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Introduction to mixing



Introduction to mixing in SU(3)-flavour

What:

• In spectroscopy context mixing refers to diagonalisation of
(isospin) SU(3)-flavour states to form mass eigenstates

• The linear combination of SU(3) states that forms mass
eigenstates is parametrised by a single mixing angle for 2-state
systems like Σ0–Λ0

Why:

• Mixing is driven by the breaking of flavour symmetry
(degeneracy), and for typical isospin eigenstates only occurs
once u-d quark degeneracy is broken

• The magnitude of mixing is a measure of isospin symmetry
breaking and SU(3) symmetry breaking
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Introduction to mixing in SU(3)-flavour

• In constructing SU(3) states, an exact isospin ’basis’ is usually
chosen in favour of U- or V-spin; the analogous SU(2)
sub-algebras based upon d-s and u-s symmetry respectively

• With QED on the lattice, exact flavour degeneracy cannot be
achieved, however d-s (U-spin) symmetry is achieved when
quark masses are set equal
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Mixing on the lattice



Correlation functions

We employ the general SU(3)-flavour interpolating operators

BΣ(abc),α(x) =
1√
2
ϵlmn

(
blα(x)

[
am(x)⊤Cγ5cn(x)

]
+alα(x)

[
bm(x)⊤Cγ5cn(x)

] )
,

BΛ(abc),α(x) =
1√
6
ϵlmn

(
2clα(x)

[
am(x)⊤Cγ5bn(x)

]
+blα(x)

[
am(x)⊤Cγ5cn(x)

]
… - alα(x)

[
bm(x)⊤Cγ5cn(x)

] )
,
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Simulation and mixing angle extraction

To extract mixing angles from our simulations we calculate the
eigenvectors of the correlation matrices[

CΣΣ,i(t) CΣΛ,i(t)
CΛΣ,i(t) CΛΛ,i(t)

]
, 1 ≤ t ≤ nt, i = isospin,u-spin,v-spin

which are parametrised by the mixing angles:

e⃗i(t) =
[
cos θΣΛ,i(t)
sin θΣΛ,i(t)

]
,

[
− sin θΣΛ,i(t)
cos θΣΛ,i(t)

]
, i = isospin,u-spin,v-spin

and fit the mixing angle plateaus
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Mixing angle extraction
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Simulation details

• Mixing angle extractions from QCDSF dynamical QCD+QED confs

• We use a ≈10x larger than physical EM coupling to exaggerate
QED effects (needs to be corrected for in extrapolations)

• Simulate along mass trajectory with constant singlet quark
mass, ie. (mu +md +ms)/3 = constant = m0

Chapter 7. Flavour-neutral pseudoscalar mesons using Lattice QCD+QED 108

mumd

ms

constant d mass

U-spin

physical point

Figure 7.4: The position of the ensemble quark masses, represented graphically
using �mu + �md + �ms = 0. Ensemble 1 is the circular point at the centre of the
triangle where the U-spin and constant d lines intersect. Ensemble 2 and ensemble
3 are the triangle and square points respectively along the constant d line.
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Mixing angle expansions

We formulate a LO expansion of the correlation functions
themselves, treating them (at a given time) as smooth functions of
the quark masses and charges

→ tan 2θΣΛ,isospin(t) = −
√
3
(
DQCD(t)(δmu − Zδmd) + DQED(t)
3DQCD(t)(δmu + Zδmd) + DQED(t)

)
,

DQCD(t) =
(
∂CΣΣ(m⃗uds, 0, t)

∂ms
− ∂CΛΛ(m⃗uds, 0, t)

∂ms

)∣∣∣
m⃗uds,0

,

DQED(t) =
(
∂CΣΣ(m⃗dsu,0, ϵQ⃗dsu, t)

∂ϵ
−

∂CΛΛ(m⃗dsu,0, ϵQ⃗dsu, t)
∂ϵ

)∣∣∣
ϵ=0

,

m⃗abc = (ma,mb,mc), Q⃗abc = (qa,qb,qc), δmi = mi −m0

and similar for U- and V-spin mixing angles
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Mixing angle time dependence

tan 2θΣΛ,isospin(t) = −
√
3
(
DQCD(t)(δmu − Zδmd) + DQED(t)
3DQCD(t)(δmu + Zδmd) + DQED(t)

)
,
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Lattice ensembles

Lattice Ensembles
volume κu, κd, κs (valence) θΣΛ,isospin Muū (MeV)
243×48 0.124362 0.121713 0.121713 -30◦ 442(9)
243×48 0.124374 0.121713 0.121701 423(9)

0.124387 0.121713 0.121689 423(10)
0.124400 0.121740 0.121649 378(28)

243×48 0.124400 0.121713 0.121677 405(8)
0.124420 0.121713 0.121657 387(8)
0.124430 0.121760 0.121601 377(8)

483×96 0.124508 0.121821 0.121466 284(4)
0.124400 0.121713 0.121677 389(5)
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Fit results and observations



Mixing angle results

Lattice Ensembles
volume κu, κd, κs (valence) θΣΛ,isospin Muū (MeV)
243×48 0.124362 0.121713 0.121713 -30◦ 442(9)
243×48 0.124374 0.121713 0.121701 -21.8(1.1)◦ 423(9)

0.124387 0.121713 0.121689 -19.5(1.2)◦ 423(10)
0.124400 0.121740 0.121649 -6(1)◦ 378(28)

243×48 0.124400 0.121713 0.121677 -17.8(7)◦ 405(8)
0.124420 0.121713 0.121657 -16.7(7)◦ 387(8)
0.124430 0.121760 0.121601 -4.8(7)◦ 377(8)

483×96 0.124508 0.121821 0.121466 -3.5(4)◦ 284(4)
0.124400 0.121713 0.121677 -18.5(9)◦ 389(5)
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QED contribution and basis relations
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Isospin extrapolation results

DQED/DQCD= −3.8(7)× 10−5, Z = 0.96(4), χ2/DOF = 0.84
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Conclusion

• We find a mixing angle θΣΛ,isospin = −1.0(3)◦

• This compares well with other determinations including QED
(notably 1: -0.86(6))

• We have not yet investigated systematic errors in this
exploratory calculation (finite volume, EM coupling scaling, PQ)

• Roughly 2x magnitude of our QCD-only determination:
θΣΛ,isospin,QCD-only = −0.55(3)◦, and past collaboration result2:
θΣΛ,isospin,QCD-only = −0.35(13)(7)◦

• In the future we intend to investigate the π0–η–η′ mixing in this
scheme

• Thank you for listening!

1R. H. Dalitz and F. Von Hippel, “Electromagnetic Λ− Σ0 mixing and charge symmetry
for the Λ-hyperon,” Phys. Lett. 10 (1964), 153-157
2R. Horsley et al., “Lattice determination of Sigma-Lambda mixing,” Phys. Rev. D 91
(2015) no.7, 074512
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scheme
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