parton distribution function of Δ^+ on the lattice

Yuan Li Peking University

In collaboration with ETMC, based on Phys.Rev.D 102 (2020) 1, 014508

August 4, 2020

Feynman Parton model

When particle travels at $v \sim c$, it may be considered as a collection of interaction-free particles called partons.

► Two particles' scattering can transform to partons' scattering. The scattering cross sections are factorized in terms of partions distribution function and parton scattering.

Delta PDF

- Parton distribution functions(PDFs): They encode important information on the internal structure of hadrons, such as the distribution of the spin and momentum of the parent hadron among its constituents.
- We provide a first lattice QCD study of the PDFs of the $\Delta(1232)$ baryon.
- ightharpoonup Since the Δ baryon is a strongly decaying resonance, its structure is not accessible experimentally. Lattice QCD is only available framework to provide information.
- \blacktriangleright we compute the $\overline{d}(x)-\overline{u}(x)$ asymmetry and compare it with the same quantity in the nucleon.

Delta PDF

Challenge:

Our work: Yahui Chai, Yuan Li, Shicheng Xia, et al, Parton distribution functions of Δ^+ on the lattice, Phys.Rev.D 102 (2020) 1, 014508

Configurations and Measurements

$\beta = 1.726 \ c_{sw} = 1.74 \ a = 0.093 \ \text{fm}$				
$24^{3} \times 48$	$a\mu = 0.0053$	$m_N = 1.21(2) \text{ GeV}$		
L=2.2 fm	$m_\pi{=}0.360~\text{GeV}$	$m_{\Delta}{=}1.59$ (4) GeV		
$32^{3} \times 64$	$a\mu$ =0.003	$m_N = 1.08(3) \text{ GeV}$		
L=3.0 fm	$m_\pi{=}0.270~\text{GeV}$	$m_{\Delta}{=}1.42(5)~\text{GeV}$		

Table 1: Simulation parameters for the two ensembles of used gauge field configurations.

P_3	$\frac{2\pi}{L} \approx 0.42 GeV$	$\frac{4\pi}{L} \approx 0.83 GeV$	$\frac{6\pi}{L} \approx 1.25 GeV$
$\overline{N_{conf}}$	151	461	474
N_{meas}	906	8784	42660

Table 2: The statistics in our calculation

Lattice Details

Bare matrix elements

Figure 1: The real (left) and imaginary (right) part of bare matrix elements for the three lowest lattice momenta, $P_3 = 2\pi/L, 4\pi/L, 6\pi/L$, with 10 steps of stout smearing.

Renormalized matrix elements

Figure 2: The real (left) and imaginary (right) part of the renormalized matrix elements for 0, 5, 10 and 15 steps of stout smearing steps. The hadron boost is $P_z = 6\pi/L$.

Quasi-PDFs

Figure 3: Left panel: the dependence on the maximum length of the Wilson line taken in the Fourier transform, $z_{\rm max}$, for hadron boost $P_3=6\pi/L$.

Right panel: the dependence on the hadron boost, for $P_3 = 2\pi/L, 4\pi/L, 6\pi/L$ and $z_{\text{max}}/a = 10$.

Matched PDFs

Figure 4: Left panel: the dependence on the maximum length of the Wilson line taken in the Fourier transform, $z_{\rm max}$, for hadron boost $P_3=6\pi/L$.

Right panel: the dependence on the hadron boost, for $P_3 = 2\pi/L, 4\pi/L, 6\pi/L$ and $z_{\text{max}}/a = 10$.

Figure 5: Comparison between the $\overline{d}(x) - \overline{u}(x)$ asymmetry for the proton (yellow) and Δ^+ baryon (green), obtained for momentum boost $P_3 = 6\pi/L$.

Summary and Outlook

- We performed a first lattice QCD calculation of the unpolarized isovector PDF of the Δ^+ baryon using LaMET.
- Demonstrate the feasibility of extracting the PDFs of the Δ^+ with high statistical accuracy, while the computational cost remains within reach
- Challenge in the future: concerning volume and cutoff effects the investigation of other systematic uncertainties, such as excited states effects

Thank you!