Bottomonium resonances with I=0 from lattice QCD static potentials

(2) Lasse Mueller, (1) Pedro Bicudo, (1) Nuno Cardoso, (2) Marc Wagner

August 4, 2020

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential

Study heavy-light-light tetraquarks with lattice QCD using the Born Oppenheimer approximation

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
- ightarrow successfully applied to investigate resonances of $\bar{b}\bar{b}ud$ -systems

[P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, and M. Wagner, Phys. Rev. D 96, 054510 (2017), arXiv:1704.02383 [hep-lat]]

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
- → successfully applied to investigate resonances of \$\overline{b}\overline{b}ud\$-systems
 [P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, and M. Wagner, Phys. Rev. D 96, 054510 (2017), arXiv:1704.02383 [hep-lat]]
- \rightarrow We consider $\bar{b}b\bar{q}q$
 - more complicated because of additional decay channels
 - there are experimental results to compare with

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
- → successfully applied to investigate resonances of \$\overline{b}\overline{b}ud\$-systems
 [P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, and M. Wagner, Phys. Rev. D 96, 054510 (2017), arXiv:1704.02383 [hep-lat]]
- \rightarrow We consider $\bar{b}b\bar{q}q$
 - more complicated because of additional decay channels
 - there are experimental results to compare with
- \rightarrow We consider I=0 which corresponds to the experimental observed states $(\eta_b(nS), \chi_{b0}(nP), \chi_{b1}(nP), \chi_{b2}(nP), \Upsilon(nS), \Upsilon(10860), \Upsilon(11020))$

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
- → successfully applied to investigate resonances of \$\overline{b}\overline{b}ud\$-systems
 [P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, and M. Wagner, Phys. Rev. D 96, 054510 (2017), arXiv:1704.02383 [hep-lat]]
- \rightarrow We consider $\bar{b}b\bar{q}q$
 - more complicated because of additional decay channels
 - there are experimental results to compare with
- \rightarrow We consider I=0 which corresponds to the experimental observed states $(\eta_b(nS), \chi_{b0}(nP), \chi_{b1}(nP), \chi_{b2}(nP), \Upsilon(nS), \Upsilon(10860), \Upsilon(11020))$
- \rightarrow Similar efforts for I=1 corresponding to the Z_b -tetraquark ($Z_b(10610)$, $Z_b(10650)$ by
 - [S. Prelovsek, H. Bahtiyar, J. Petkovic, Phys. Lett. B 805 (2020) 135467, arXiv:1912.02656 [hep-lat]]

- heavy quarks are regarded as static color charges
- potential in presence of two light quarks is computed using Lattice QCD and utilized as an effective potential
- \rightarrow successfully applied to investigate resonances of $\bar{b}\bar{b}ud$ -systems [P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, and M. Wagner, Phys. Rev. D 96, 054510 (2017), arXiv:1704.02383 [hep-lat]]
- \rightarrow We consider $\bar{b}b\bar{q}q$
 - more complicated because of additional decay channels
 - there are experimental results to compare with
- \rightarrow We consider I=0 which corresponds to the experimental observed states $(\eta_b(nS), \chi_{b0}(nP), \chi_{b1}(nP), \chi_{b2}(nP), \Upsilon(nS), \Upsilon(10860), \Upsilon(11020))$
- \rightarrow Similar efforts for I=1 corresponding to the Z_b -tetraquark (Z_b (10610), Z_b (10650) by
 - [S. Prelovsek, H. Bahtiyar, J. Petkovic, Phys. Lett. B 805 (2020) 135467, arXiv:1912.02656 [hep-lat]]
- → Extension of work already published recently [P. Bicudo, M. Cardoso, N. Cardoso, M. Wagner, Phys. Rev. D 101, 034503 (2020), arXiv: 1910.04827 [hep-lat]]

Quantum numbers

Consider two channels:

- Quarkonium channel $\bar{Q}Q$
- ullet Heavy-light meson-meson channel, $ar{M}M$ with $M=ar{Q}q$

Quantum numbers

- J^{PC}: total angular momentum, parity and charge conjugation of the respective system.
- $S_{Q/q}^{PC}$: spin of $\bar{Q}Q/\bar{q}q$ and corresponding parity and charge conjugation.
- \tilde{J}^{PC} : total angular momentum excluding the heavy $\bar{Q}Q$ spins and corresponding parity and charge conjugation. (for Quarkonium $\tilde{J}^{PC}=L^{PC}$).

Assumptions and symmetries

- Heavy quark spins are conserved quantities
 - \rightarrow represented by a scalar wave function $\psi_{\bar{Q}Q}({\bf r})$
- Only considering the lightest decay channel which corresponds to two parity negative mesons
- $ar{Q}Q$ state with angular momentum $L_{ar{Q}Q}$ can only decay into a $ar{M}M$ state with $S_q^{PC}=1^{--}$ and $L_{ar{M}M}=L_{ar{Q}O}\pm 1$
 - ightarrow represented by a 3-component wavefunction $ec{\psi}_{ar{M}M}(\mathbf{r})$

Coupled channel Schroedinger equation

 \Rightarrow The wave function of the SE has 4-components $\psi({\bf r}) = \left(\psi_{\bar{Q}Q}({\bf r}), \vec{\psi}_{\bar{M}M}({\bf r})\right)$

Resulting Schroedinger equation

$$\left(-\frac{1}{2}\mu^{-1}\left(\partial_r^2 + \frac{2}{r}\partial_r - \frac{\mathbf{L}^2}{r^2}\right) + V(\mathbf{r}) + 2m_M - E\right)\psi(\mathbf{r}) = 0$$
 (1)

where $\mu^{-1} = \text{diag}(1/\mu_Q, 1/\mu_M, 1/\mu_M, 1/\mu_M)$ and

$$V(\mathbf{r}) = \begin{pmatrix} V_{\bar{Q}Q}(r) & V_{\min}(r) (1 \otimes \mathbf{e}_r) \\ V_{\min}(r) (\mathbf{e}_r \otimes 1) & V_{\bar{M}M,\parallel}(r) (\mathbf{e}_r \otimes \mathbf{e}_r) + V_{\bar{M}M,\perp}(r) (1 - \mathbf{e}_r \otimes \mathbf{e}_r) \end{pmatrix}$$
(2)

 $V_{ar QQ}(r),~V_{
m mix},~V_{ar MM,\parallel}$ and $V_{ar MM,\perp}$ can be related to lattice results for static potentials from QCD.

Static potentials from lattice QCD

Treat heavy quarks as static quarks with frozen positions at $\bf 0$ and $\bf r$. Lattice computation of string breaking with optimized operators:

[G. S. Bali, H. Neff, T. Duessel, T. Lippert, and K. Schilling (SESAM), Phys. Rev. D 71, 114513 (2005),

arXiv:hep-lat/0505012 [hep-lat]], [J. Bulava, B. Hörz, F. Knechtli, V. Koch, G. Moir, C. Morningstar, and M.

Peardon, Phys. Lett. B 793,493 (2019), arXiv:1902.04006 [hep-lat]]

$$C(t) = \begin{pmatrix} \langle \mathcal{O}_{Q\bar{Q}} | \mathcal{O}_{Q\bar{Q}} \rangle & \langle \mathcal{O}_{Q\bar{Q}} | \mathcal{O}_{M\bar{M}} \rangle \\ \langle \mathcal{O}_{M\bar{M}} | \mathcal{O}_{Q\bar{Q}} \rangle & \langle \mathcal{O}_{M\bar{M}} | \mathcal{O}_{M\bar{M}} \rangle \end{pmatrix}$$
(3)

$$\mathcal{O}_{Q\bar{Q}} = (\Gamma_Q)_{AB} \qquad \qquad \left(\bar{Q}_A(\mathbf{0}) \ U(\mathbf{0}; \mathbf{r}) \ Q_B(\mathbf{r})\right) \tag{4}$$

$$\mathcal{O}_{M\bar{M}} = (\Gamma_Q)_{AB}(\Gamma_q)_{CD} \qquad \qquad \left(\bar{Q}_A(\mathbf{0}) \ u_D(\mathbf{0}) \ \bar{u}_C(\mathbf{r}) \ Q_B(\mathbf{r}) + (u \to d)\right) \qquad (5)$$

$$\langle \mathcal{O}_{Q\bar{Q}} | \mathcal{O}_{Q\bar{Q}} \rangle_{U} \propto \left\langle \operatorname{tr} \left(V_{t}^{\dagger}(\mathbf{r}, \mathbf{0}) U_{\mathbf{r}}(t, 0) V_{0}(\mathbf{r}, \mathbf{0}) U_{\mathbf{0}}^{\dagger}(t, 0) \right) \right\rangle_{U}$$
 (6)

$$\langle \mathcal{O}_{Q\bar{Q}} | \mathcal{O}_{M\bar{M}} \rangle_{U} \propto \left\langle \operatorname{tr} \left(\Gamma_{Q} M_{(\mathbf{0},t);(\mathbf{r},t)}^{-1} U_{\mathbf{r}}(t,0) V_{0}(\mathbf{r},\mathbf{0}) U_{\mathbf{0}}^{\dagger}(t,0) \right) \right\rangle_{U}$$
 (7)

$$C(t) = \left(egin{array}{cccc} \sqrt{2} & \sqrt{2} & \\ \sqrt{2} & -2 & + \end{array}
ight)$$

— gauge transporter

 $\sim \sim$ light u and d quark propagators

Talk by Marco Catillo on Thu. 16:20-16:40 "From QCD string breaking to quarkonium spectrum"

Relating V(r) to static potentials from lattice QCD

From C(t) the potentials can be extracted in the limit of large Euclidean time separations:

$$[C(t)]_{ij} \propto \sum_{k} a_k(r) e^{-V_k(r)t}$$
 for $t \to \infty$ (8)

One can derive a relation between these $V_k(r)$ and $V_{\bar{Q}Q}(r)$, $V_{mix}(r)$ and $V_{\bar{M}M}(r)$.

$$\begin{split} V_{\bar{Q}Q}(r) &= \cos^2(\theta(r)) V_0^{\Sigma_g^+}(r) + \sin^2(\theta(r)) V_1^{\Sigma_g^+}(r) \\ V_{\bar{M}M,\parallel}(r) &= \sin^2(\theta(r)) V_0^{\Sigma_g^+}(r) + \cos^2(\theta(r)) V_1^{\Sigma_g^+}(r) \\ V_{\text{mix}}(r) &= \cos(\theta(r)) \sin(\theta(r)) \left(V_0^{\Sigma_g^+}(r) + V_1^{\Sigma_g^+}(r) \right) \\ V_{\bar{M}M,\perp}(r) &= V^{\Pi_g^+}(r) = 0 \end{split}$$

where $V_0^{\Sigma_g^+}(r)$ denotes the ground state potential and $V_1^{\Sigma_g^+}(r)$ its first excitation. We use existing results from

[G. S. Bali, H. Neff, T. Duessel, T. Lippert, and K. Schilling (SESAM), Phys. Rev. D 71, 114513 (2005), arXiv:hep-lat/0505012 [hep-lat]]

Coupled channel Schroedinger equation for resonances

We expand $\psi_{\bar{Q}Q}(\mathbf{r})$ in terms of \tilde{J} eigenfunctions and project the SE to definite angular momentum. For $\tilde{J}=0$ we receive two coupled equations

$$\left(\mathcal{H}_{\tilde{J}} + (2m_M - E) \mathbb{1}_{3\times 3}\right) \left(\begin{array}{c} u_{0,0}(r) \\ \chi_{1\to 0,0}(r) \end{array}\right) = -\left(\begin{array}{c} V_{\text{mix}}(r) \\ V_{\tilde{M}M,\parallel}(r) \end{array}\right) kr j_1(kr) \quad (9)$$

and for $\tilde{J} > 0$ we receive two sets of three coupled equations

$$\left(\mathcal{H}_{\tilde{\jmath}} + (2m_{M} - E) \,\mathbb{1}_{3\times 3}\right) \begin{pmatrix} u_{\tilde{\jmath},\tilde{\jmath}_{z}}(r) \\ \chi_{\tilde{\jmath}-1\to\tilde{\jmath},\tilde{\jmath}_{z}}(r) \\ \chi_{\tilde{\jmath}+1\to\tilde{\jmath},\tilde{\jmath}_{z}}(r) \end{pmatrix} = -\mathbf{V}_{\tilde{\jmath}-1\to\tilde{\jmath}}(r) \, kr \, j_{\tilde{\jmath}-1}(kr) \quad (10)$$

" =
$$-\mathbf{V}_{\tilde{J}+1\to\tilde{J}}(r) kr j_{\tilde{J}+1}(kr)$$
. (11)

to be solved numerically with boundary conditions

$$u_{\tilde{J},\tilde{J}_z}(r) = 0$$
 and $\chi_{L \to \tilde{J},\tilde{J}_z}(r) = it_{L \to \tilde{J},\tilde{J}_z} kr h_L^{(1)}(kr)$ for $r \to \infty$. (12)

This will yield the t-matrix and s-matrix for $\tilde{J}>0$

$$t_{\tilde{\jmath},\tilde{\jmath}_{z}} = \begin{pmatrix} t_{\tilde{\jmath}-1}^{\tilde{\jmath}-1} & t_{\tilde{\jmath}-1\to\tilde{\jmath},\tilde{\jmath}_{z}}^{\tilde{\jmath}+1} & t_{\tilde{\jmath}-1\to\tilde{\jmath},\tilde{\jmath}_{z}}^{\tilde{\jmath}+1} \\ t_{\tilde{\jmath}+1\to\tilde{\jmath},\tilde{\jmath}_{z}}^{\tilde{\jmath}-1} & t_{\tilde{\jmath}+1\to\tilde{\jmath},\tilde{\jmath}_{z}}^{\tilde{\jmath}+1} \end{pmatrix}, \quad s_{\tilde{\jmath},\tilde{\jmath}_{z}} = 1 + 2it_{\tilde{\jmath},\tilde{\jmath}_{z}}$$
(13)

Scattering amplitude and phase shifts

Solved SE for $\tilde{J} \leq 3$ using two independent methods:

- Discretization of spacetime rewriting the SE as a system of linear equations M(E)x = b, solved by Matrix inversion
- 4th order Runge-Kutta algorithm

Propagating the errors of the lattice data by resampling and computing the 16th and 84th percentile.

Scattering amplitude and phase shifts

Solved SE for $\tilde{\it J} \leq 3$ using two independent methods:

- Discretization of spacetime rewriting the SE as a system of linear equations $M(E)\mathbf{x} = \mathbf{b}$, solved by Matrix inversion
- 4th order Runge-Kutta algorithm

Propagating the errors of the lattice data by resampling and computing the 16th and 84th percentile.

Polepositions in the complex plane

- Analytic continuation of our scattering problem to the complex plane
- Poles found using a Newton-Raphson shooting algorithm.
- Pole positions are related to masses and decay width via

$$m=\mathrm{Re}(E)\qquad\text{and}\qquad\Gamma=-2\,\mathrm{Im}(E)$$

Comparison to the experiment

from poles of $t_{\tilde{J},\tilde{J}_z}$				from experiment					
\tilde{J}^{PC}	n	Re(E)[GeV]	Im(E)[MeV]	name	m[GeV]	$\Gamma[\text{MeV}]$	$I^G(J^{PC})$		
0++	1	9.563^{+11}_{-17}	0	$\eta_b(1S)$	9.399(2)	10(5)	0+(0+-)		
				$\Upsilon_b(1S)$	9.460(0)	≈ 0	$0^{-}(1^{})$		
	2	10.018^{+8}_{-10}	0	$\eta_b(2S)_{\text{Belle}}$	9.999(6)	-	$0^{+}(0^{+-})$		
				$\Upsilon(2S)$	10.023(0)	≈ 0	$0^{-}(1^{})$		
	3	10.340^{+7}_{-9}	0	$\Upsilon(3S)$	10.355(1)	≈ 0	$0^{-}(1^{})$		
	4	10.603^{+5}_{-6}	0	$\Upsilon(4S)$	10.579(1)	21(3)	$0^{-}(1^{})$		
	5	10.774^{+4}_{-4}	$-49.3^{+3.0}_{-4.6}$	Υ(10750) _{ВЕССЕ П}	10.753(7)	36(22)	$0^{-}(1^{})$		
	6	10.895^{+7}_{-10}	$-11.1^{+2.4}_{-3.6}$	$\Upsilon(10860)$	10.890(3)	51(7)	$0^{-}(1^{})$		
	7	11.120^{+13}_{-18}	$-0.0^{+0.0}_{-0.2}$	$\Upsilon(11020)$	Υ(11020) 10.993(1)		$0^{-}(1^{})$		
1	1	9.882^{+3}_{-4}	0	$\chi_{b0}(1P)$	9.859(1)	-	$0^{+}(0^{++})$		
				$h_b(1P)$	9.890(1)	-	??(1+-)		
				$\chi_{b1}(1P)$	9.893(1)	-	$0^{+}(1^{++})$		
				$\chi_{b2}(1P)$	9.912(1)	-	$0^{+}(2^{++})$		
	2	10.228^{+3}_{-3}	0	$\chi_{b0}(2P)$	10.233(1)	-	$0^{+}(0^{++})$		
				$\chi_{b1}(2P)$	10.255(1)	-	$0^{+}(1^{++})$		
				$h_b(2P)_{\text{BELLE}}$	10.260(2)	-	??(1+-)		
				$\chi_{b2}(2P)$ 10.267(1		-	$0^{+}(2^{++})$		
	3	10.508^{+3}_{-3}	0	$\chi_{b1}(3P)$	10.512(2)		$0^{+}(0^{++})$		
	4	10.786^{+2}_{-3}	$-8.7^{+0.8}_{-0.7}$						
	5	11.019^{+6}_{-9}	$-9.3^{+0.8}_{-0.6}$						
	6	11.255^{+13}_{-20}	$-7.6^{+0.5}_{-0.4}$						
2++	1	10.107^{+3}_{-3}	0	$\Upsilon(1D)$	10.164(2)	-	$0^{-}(2^{})$		
	2	10.400^{+3}_{-3}	0			l	L		
	3	10.635^{+2}_{-1}	$-5.8^{+1.5}_{-2.6}$						
	4	10.911^{+4}_{-6}	$-16.8^{+1.7}_{-0.9}$						
	5	11.153^{+9}_{-15}	$-7.2^{+0.6}_{-0.6}$						
3	1	10.296^{+2}_{-3}	0						
	2	10.557^{+4}_{-3}	0						
	3	10.818^{+2}_{-3}	$-15.8^{+2.4}_{-1.6}$						
	4	11.054^{+6}_{-9}	$-4.4^{+0.7}_{-0.5}$						

bound states

resonances

Comparison to the experiment

from poles of $t_{\tilde{J},\tilde{J}_z}$				from experiment					
	PC 1		Im(E)[MeV]	name	m[GeV]	$\Gamma[\mathrm{MeV}]$	$I^G(J^{PC})$		
0	++ 1	9.563^{+11}_{-17}	0	$\eta_b(1S)$	9.399(2)	10(5)	$0^{+}(0^{+-})$		
				$\Upsilon_b(1S)$	9.460(0)	≈ 0	$0^{-}(1^{})$		
	2	10.018^{+8}_{-10}	0	$\eta_b(2S)_{\text{Belle}}$	9.999(6)	-	$0^{+}(0^{+-})$		
				$\Upsilon(2S)$	10.023(0)	≈ 0	$0^{-}(1^{})$		
	3		0	$\Upsilon(3S)$	10.355(1)	≈ 0	$0^{-}(1^{})$		
	4	1 201000-6	0	$\Upsilon(4S)$	10.579(1)	21(3)	$0^{-}(1^{})$		
	5		$-49.3^{+3.0}_{-4.6}$	Υ(10750) _{ВЕССЕ П}	10.753(7)	36(22)	$0^{-}(1^{})$		
	6	10.895^{+7}_{-10}	$-11.1^{+2.4}_{-3.6}$	Υ(10860)	10.890(3)	51(7)	$0^{-}(1^{})$		
	7	11.120^{+13}_{-18}	$-0.0^{+0.0}_{-0.2}$	$\Upsilon(11020)$	10.993(1)	49(15)	$0^{-}(1^{})$	\	
1	1	9.882^{+3}_{-4}	0	$\chi_{b0}(1P)$	9.859(1)	-	$0^{+}(0^{++})$		
				$h_b(1P)$	9.890(1)	-	??(1+-)		
				$\chi_{b1}(1P)$	9.893(1)	-	$0^{+}(1^{++})$		
				$\chi_{b2}(1P)$	9.912(1)	-	$0^{+}(2^{++})$,	
	2	10.228^{+3}_{-3}	0	$\chi_{b0}(2P)$	10.233(1)	-	$0^{+}(0^{++})$		
				$\chi_{b1}(2P)$	10.255(1)	-	$0^{+}(1^{++})$		
				$h_b(2P)_{\text{Belle}}$	10.260(2)	-	??(1+-)		
				$\chi_{b2}(2P)$	10.267(1)	-	$0^{+}(2^{++})$		
	3	1	0	$\chi_{b1}(3P)$	10.512(2)	l .	$0^{+}(0^{++})$		
	4		$-8.7^{+0.8}_{-0.7}$						
	5	11.019^{+6}_{-9}	$-9.3^{+0.8}_{-0.6}$						
	6	11.255^{+13}_{-20}	$-7.6^{+0.5}_{-0.4}$,	
2	++ 1	10.107^{+3}_{-3}	0	$\Upsilon(1D)$	10.164(2)	-	$0^{-}(2^{})$	/	
	2		0					/	
1	3	10.635^{+2}_{-1}	$-5.8^{+1.5}_{-2.6}$						
	4	10.911+4	$-16.8^{+1.7}_{-0.9}$					K	
	5	11.153^{+9}_{-15}	$-7.2^{+0.6}_{-0.6}$						
3	1	10.296 ⁺² ₋₃	0						
	2	10.557+4	0						
	3	10.818 ⁺² ₋₃	$-15.8^{+2.4}_{-1.6}$						
	4	11.054+6	$-4.4^{+0.7}_{-0.5}$						

bound states

resonances

Conclusion and Outlook

We

- obtain resonances that match the experimentally found states $\Upsilon(10750)_{\rm BELLE~II}$ and $\Upsilon(10860)$.
- find indications that $\Upsilon(11020)$ might be an D-wave state
- \bullet were able to make predictions for resonances with $\tilde{J}>0$ which may be found in the future by the experiment

Outlook:

- . Aim: Reduce systematic errors as much as possible
 - ightarrow next step: include heavy spin effects to reduce the systematic error
- include decay channels with to a negative parity and a positive parity heavy-light meson
 - ightarrow more realistic predictions up to around 11.5 GeV
- perform a dedicated lattice QCD computation of the static potentials