A
4000 - theo. 27.4 GB/s —— f
theo. 36.2 GB/s - - - -
X
3000 |- X o -
o ] X & X
O
2000 e
________________________________ oo omes et
1000€§ .
o s I S -
1 10 100
# nodes

msec.) < MPI single buf. (52 msec.)
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