Complex Langevin analysis of four-dimensional SU(2) gauge theory with a theta term

Akira Matsumoto¹, Kohta Hatakeyama², Mitsuaki Hirasawa¹, Masazumi Honda³, Yuta Ito⁴, Jun Nishimura¹², Atis Yosprakob¹

SOKENDAI¹, KEK², YITP³, Tokuyama College⁴

@ APLAT 2020 (online)
August 5, 2020

Gauge theory with a θ term

 $\not \simeq \theta$ term: topological property of the gauge theory, nonperturbative

$$S_{\theta} = -i\theta Q = -\frac{i\theta}{32\pi^2} \int d^4x \epsilon_{\mu\nu\rho\sigma} \text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right]$$

• strong CP problem of QCD The experimental bound of θ is extremely small: $|\theta| < 10^{-10}$ \rightarrow no reason for it theoretically

• phase structure of 4D SU(N) YM around $\theta = \pi$ interesting prediction by the 't Hooft anomaly matching

Phase structure at $\theta = \pi$

- ☆ 't Hooft anomaly matching of 4D SU(2) YM
- \rightarrow constrain the phase structure at $\theta = \pi$

mixed 't Hooft anomaly between CP symmetry & Z_2 1-form center symmetry at $\theta=\pi$

- SSB of CP
- SSB of Z₂⁽¹⁾
- gapless
- topological QFT

[D. Gaiotto, A. Kapustin, Z. Komargodski, N. Seiberg (2017)]

 $^{\uparrow}$ anomaly matching $\rightarrow T_{dec} \leq T_{CP}$

• example of possible (θ , T) phase diagram

holography for large N supports [F. Bigazzi, A. L. Cotrone, R. Sisca (2015)]

soft SUSY breaking of SYM supports

[S. Chen, K. Fukushima, H. Nishimura, Y. Tanizaki (2020)]

Numerical study of the θ term

- \Leftrightarrow Monte Carlo simulation of the lattice gauge theory with a θ term
- θ term is purely imaginary \rightarrow the action "S" is complex
- impossible to interpret Boltzmann weight "e-S" as a probability
 - → sign problem
- ullet It arises in various cases, not only the ullet term
 - finite density QCD, chiral fermion, real time dynamics, ...
- Many approaches
 - Lefschetz thimble, density of states, tensor renormalization group, ...
 - this work → complex Langevin method

Complex Langevin method

complex Langevin method (CLM) [G. Parisi (1983)] [J. R. Klauder (1983)]

- Langevin equation: fictitious time evolution of dynamical variables
- real variable → complex variable

$$\frac{dz\left(t\right)}{dt} = \frac{\partial S\left(t\right)}{\partial z} + \eta\left(t\right) \qquad x \longmapsto z = x + iy$$
 drift term Gaussian noise

- do not use "probability" → sign problem
- condition required to be satisfied

The distribution of the drift term falls off exponentially or faster.

4D SU(2) gauge theory with a theta term

- simple example of a gauge theory with a θ term in 4D
- nevertheless it has a nontrivial phase structure at $\theta = \pi$

$$S = S_g + S_{\theta}$$

$$S_g = \frac{1}{2a^2} \int d^4x \operatorname{Tr} \left[F_{\mu\nu} F_{\mu\nu} \right] \qquad S_{\theta} = -i\theta Q$$

topological charge

$$Q = \frac{1}{32\pi^2} \int d^4x \epsilon_{\mu\nu\rho\sigma} \text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right]$$

integer value on a compact manifold

Lattice regularization

kinetic term: standard Wilson action

$$S_{\beta} = -rac{eta}{4} \sum_{n} \sum_{\mu
eq
u} {
m Tr} \left[P_n^{\mu
u}
ight] \qquad \qquad P_n^{\mu
u} : {
m plaquette}$$

• θ term: clover leaf (symmetrized "figure 8")

[P. Di Vecchia, K. Fabricius, G. C. Rossi, G. Veneziano (1981)]

$$Q_{\text{clov}} = -\frac{1}{32\pi^2} \sum_{n} \frac{1}{16} \sum_{\mu,\nu,\rho,\sigma=1}^{4} \epsilon_{\mu\nu\rho\sigma} \text{Tr} \left[\bar{P}_{n}^{\mu\nu} \bar{P}_{n}^{\rho\sigma} \right]$$

$$\bar{P}_n^{\mu\nu} = P_n^{\mu\nu} - P_n^{-\mu\nu} - P_n^{\mu-\nu} + P_n^{-\mu-\nu}$$
 : clover leaf

Application of CLM

• discretized complex Langevin equation for the link variable $U_{n,\mu}$

$$U_{n,\mu}\left(t+\epsilon\right) = U_{n,\mu}\left(t\right) \exp\left(-i\epsilon D_{n,\mu}S\left(t\right) + i\sqrt{\epsilon}\eta_{n,\mu}\left(t\right)\right)$$

$$U_{n,\mu} \in \mathrm{SL}(2,\mathbb{C})$$
drift term

• gauge group is extended: $\mathrm{SU}(2) o \mathrm{SL}(2,\mathbb{C})$

$$U_{n,\mu}^{\dagger} \to U_{n,\mu}^{-1}$$

- drift term and observables have to respect holomorphicity
- control the non-unitarity by gauge cooling
 - gauge transformation to keep the link variable close to unitary
 - not affect gauge invariant observables

[K. Nagata, J. Nishimura, S. Shimasaki (2016)]

Validity test of CLM

 The condition for the correct convergence is satisfied without topology freezing!

 \Leftrightarrow different from 2D U(1) gauge theory

Observable

☆ topological charge

$$\langle Q \rangle = -i \frac{1}{Z} \frac{\partial Z}{\partial \theta}$$

• linear dependence on $\, heta$

 2π -periodicity is absent

Q_{clov} is not an integer due to short-range fluctuation

Strategy to recover "topology on the lattice"

- gradient flow / cooling
 - \rightarrow may not be justified for CLM ($\theta \neq 0$)

[L. Bongiovanni, G. Aarts, E. Seiler, D. Sexty (2014)]

- approach the continuum limit (increase V and β)
 - \rightarrow We increased V to 32⁴ but Q_{clov} is still not close to an integer.

- improve the action by introducing 1×2 and 2×1 Wilson loops
 - ☆ ongoing work

[Y. Iwasaki (1983)] [P. Weisz (1983)]

Summary

- The recent work on 't Hooft anomaly matching for 4D SU(2) YM predicted a nontrivial phase structure at $\theta = \pi$.
- We use the complex Langevin method to simulate the theory with the θ term, avoiding the sign problem.
- CLM for 4D SU(2) on the torus works without topology freezing unlike CLM for 2D U(1).
- However, further improvement is necessary to recover the topological property of the θ term on the lattice.

Future prospect

- We are now trying to improve the action by introducing rectangular Wilson loops.
- The 2π -periodicity of θ will be recovered if the topological charge close to an integer.
 - → However, it is possible that CLM does not work in that case.
- We expect that introducing a puncture makes the convergence of CLM better.

Thank you!

Approach to complex action systems

- > Reweighting method
 - treat the phase of e-S as an observable
 - does not work if the phase oscillates rapidly
- >Lefschetz thimble method
 - reduce the phase oscillation by deforming the integral path from the real axis to the complex plane
- ➤ Complex Langevin method
 - low computational cost
 - has to meet a condition to justify the result
- ➤ Tensor renormalization group, Density of state, ...