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- The linear combination of SU(3) states that forms mass
eigenstates is parametrised by a single mixing angle for 2-state
systems like £9-A°

Why:

- Mixing is driven by the breaking of flavour symmetry
(degeneracy), and for typical isospin eigenstates only occurs
once u-d quark degeneracy is broken

- The magnitude of mixing is a measure of isospin symmetry
breaking and SU(3) symmetry breaking
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Introduction to mixing in SU(3)-flavour

- In constructing SU(3) states, an exact isospin 'basis’ is usually
chosen in favour of U- or V-spin; the analogous SU(2)
sub-algebras based upon d-s and u-s symmetry respectively
- With QED on the lattice, exact flavour degeneracy cannot be
achieved, however d-s (U-spin) symmetry is achieved when
quark masses are set equal .
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Correlation functions

We employ the general SU(3)-flavour interpolating operators
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Correlation functions

We employ the general SU(3)-flavour interpolating operators

B (ab),a (X) = —z€™ (Do () [a7 () T Crs”(x)] 4 (x) [B™(X) T Crysc(x)] ),

Sl %

Ba(abey,a(X) = —=e™" (264 (%) [a™(x) T Cysb"(X)]+ bg (x) [a™(X) T Cysc” (X))

-2, (x) [b"(x) T Cysc"(x)] ),

and form the 2x2 correlation matrix

Cji(t) o< Trol unpor <ZB v, )B;(%o, )>, i,j = ¥(abc), A(abc)
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Simulation and mixing angle extraction

To extract mixing angles from our simulations we calculate the
eigenvectors of the correlation matrices
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Simulation and mixing angle extraction

To extract mixing angles from our simulations we calculate the
eigenvectors of the correlation matrices

[sz,f(t) Cea,i(t)

, 1<t<ny |=isospin,u-spin,v-spin
Caz,i(t) C/\/\,«'(t)]

which are parametrised by the mixing angles:

3(t) = [cos 9;,\,,-(1:)] [— sin Oxxi(t)

, | = isospin,u-spin,v-spin
sin HZ/\,i(t) COSQZ/\J‘(t)‘| i, P P

and fit the mixing angle plateaus



Mixing angle extraction
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Simulation details

- Mixing angle extractions from QCDSF dynamical QCD+QED confs

- We use a =~10x larger than physical EM coupling to exaggerate
QED effects (needs to be corrected for in extrapolations)

- Simulate along mass trajectory with constant singlet quark
mass, ie. (my + myq + ms)/3 = constant = my
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Mixing angle expansions

We formulate a LO expansion of the correlation functions
themselves, treating them (at a given time) as smooth functions of
the quark masses and charges

— tan 2057 isospin(t) = —V3 ( Dacn()(omy = 25mq) + Darp(!) ) )

3DQCD(t)(6mu + Z(Smd) + DQED(t)

)

Dacn(t) = <0sz(muds,0,t) B 8C,\A(mud5,o’t)>

ams ams ﬁuds,o

[ 9Cex(Masu0,€Qasust)  ACA(igsu,0, €Qsus T)
Dazn(t) = Oe B Oe

rﬁabc = (m07 mba mC)> éabc = (CImey CIC)a 6mi = mi - mO

6:07

and similar for U- and V-spin mixing angles



Mixing angle time dependence
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Mixing angle time dependence
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Lattice ensembles

Lattice Ensembles

volume | ky, kg, ks (valence) 95 A isospin
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Lattice ensembles

Lattice Ensembles

volume | ky, K4, ks (valence) 05 isospin Myz (MeV)
263x48 | 0124362 0.121713 0.121713| -30° 442(9)
243%48 | 0124374 0.121713  0.121701 423(9)
0.124387 0.121713 0.121689 423(10)
0.124400 0.121740 0.121649 378(28)
24348 | 0.124400 0.121713  0.121677 405(8)
0.124420  0.121713 0.121657 387(8)
0.124430 0.121760 0.121601 377(8)
483%96 | 0.124508 0.121821 0.121466 284(4)
0.124400 0.121713 0.121677 389(5)

red = unitary



Lattice ensembles

Lattice Ensembles

volume | ky, kg, ks (valence) 5 A isospin

263x48 | 0124362 0.121713  0.121713| -30°

263x48 | 0124374 0.121713  0.121701
0.124387 0.121713 0.121689
0.124400 0.121740 0.121649

243x48 | 0.124400 0.121713  0.121677
0.124420 0.121713 0.121657
0.124430 0.121760 0.121601

48°%96 | 0.124508 0.121821 0.121466
0.124400 0.121713 0.121677

red = unitary

blue = partially quenched
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Mixing angle results

Lattice Ensembles
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QED contribution and basis relations
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QED contribution and basis relations

\[ DQCD(ému = Zémd) + DQED
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Isospin extrapolation results

Dqep/Docp= —3.8(7) x 1075, Z = 0.96(4), x2/DOF = 0.84
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Conclusion

- We find @ mixing angle 0x isospin = —1.0(3)°
- This compares well with other determinations including QED
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Conclusion

- We find @ mixing angle 0x isospin = —1.0(3)°

- This compares well with other determinations including QED
(notably ": -0.86(6))

- We have not yet investigated systematic errors in this
exploratory calculation (finite volume, EM coupling scaling, PQ)

- Roughly 2x magnitude of our QCD-only determination:
05 isospin,QCD-only = —0.55(3)°, and past collaboration result?:
5 A isospin,QCD-only = —0.35(13)(7)°

- In the future we intend to investigate the 7%-n-n’ mixing in this
scheme

- Thank you for listening!

TR. H. Dalitz and F. Von Hippel, “Electromagnetic A — 9 mixing and charge symmetry
for the A-hyperon,” Phys. Lett. 10 (1964), 153-157

R. Horsley et al,, “Lattice determination of Sigma-Lambda mixing,” Phys. Rev. D 91
(2015) no.7, 074512
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