Bottomonium resonances with $\mathrm{I}=0$ from lattice QCD static potentials

${ }^{(2)}$ Lasse Mueller, ${ }^{(1)}$ Pedro Bicudo, ${ }^{(1)}$ Nuno Cardoso, ${ }^{(2)}$ Marc Wagner

August 4, 2020
${ }^{(2)}$ Goethe-Universität Frankfurt am Main

Motivation

Study heavy-heavy-light-light tetraquarks with lattice QCD using the Born Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential

Motivation

Study heavy-heavy-light-light tetraquarks with lattice QCD using the Born Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
\rightarrow successfully applied to investigate resonances of $\bar{b} \bar{b} u d$-systems
[P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, and M. Wagner, Phys. Rev. D 96, 054510 (2017), arXiv:1704.02383 [hep-lat]]

Motivation

Study heavy-heavy-light-light tetraquarks with lattice QCD using the Born Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
\rightarrow successfully applied to investigate resonances of $\bar{b} \bar{b} u d$-systems
[P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, and M. Wagner, Phys. Rev. D 96, 054510 (2017), arXiv:1704.02383 [hep-lat]]
\rightarrow We consider $\bar{b} b \bar{q} q$
- more complicated because of additional decay channels
- there are experimental results to compare with

Motivation

Study heavy-heavy-light-light tetraquarks with lattice QCD using the Born Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
\rightarrow successfully applied to investigate resonances of $\bar{b} \bar{b} u d$-systems
[P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, and M. Wagner, Phys. Rev. D 96, 054510 (2017), arXiv:1704.02383 [hep-lat]]
\rightarrow We consider $\bar{b} b \bar{q} q$
- more complicated because of additional decay channels
- there are experimental results to compare with
\rightarrow We consider $\mathrm{I}=0$ which corresponds to the experimental observed states $\left(\eta_{b}(n S), \chi_{b 0}(n P), \chi_{b 1}(n P), \chi_{b 2}(n P), \Upsilon(n S), \Upsilon(10860), \Upsilon(11020)\right)$

Motivation

Study heavy-heavy-light-light tetraquarks with lattice QCD using the Born Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
\rightarrow successfully applied to investigate resonances of $\bar{b} \bar{b} u d$-systems
[P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, and M. Wagner, Phys. Rev. D 96, 054510 (2017),
arXiv:1704.02383 [hep-lat]]
\rightarrow We consider $\bar{b} b \bar{q} q$
- more complicated because of additional decay channels
- there are experimental results to compare with
\rightarrow We consider $\mathrm{I}=0$ which corresponds to the experimental observed states $\left(\eta_{b}(n S), \chi_{b 0}(n P), \chi_{b 1}(n P), \chi_{b 2}(n P), \Upsilon(n S), \Upsilon(10860), \Upsilon(11020)\right)$
\rightarrow Similar efforts for $\mathrm{I}=1$ corresponding to the Z_{b}-tetraquark ($Z_{b}(10610)$, $Z_{b}(10650)$ by
[S. Prelovsek, H. Bahtiyar, J. Petkovic, Phys. Lett. B 805 (2020) 135467, arXiv:1912.02656 [hep-lat]]

Motivation

Study heavy-heavy-light-light tetraquarks with lattice QCD using the Born Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
\rightarrow successfully applied to investigate resonances of $\bar{b} \bar{b} u d$-systems
[P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, and M. Wagner, Phys. Rev. D 96, 054510 (2017),
arXiv:1704.02383 [hep-lat]]
\rightarrow We consider $\bar{b} b \bar{q} q$
- more complicated because of additional decay channels
- there are experimental results to compare with
\rightarrow We consider $\mathrm{I}=0$ which corresponds to the experimental observed states $\left(\eta_{b}(n S), \chi_{b 0}(n P), \chi_{b 1}(n P), \chi_{b 2}(n P), \Upsilon(n S), \Upsilon(10860), \Upsilon(11020)\right)$
\rightarrow Similar efforts for $\mathrm{I}=1$ corresponding to the Z_{b}-tetraquark ($Z_{b}(10610)$, $Z_{b}(10650)$ by
[S. Prelovsek, H. Bahtiyar, J. Petkovic, Phys. Lett. B 805 (2020) 135467, arXiv:1912.02656 [hep-lat]]
\rightarrow Extension of work already published recently
[P. Bicudo, M. Cardoso, N. Cardoso, M. Wagner, Phys. Rev. D 101, 034503 (2020), arXiv: 1910.04827
[hep-lat]]

Quantum numbers

Consider two channels:

- Quarkonium channel $\bar{Q} Q$
- Heavy-light meson-meson channel, $\bar{M} M$ with $M=\bar{Q} q$

Quantum numbers

- $J^{P C}$: total angular momentum, parity and charge conjugation of the respective system.
- $S_{Q / q}^{P C}$: spin of $\bar{Q} Q / \bar{q} q$ and corresponding parity and charge conjugation.
- $\tilde{\jmath}^{P C}$: total angular momentum excluding the heavy $\bar{Q} Q$ - spins and corresponding parity and charge conjugation. (for Quarkonium $\tilde{\jmath}^{P C}=L^{P C}$).

Assumptions and symmetries

- Heavy quark spins are conserved quantities
\rightarrow represented by a scalar wave function $\psi_{\bar{Q} Q}(\mathbf{r})$
- Only considering the lightest decay channel which corresponds to two parity negative mesons
- $\bar{Q} Q$ state with angular momentum $L_{\bar{Q} Q}$ can only decay into a $\bar{M} M$ state with $S_{q}^{P C}=1^{--}$and $L_{\bar{M} M}=L_{\bar{Q} Q} \pm 1$
\rightarrow represented by a 3 -component wavefunction $\vec{\psi}_{\bar{M} M}(\mathbf{r})$

Coupled channel Schroedinger equation

\Rightarrow The wave function of the SE has 4-components $\psi(\mathbf{r})=\left(\psi_{\bar{Q} Q}(\mathbf{r}), \vec{\psi}_{\bar{M} M}(\mathbf{r})\right)$
Resulting Schroedinger equation

$$
\begin{equation*}
\left(-\frac{1}{2} \mu^{-1}\left(\partial_{r}^{2}+\frac{2}{r} \partial_{r}-\frac{\mathbf{L}^{2}}{r^{2}}\right)+V(\mathbf{r})+2 m_{M}-E\right) \psi(\mathbf{r})=0 \tag{1}
\end{equation*}
$$

where $\mu^{-1}=\operatorname{diag}\left(1 / \mu_{Q}, 1 / \mu_{M}, 1 / \mu_{M}, 1 / \mu_{M}\right)$ and

$$
V(\mathbf{r})=\left(\begin{array}{cc}
V_{\bar{Q} Q}(r) & V_{\text {mix }}(r)\left(1 \otimes \mathbf{e}_{r}\right) \tag{2}\\
V_{\text {mix }}(r)\left(\mathbf{e}_{r} \otimes 1\right) & V_{\bar{M} M, \|}(r)\left(\mathbf{e}_{r} \otimes \mathbf{e}_{r}\right)+V_{\bar{M} M, \perp}(r)\left(1-\mathbf{e}_{r} \otimes \mathbf{e}_{r}\right)
\end{array}\right)
$$

$V_{\bar{Q} Q}(r), V_{\text {mix }}, V_{\bar{M} M, \|}$ and $V_{\bar{M} M, \perp}$ can be related to lattice results for static potentials from QCD.

Static potentials from lattice QCD

Treat heavy quarks as static quarks with frozen positions at $\mathbf{0}$ and \mathbf{r}.
Lattice computation of string breaking with optimized operators:
[G. S. Bali, H. Neff, T. Duessel, T. Lippert, and K. Schilling (SESAM), Phys. Rev. D 71, 114513 (2005), arXiv:hep-lat/0505012 [hep-lat]], [J. Bulava, B. Hörz, F. Knechtli, V. Koch, G. Moir, C. Morningstar, and M. Peardon, Phys. Lett. B 793,493 (2019), arXiv:1902.04006 [hep-lat]]

$$
\begin{gather*}
C(t)=\left(\begin{array}{cc}
\left\langle\mathcal{O}_{Q \bar{Q}} \mid \mathcal{O}_{Q \bar{Q}}\right\rangle & \left\langle\mathcal{O}_{Q \bar{Q}} \mid \mathcal{O}_{M \bar{M}}\right\rangle \\
\left\langle\mathcal{O}_{M \bar{M}} \mid \mathcal{O}_{Q \bar{Q}}\right\rangle & \left\langle\mathcal{O}_{M \bar{M}} \mid \mathcal{O}_{M \bar{M}}\right\rangle
\end{array}\right) \tag{3}\\
\left.\mathcal{O}_{Q \bar{Q}}=\left(\Gamma_{Q}\right)_{A B} \quad\left(\begin{array}{l}
\bar{Q}_{A}(\mathbf{0})
\end{array}\right) U(\mathbf{0} ; \mathbf{r}) Q_{B}(\mathbf{r})\right) \tag{4}\\
\mathcal{O}_{M \bar{M}}=\left(\Gamma_{Q}\right)_{A B}\left(\Gamma_{q}\right)_{C D} \quad\left(\bar{Q}_{A}(\mathbf{0}) u_{D}(\mathbf{0}) \bar{u}_{C}(\mathbf{r}) Q_{B}(\mathbf{r})+(u \rightarrow d)\right) \tag{5}\\
\left\langle\mathcal{O}_{Q \bar{Q}}\right| \mathcal{O}_{Q \bar{Q}\rangle_{U}} \propto\left\langle\operatorname{tr}\left(V_{t}^{\dagger}(\mathbf{r}, \mathbf{0}) U_{\mathbf{r}}(t, 0) V_{0}(\mathbf{r}, \mathbf{0}) U_{0}^{\dagger}(t, 0)\right)\right\rangle_{U} \\
\left\langle\mathcal{O}_{Q \bar{Q}} \mid \mathcal{O}_{M \bar{M}}\right\rangle_{U} \propto\left\langle\operatorname{tr}\left(\Gamma_{Q} M_{(\mathbf{0}, t) ;(\mathbf{r}, t)}^{-1} U_{\mathbf{r}}(t, 0) V_{0}(\mathbf{r}, \mathbf{0}) U_{0}^{\dagger}(t, 0)\right)\right\rangle_{U} \tag{6}
\end{gather*}
$$

$C(t)=\left(\begin{array}{cc}\square & \sqrt{2} \square \\ \sqrt{2} \square & -2 \square \square+\lfloor \} \xi\}\end{array}\right)$

- gauge transporter
m light u and d quark propagators Talk by Marco Catillo on Thu. 16:20-16:40 "From QCD string breaking to quarkonium spectrum"

Relating $\mathbf{V}(r)$ to static potentials from lattice QCD

From $C(t)$ the potentials can be extracted in the limit of large Euclidean time separations:

$$
\begin{equation*}
[C(t)]_{i j} \propto \sum_{k} a_{k}(r) \mathrm{e}^{-V_{k}(r) t} \quad \text { for } \quad t \rightarrow \infty \tag{8}
\end{equation*}
$$

One can derive a relation between these $V_{k}(r)$ and $V_{\bar{Q} Q}(r), V_{m i x}(r)$ and $V_{\bar{M} M}(r)$.

$$
\begin{aligned}
V_{\bar{Q} Q}(r) & =\cos ^{2}(\theta(r)) V_{0}^{\Sigma_{g}^{+}}(r)+\sin ^{2}(\theta(r)) V_{1}^{\Sigma_{g}^{+}}(r) \\
V_{\bar{M} M, \|}(r) & =\sin ^{2}(\theta(r)) V_{0}^{\Sigma_{g}^{+}}(r)+\cos ^{2}(\theta(r)) V_{1}^{\Sigma_{g}^{+}}(r) \\
V_{\text {mix }}(r) & =\cos (\theta(r)) \sin (\theta(r))\left(V_{0}^{\Sigma_{g}^{+}}(r)+V_{1}^{\Sigma_{g}^{+}}(r)\right) \\
V_{\bar{M} M, \perp}(r) & =V^{\Pi_{g}^{+}}(r)=0
\end{aligned}
$$

where $V_{0}^{\Sigma_{g}^{+}}(r)$ denotes the ground state potential and $V_{1}^{\Sigma_{g}^{+}}(r)$ its first excitation. We use existing results from
[G. S. Bali, H. Neff, T. Duessel, T. Lippert, and K. Schilling (SESAM), Phys. Rev. D 71, 114513 (2005), arXiv:hep-lat/0505012 [hep-lat]]

Coupled channel Schroedinger equation for resonances

We expand $\psi_{\bar{Q} Q}(\mathbf{r})$ in terms of \tilde{J} eigenfunctions and project the SE to definite angular momentum. For $\tilde{J}=0$ we receive two coupled equations

$$
\begin{equation*}
\left(\mathcal{H}_{\tilde{j}}+\left(2 m_{M}-E\right) \mathbb{1}_{3 \times 3}\right)\binom{u_{0,0}(r)}{\chi_{1 \rightarrow 0,0}(r)}=-\binom{V_{\text {mix }}(r)}{V_{\bar{M} M, \| \mid}(r)} k r j_{1}(k r) \tag{9}
\end{equation*}
$$

and for $\tilde{\jmath}>0$ we receive two sets of three coupled equations

$$
\begin{align*}
\left(\mathcal{H}_{\tilde{\jmath}}+\left(2 m_{M}-E\right) \mathbb{1}_{3 \times 3}\right)\left(\begin{array}{c}
u_{\tilde{J}, \tilde{J}_{z}}(r) \\
\chi_{\tilde{\jmath}-1 \rightarrow \tilde{J_{z}}}(r) \\
\chi_{\tilde{\jmath}+1 \rightarrow \tilde{J_{z}}}(r)
\end{array}\right) & =-\mathbf{V}_{\tilde{\jmath}-1 \rightarrow \tilde{\jmath}}(r) k r \tilde{j}_{\tilde{\jmath}-1}(k r) \tag{10}\\
& =-\mathbf{V}_{\tilde{\jmath}+1 \rightarrow \tilde{\jmath}}(r) k r \tilde{j}_{\tilde{\jmath}+1}(k r) \tag{11}
\end{align*}
$$

to be solved numerically with boundary conditions

$$
\begin{equation*}
u_{j, \tilde{J}_{z}}(r)=0 \quad \text { and } \quad \chi_{L \rightarrow \tilde{J}, \tilde{J}_{z}}(r)=i t_{L \rightarrow \tilde{J}, \tilde{J}_{z}} k r h_{L}^{(1)}(k r) \quad \text { for } \quad r \rightarrow \infty \tag{12}
\end{equation*}
$$

This will yield the t-matrix and s-matrix for $\tilde{J}>0$

$$
t_{\tilde{\jmath}, \tilde{J}_{z}}=\left(\begin{array}{cc}
t_{\tilde{J}-1 \rightarrow \rightarrow \tilde{J}, \tilde{J}_{z}}^{\tilde{J}-1} & t_{\tilde{\jmath}}^{\tilde{J}+1}+\tilde{\jmath}, \tilde{J}_{z} \tag{13}\\
t_{\tilde{J}+1 \rightarrow \tilde{J}, \tilde{J}_{z}}^{\tilde{J}} & t_{\tilde{J}+1 \rightarrow+, \tilde{J}, \tilde{J}_{z}}^{\tilde{J}+1}
\end{array}\right), \quad s_{\tilde{\jmath}, \tilde{J}_{z}}=1+2 i t_{\tilde{\jmath}, \tilde{J}_{z}}
$$

Scattering amplitude and phase shifts

Solved SE for $\tilde{J} \leq 3$ using two independent methods:

- Discretization of spacetime rewriting the SE as a system of linear equations $M(E) \mathbf{x}=\mathbf{b}$, solved by Matrix inversion
- 4th order Runge-Kutta algorithm

Propagating the errors of the lattice data by resampling and computing the 16th and 84th percentile.
scattering phase:

$$
\mathrm{e}^{2 i \delta_{L \rightarrow \tilde{J}, \tilde{J}_{z}}}=1+2 i t_{L \rightarrow \tilde{J}, \tilde{J}_{z}}
$$

$$
\mathrm{e}^{2 i \delta_{\tilde{J}, \tilde{J}_{z} ; \text { total }}=\operatorname{det}\left(s_{\jmath}, \tilde{J}_{z}\right)}
$$

$\tilde{j} P C=1^{--}$
$\tilde{j} P C=2^{++}$
$\tilde{j}^{P C}=3^{--}$
7

Scattering amplitude and phase shifts

Solved SE for $\tilde{J} \leq 3$ using two independent methods:

- Discretization of spacetime rewriting the SE as a system of linear equations $M(E) \mathbf{x}=\mathbf{b}$, solved by Matrix inversion
- 4th order Runge-Kutta algorithm

Propagating the errors of the lattice data by resampling and computing the 16th and 84th percentile.

$$
\text { scattering phase: } \quad \mathrm{e}^{2 i \delta_{L \rightarrow \tilde{J}, \tilde{J}_{z}}}=1+2 i t_{L \rightarrow \tilde{J}, \tilde{J}_{z}} \quad \mathrm{e}^{2 i \delta_{J}^{J}, \tilde{J}_{z} ; \text { total }}=\operatorname{det}\left(s_{\jmath}, \tilde{J}_{z}\right)
$$

Polepositions in the complex plane

- Analytic continuation of our scattering problem to the complex plane
- Poles found using a Newton-Raphson shooting algorithm.
- Pole positions are related to masses and decay width via

$$
m=\operatorname{Re}(E) \quad \text { and } \quad \Gamma=-2 \operatorname{Im}(E)
$$

Comparison to the experiment

from poles of $t_{\bar{J}_{,}, \bar{J}_{z}}$
from experiment

$\tilde{J}^{P C}$	n	$\operatorname{Re}(\mathrm{E})[\mathrm{GeV}]$	$\operatorname{Im}(\mathrm{E})[\mathrm{MeV}]$	name	m [GeV]	$\Gamma[\mathrm{MeV}]$	$I^{G}\left(J^{P C}\right)$
0^{++}	1	9.563_{-17}^{+11}	0	$\eta_{b}(1 S)$	9.399(2)	10(5)	$0^{+}\left(0^{+-}\right)$
				$\Upsilon_{b}(1 S)$	$9.460(0)$	≈ 0	$0^{-}\left(1^{--}\right)$
	2	10.018_{-10}^{+8}	0	$\eta_{b}(2 S)_{\text {belle }}$	$9.999(6)$	-	$0^{+}\left(0^{+-}\right)$
				$\Upsilon(2 S)$	10.023(0)	≈ 0	$0^{-}\left(1^{--}\right)$
	3	10.340_{-9}^{+7}	0	$\Upsilon(3 S)$	10.355(1)	≈ 0	$0^{-}\left(1^{--}\right)$
	4	10.603_{-6}^{+5}	0	$\Upsilon(4 S)$	10.579(1)	21(3)	$0^{-}\left(1^{--}\right)$
	5	10.774_{-4}^{+4}	$-49.3{ }_{-4.6}^{+3.0}$	$\Upsilon(10750)_{\text {BELLE II }}$	10.753(7)	$36(22)$	$0^{-}\left(1^{--}\right)$
	6	10.895_{-10}^{+7}	$-11.1_{-3.6}^{+2.4}$	$\Upsilon(10860)$	10.890(3)	$51(7)$	$0^{-}\left(1^{--}\right)$
	7	11.120_{-18}^{+13}	$-0.0_{-0.2}^{+0.0}$	$\Upsilon(11020)$	10.993(1)	49(15)	$0^{-}\left(1^{--}\right)$
1^{--}	1	9.882_{-4}^{+3}	0	$\chi_{60}(1 P)$	9.859(1)	-	$0^{+}\left(0^{++}\right)$
				$h_{b}(1 P)$	9.890 (1)	-	$?^{?}\left(1^{+-}\right)$
				$\chi_{b 1}(1 P)$	9.893(1)	-	$0^{+}\left(1^{++}\right)$
				$\chi_{b 2}(1 P)$	9.912(1)	-	$0^{+}\left(2^{++}\right)$
	2	10.228_{-3}^{+3}	0	$\chi_{b 0}(2 P)$	10.233(1)	-	$0^{+}\left(0^{++}\right)$
				$\chi_{b 1}(2 P)$	10.255(1)	-	$0^{+}\left(1^{++}\right)$
				$h_{b}(2 P)_{\text {belle }}$	10.260(2)	-	$?^{?}\left(1^{+-}\right)$
				$\chi_{b 2}(2 P)$	$10.267(1)$	-	$0^{+}\left(2^{++}\right)$
	3	10.508_{-3}^{+3}	- ${ }^{0}-$	$\chi_{b 1}(3 P)$	10.512(2)	-	$0^{+}\left(0^{++}\right)$
	4	$\overline{10.786}{ }_{-3}^{+2}$	$-\overline{8} . \overline{7}_{-0.7}^{+\overline{8}} \overline{\mathbf{S}}^{-}$				
	5	11.019_{-9}^{+6}	$-9.3{ }_{-0.6}^{+0.8}$				
	6	11.255_{-20}^{+13}	$-7.6_{-0.4}^{+0.5}$				
2^{++}	1	10.107_{-3}^{+3}	0	$\Upsilon(1 D)$	10.164(2)	-	$0^{-}\left(2^{--}\right)$
	2	10.400_{-3}^{+3}	0				
	$\overline{3}$	$\overline{10.635} 5_{-1}^{+2}$	$-\overline{5} . \overline{8}_{-2.6}^{+\overline{5}}$				
	4	10.911_{-6}^{+4}	$-16.8_{-0.9}^{+1.7}$				
	5	11.153_{-15}^{+9}	$-7.2_{-0.6}^{+0.6}$				
3^{--}	1	10.296_{-3}^{+2}	0				
	2	10.557_{-3}^{+4}	0				
	3	$\overline{10.818} 8_{-3}^{+2}$	$-15.8_{-1.6}^{+2.4}$				
	4	11.054_{-9}^{+6}	$-4.4{ }_{-0.5}^{+0.7}$				

Comparison to the experiment

from poles of $t_{\bar{J}_{,}, \bar{J}_{z}}$
from experiment

Conclusion and Outlook

We

- obtain resonances that match the experimentally found states $\Upsilon(10750)_{\text {BELLE II }}$ and $\Upsilon(10860)$.
- find indications that $\Upsilon(11020)$ might be an D-wave state
- were able to make predictions for resonances with $\tilde{J}>0$ which may be found in the future by the experiment

Outlook:

- Aim: Reduce systematic errors as much as possible \rightarrow next step: include heavy spin effects to reduce the systematic error
- include decay channels with to a negative parity and a positive parity heavy-light meson
\rightarrow more realistic predictions up to around 11.5 GeV
- perform a dedicated lattice QCD computation of the static potentials

