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Quantum numbers

Consider two channels:

e Quarkonium channel QQ
e Heavy-light meson-meson channel, MM with M = (_?q

Quantum numbers

e JPC : total angular momentum, parity and charge conjugation of the respective
system.

° ngq : spin of (_?Q/?;q and corresponding parity and charge conjugation.

e JPC : total angular momentum excluding the heavy Q@ - spins and

corresponding parity and charge conjugation. (for Quarkonium JPe = e,
Assumptions and symmetries

e Heavy quark spins are conserved quantities
— represented by a scalar wave function 15 (r)

e Only considering the lightest decay channel which corresponds to two parity
negative mesons

e QQ state with angular momentum Lpq can only decay into a MM state with
SPC=1""and Ly, = Lo £1

— represented by a 3-component wavefunction JA—/,M(r)



Coupled channel Schroedinger equation

= The wave function of the SE has 4-components ¢ (r) = (w@Q(r),JA—AM(r))

Resulting Schroedinger equation

(—;w (a% +20, - Lj) + V() + 2mp — E) () = 0 (1)

1

where p~ = diag(1/pq, 1/pm, 1/pm, 1/pm) and

_ Vae(r) Vinix(r) (1 @ e/)
V(r)= ( Vinix(r) (er ® 1) Viggpy () (er ® €r) + Vi (1) (1 —er @ er) > (2)

V@Q(r), Vmix, V/\_/”V’,H and VI\'/IM,L can be related to lattice results for static
potentials from QCD.



Static potentials from lattice QCD

Treat heavy quarks as static quarks with frozen positions at 0 and r.

Lattice computation of string breaking with optimized operators:

[ G. S. Bali, H. Neff, T. Duessel, T. Lippert, and K. Schilling (SESAM), Phys. Rev. D 71, 114513 (2005)
arXiv:hep-lat/0505012 [hep-lat]], [J. Bulava, B. Hérz, F. Knechtli, V. Koch, G. Moir, C. Morningstar, and M.
Peardon, Phys. Lett. B 793,493 (2019), arXiv:1902.04006 [hep-lat]]

C(t)=< EOQO‘OQ@ (OqqlOumm) ) )

MM ‘ OQQ) <OMI\7I|OM/\7/)

Ogo = (TQ)as (Qa(0) U(0;¥) Qs(r)) (4)
Opin = (M@)as(Fq)co (@A(O) up(0) dc(r) Qs(r) + (v — d)) (5)
(00alOga), o (tr (VI (r,0)Ui(t,0)Vo(r, 0) U (¢, 0))> (6)
(O 0alOmin)y <tr (rQM(0 o Ur(£.O) Vo, 0) U (2. o))>U 7)

—— gauge transporter

D V2 m ~~~ light u and d quark propagators
C(t) = Talk by Marco Catillo on Thu. 16:20-16:40 "From QCD
\/E D -2 m+& ﬂ string breaking to quarkonium spectrum"



Relating V(r) to static potentials from lattice QCD

From C(t) the potentials can be extracted in the limit of large Euclidean time
separations:

[C(t)]ijtxz:ak(r)e_vk(r)t for t— 0o (8)
k

One can derive a relation between these Vi(r) and Vo(r), Vimix(r) and Vi, (r).

5 s+ o s+ 0.
Vao(r) = cos*(0(r)) Vg (r) +sin“(6(r)) V£ (r) o
=
s sl <
Vi, (r) = sin®(8(r)) Vg * (r) + cos?((r)) V; * (1) s
' B —~ aVgo(r)
I =k S -04]
Vimix (r) = cos(6(r))sin(6(r)) (Vozg (r)+ Vl):g (r)) $ = @V ()
S o8 ~ aViuia(r)
+ .
Vi, (r) = V% (1) =0 R

o

=iy b . L
where V(¢ (r) denotes the ground state potential and V; # (r) its first excitation.

We use existing results from

[ G. S. Bali, H. Neff, T. Duessel, T. Lippert, and K. Schilling (SESAM), Phys. Rev. D 71, 114513 (2005)
arXiv:hep-lat/0505012 [hep-lat]]



Coupled channel Schroedinger equation for resonances

We expand d’OQ(r) in terms of J eigenfunctions and project the SE to definite
angular momentum. For J = 0 we receive two coupled equations

X1-0,0(r)

(H3+(2mM—E)13x3)< to,0(r) >— —( aa() >krj1(kr) (9)

VMM,|\(r)

and for J > 0 we receive two sets of three coupled equations

(H3+(2mM7E) 13><3) Xjfls e (r) =7VJ_1_>j(r) krjj_l(kr)

7= = Vi 5(r) kr g (kr).
to be solved numerically with boundary conditions
uuz(r) — 0 and XLHJ,jZ(r) = itL—>J,JZ kr h(Ll)(kr) for r — oo.

This will yield the t-matrix and s-matrix for J > 0

t3—1 t3+1
o Bes1n Ho1naa L .
3,3, = -1 I+ s sy, = L4 2ity g,
J+1—7,7, J+1—-3,7,

(10)

(11)

(12)



Scattering amplitude and phase shifts

Solved SE for J < 3 using two independent methods:

e Discretization of spacetime rewriting the SE as a system of linear equations
M(E)x = b, solved by Matrix inversion
e 4th order Runge-Kutta algorithm

Propagating the errors of the lattice data by resampling and computing the 16th and
84th percentile.
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Scattering amplitude and phase shifts

Solved SE for J < 3 using two independent methods:

e Discretization of spacetime rewriting the SE as a system of linear equations
M(E)x = b, solved by Matrix inversion
e 4th order Runge-Kutta algorithm

Propagating the errors of the lattice data by resampling and computing the 16th and
84th percentile.
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Polepositions in the complex plane
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e Analytic continuation of our scattering
problem to the complex plane
e Poles found using a Newton-Raphson
shooting algorithm.
e Pole positions are related to masses and

decay width via

m = Re(E) and = —-2Im(E)
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Comparison to the experimen

from poles of t; ;.

from experiment

JPC  n | Re(E)[GeV] | Im(E)[MeV] name m[GeV] | T[MeV]
ot 1 9.5637 11 0 n(1S) 9.399(2) | 10(5)
T,(18) 9.460(0
2| 10.018%%, 0 (28 )omie | 9.999(6
T(25)
3 T(35)
4 T(45)
B T(10750)nm10m 10
6 T(10860)
7| 1112071 —0.099 T(11020)
1 1| 9882t 0 Xbo(1P) 0F (0t
Iy(1P) 77(1+)
xo1(1P) 0+ (1)
X2(1P) 0+(2+F)
2| 1022843 0 Xvo(2 ) 0t(07)
Xe1 (2P 0t (1)
hy (2P, ).m Le 7'(1+)
X2(2P) 0+(2+F)
,,,,, 8] 105085 | 0 | xaBP) __ [LOK(0*)
4] 10.786%2 —8.743%
5| 1101979 -9.3+3%
6 | 11 255*,; —7.670%
2+t 1| 1010773 0 T(1D) 10.164(2) = 0-(27)
2| 10.400
3| 1063577
4| 1091155 —16.8547
5| 11.153%9; —7.25538
37— 1| 1020672 0
2| 1055755 0
3| 1081872 | 158731
4| 1105475 44107

bound states

resonances
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Conclusion and Outlook

obtain resonances that match the experimentally found states
T(10750)BELLE 11 and T(10860).

find indications that T(11020) might be an D-wave state

were able to make predictions for resonances with J > 0 which may be found in
the future by the experiment

Outlook:

Aim: Reduce systematic errors as much as possible
— next step: include heavy spin effects to reduce the systematic error

include decay channels with to a negative parity and a positive parity heavy-light
meson
— more realistic predictions up to around 11.5 GeV

perform a dedicated lattice QCD computation of the static potentials
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