Studies on meson-baryon
 interactions in the HAL QCD method with all-to-all propagators

Kotaro Murakami (YITP),
Yutaro Akahoshi (YITP), Sinya Aoki (YITP)
for HAL QCD Collaboration

APLAT (Online), August 4, 2020

Contents

- Motivation
- HAL QCD method
- 1 st step: NK interactions
- 2 nd step: $\mathrm{N} \pi$ interactions with Δ sources

Contents

- Motivation

- HAL QCD method

- 1st step: NK interactions
- 2nd step: $\mathrm{N} \pi$ interactions with Δ sources

Motivation

Backgrounds

- Various exotic hadrons have been found from experiments (X, Y, Z, P_{c}, etc.).
- Although there have been lots of theoretical and experimental approaches to explain such hadrons, they are still not understood well.

- On the other hand, QCD may describe all hadrons.

Our ultimate goal: reveal the properties of all hadrons including exotic hadrons from lattice QCD

Motivation

Recent studies on resonances in lattice QCD

meson-meson scatterings \rightarrow mesonic resonances

Finite volume method
well investigated

- ρ [M. Werner et al., 2019]
- σ, f_{0}, f_{2} [R. Briceno et al., 2018]
- κ, K^{*} [G. Rendon et al., 2020]

HAL QCD method
$\mathrm{I}=1$ P-wave $\pi \pi \rightarrow \rho$
(cf. Y. Akahoshi's talk)

meson-baryon scatterings \rightarrow baryonic resonances

Finite volume method
$\mathrm{I}=3 / 2$ P-wave $N \pi \rightarrow \Delta$
[S. Paul et al., 2018]
[C. W. Andersen et al., 2017]

HAL QCD method none

But this method may be efficient for meson-baryon systems!

Motivation

All-to-all propagators in the HAL QCD method

- To investigate meson-baryon scatterings that have resonances, we need all-to-all propagators.
- One-end trick ${ }_{\text {[M. Foster, C. Michael, 1999] }}$
: very efficient for the HAL QCD method with all-to-all propagators.

As a first step $\cdot \cdots$

- S-wave NK scatterings \longleftarrow check the effectiveness of the one-end trick for meson-baryon systems
- I=3/2 P-wave $\mathbf{N} \pi$ scatterings \leftarrow extract Δ resonance

Motivation

Our plan

S-wave NK (LO)

Examinations of the effectiveness of the one-end trick for meson-baryon systems
$\mathrm{I}=3 / 2$ P-wave $\mathrm{N} \pi$ with Δ source (LO) We are here

1
Simulation at a heavy pion mass
to see Δ as a bound state
I=3/2 P-wave $N \pi$ with Δ and $N \pi$ sources (NLO)
Simulation near the physical point using the one-end trick to see Δ as a resonance

Other resonances or pentaquarks

Contents

- Motivation

- HAL QCD method

- 1 st step: NK interactions

- 2nd step: N_{π} interactions with Δ sources

HAL QCD method

Ideas of HAL QCD method

NBS wave function

$$
\Psi^{W}(\mathbf{r})=\langle 0| O_{1}(\mathbf{x}+\mathbf{r}, 0) O_{2}(\mathbf{x}, 0)|2 H, W\rangle
$$

$(|2 H, W\rangle \cdots$ two-hadron states with energy W) ($O_{1}(\mathbf{x}+\mathbf{r}, 0), O_{2}(\mathbf{x}, 0)$: hadron op.)
partial wave
decomposition
$\rightarrow \Psi^{W, l}(r) \propto \frac{\sin \left(k r-\frac{l}{2} \pi+\delta^{l}(k)\right)}{k r} e^{i \delta^{\prime}(k)} \quad\left(W=\sqrt{k^{2}+m_{1}^{2}}+\sqrt{k^{2}+m_{2}^{2}}\right)$

$$
\rightarrow \frac{\left(\frac{k^{2}}{2 \mu}-H_{0}\right) \Psi^{W}(\mathbf{r})=\int d^{3} r^{\prime} \frac{U\left(\mathbf{r}, \mathbf{r}^{\prime}\right)}{{ }_{\text {non-local potential }}} \Psi^{W}\left(\mathbf{r}^{\prime}\right)}{\underbrace{}_{\text {nol }}}
$$

We can obtain a potential for two-hadron states from NBS wave functions,

HAL QCD method

HAL QCD method on lattice

4-pt correlation function

$$
\begin{gathered}
F(t, \mathbf{r})=\langle 0| O_{1}\left(\mathbf{x}+\mathbf{r}, t+t_{0}\right) O_{2}\left(\mathbf{x}, t+t_{0}\right) \underbrace{\bar{J}\left(t_{0}\right)}|0\rangle \\
\mathbf{1}=\sum_{n}\left|2 H, W_{n}\right\rangle\left\langle 2 H, W_{n}\right|+\cdots
\end{gathered}
$$

$$
=\sum \underline{\Psi^{W_{n}}(\mathbf{r})}\left\langle 2 H, W_{n}\right| \bar{J}\left(t_{0}\right)|0\rangle e^{-W_{n} t}+\cdots
$$

NBS wave function

$$
\left(W_{n}=\sqrt{k_{n}^{2}+m_{1}^{2}}+\sqrt{k_{n}^{2}+m_{2}^{2}}\right)
$$

It is hard to extract a ground state if the system contains baryons.

HAL QCD method

Time-dependent HAL QCD method

[N. Ishii et al., 201 1]
R-correlator

$$
\left(\Delta W_{n}=W_{n}-m_{1}-m_{2}\right)
$$

$$
R(t, \mathbf{r})=\frac{F(t, \mathbf{r})}{e^{-m_{1} t} e^{-m_{2} t}}=\sum_{n} A_{n} \Psi^{W_{n}}(\mathbf{r}) e^{-\Delta W_{n} t}+(\text { inelastic })
$$

elastic term satisfies

$$
\begin{aligned}
& \sum_{n}\left(\frac{k_{n}^{2}}{2 \mu}-H_{0}\right) \underline{A_{n} \Psi^{W_{n}}(\mathbf{r}) e^{-\Delta W_{n} t}}=\sum_{n} \int d^{3} r^{\prime} U\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \underline{A_{n} \Psi^{W_{n}(\mathbf{r}) e^{-\Delta W_{n} t}}} \\
&=\frac{1+3 \delta^{2}}{8 \mu} \Delta W_{n}^{2}+\Delta W_{n}+O\left(\Delta W_{n}^{3}\right)
\end{aligned}
$$

$\left(\delta=\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right)$

$$
\left(\frac{1+3 \delta^{2}}{8 \mu} \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial}{\partial t}-H_{0}\right) R(\mathbf{r}, t) \underset{t \rightarrow \infty}{\simeq} \int d^{3} r^{\prime} U\left(\mathbf{r}, \mathbf{r}^{\prime}\right) R\left(\mathbf{r}^{\prime}, t\right)+O\left(\Delta W_{n}^{3}\right)
$$

Once the inelastic states are supressed, we can derive the potential even when the excited states remain in $R(t, \mathbf{r})$.

Contents

- Motivation

- HAL QCD method

- 1 st step: NK interactions
- 2nd step: $N \pi$ interactions with Δ sources

1 st step: NK interactions

About NK systems

- $K^{+} p(I=1), K^{+} n-K^{0} p,(I=0)$
-S-wave NK $\rightarrow J^{P}=1 / 2^{-}$
- no quark annihilation diagrams in NK system
\rightarrow all-to-all propagators play a role in increasing statistics
- NK for $I\left(J^{P}\right)=0\left(1 / 2^{-}\right), 1\left(1 / 2^{-}\right)$: candidates for the channels of $\Theta^{+}(1540)$ pentaquark [LEPS Collab., 2003]

1 st step: NK interactions

Brief review of one-end trick

[M. Foster, C. Michael, 1999]
: stochastic method that can be applied to only meson operators

$$
\simeq \frac{1}{N} \sum_{r=1}^{N} \underline{\left(D^{-1} \eta^{[r]\left(t_{0}\right)}\right)\left(\mathbf{x}_{1}, t_{1}\right)} \otimes\left(\underline{\left(D^{-1} \gamma_{5} \Gamma^{\dagger} \eta^{[r]\left(t_{0}\right)}\right)^{\dagger}\left(\mathbf{x}_{2}, t_{2}\right)} \gamma_{5}\right)
$$

\rightarrow Solving $D \psi^{[r]\left(t_{0}\right)}=\eta^{[r]\left(t_{0}\right)}$ and $D \xi^{[r]\left(t_{0}\right)}=\gamma_{5} \Gamma^{\dagger} \eta^{[r]\left(t_{0}\right)}$,
we can calculate 2 all-to-all propagators using 1 noise vector!

1 st step: NK interactions

Strategy for calculating all-to-all propagators in NK

- One example of quark contractions for $I=1$

1 st step: NK interactions

Setup

- PACS-CS, (2+1)-flavor configurations (gauge fixed, 400 conf.)
- $a=0.0907 \mathrm{fm}$ on $32^{3} \times 64$ lattices at $m_{\pi} \approx 570 \mathrm{MeV}, m_{K} \approx 710 \mathrm{MeV}$ and $m_{N} \approx 1400 \mathrm{MeV}$
- smearing quarks at the source
- leading order analysis in the derivative expansion of the non-local potential

$$
V_{0}^{L O}(r)=\frac{1}{R(\mathbf{r}, t)}\left(\frac{1+3 \delta^{2}}{8 \mu} \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial}{\partial t}-H_{0}\right) R(\mathbf{r}, t)+O\left(\Delta W_{n}^{3}\right)
$$

1st step: NK interactions

Results: potentials

$$
\text { (t=10 (blue), } 11 \text { (green), } 12 \text { (red)) }
$$

$$
I=1
$$

- independent of t
\rightarrow inelastic states are suppressed, LO analysis is good
- repulsive core for both $I=0$ and $I=1$
- shallow attractive pocket at middle distances for $I=0$
- both potentials go to zero at long distances

1 st step: NK interactions

Results: phase shifts

Experiment: INS GW Data Analysis Center [SAID] (http://gwdac.phys.gwu.edu/)

- consistent qualitatively with the experimental ones
\rightarrow one-end trick is good for meson-baryon systems
- no bound or resonant states
\rightarrow We could not find $\Theta^{+}(1540)$ at $m_{\pi} \simeq 570 \mathrm{MeV}$.

Contents

- Motivation
- HAL QCD method
- 1 st step: NK interactions
- 2 nd step: $\mathrm{N} \pi$ interactions with Δ sources

2nd step: $\mathrm{N} \pi$ interactions with Δ sources

About $\mathrm{N} \pi$ systems

- P-wave $\mathrm{N} \pi \rightarrow J^{P}=3 / 2^{+}$
- $\mathrm{I}=3 / 2, J^{P}=3 / 2^{+} \mathrm{N} \pi \rightarrow \Delta(1232)$

3-pt correlation function

$$
F_{\alpha j_{z}}(\mathbf{r}, t)=\left\langle\pi^{+}(\mathbf{r}+\mathbf{x}, t) N_{\alpha}(\mathbf{x}, t) \bar{\Delta}_{j_{z}}^{++}\left(t_{0}\right)\right\rangle
$$

where

$$
\begin{aligned}
& \bar{\Delta}_{+3 / 2}^{++}\left(t_{0}\right)=-\sum_{\mathbf{y}} \epsilon_{a b c}\left(\bar{u}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{+} \bar{u}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{u}_{a, 0}\left(\mathbf{y}, t_{0}\right) \\
& \bar{\Delta}_{+1 / 2}^{++}\left(t_{0}\right)=-\frac{1}{\sqrt{3}} \sum_{\mathbf{y}} \epsilon_{a b c}\left[\sqrt{2}\left(\bar{u}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{z} \bar{u}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{u}_{a, 0}\left(\mathbf{y}, t_{0}\right)+\left(\bar{u}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{+} \bar{u}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{u}_{a, 1}\left(\mathbf{y}, t_{0}\right)\right] \\
& \bar{\Delta}_{-1 / 2}^{++}\left(t_{0}\right)=\frac{1}{\sqrt{3}} \sum_{\mathbf{y}} \epsilon_{a b c}\left[\sqrt{2}\left(\bar{u}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{z} \bar{u}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{u}_{a, 1}\left(\mathbf{y}, t_{0}\right)+\left(\bar{u}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{-} \bar{u}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{u}_{a, 0}\left(\mathbf{y}, t_{0}\right)\right] \\
& \bar{\Delta}_{-3 / 2}^{++}\left(t_{0}\right)=\sum_{\mathbf{y}} \epsilon_{a b c}\left(\bar{u}_{b}\left(\mathbf{y}, t_{0}\right) \Gamma_{-} \bar{u}_{c}^{T}\left(\mathbf{y}, t_{0}\right)\right) \bar{u}_{a, 1}\left(\mathbf{y}, t_{0}\right) \quad\left(\Gamma_{ \pm}=\frac{1}{2} C\left(\gamma_{2} \pm i \gamma_{1}\right), \Gamma_{z}=\frac{-i}{\sqrt{2}} C \gamma_{3}\right)
\end{aligned}
$$

2nd step: $N \pi$ interactions with Δ sources

Quark contraction diagrams

ఒ: (conventional) stochastic estimation
z : summed, \mathbf{x} : fixed, \mathbf{r} : spatial coord. of NBS w.f.

2nd step: $\mathrm{N} \pi$ interactions with Δ sources

Quark-antiquark pair and sink smearing

- We usually use point quark sinks, but ...

It is impossible to fit this potential!
What does this behavior come from?

2nd step: $\mathrm{N} \pi$ interactions with Δ sources

Quark-antiquark pair and sink smearing

- quark-antiquark pair has a singular behavior in short distances according to OPE

$$
F(\mathbf{r}, t) \sim\langle q(\mathbf{r}) \bar{q}(\mathbf{0})\rangle \underset{r \rightarrow 0}{\propto} \frac{1}{r^{3}} \quad \longrightarrow(r) \underset{r \rightarrow 0}{\propto} \frac{1}{r^{2}}
$$

- we consider P-wave

$$
F(\mathbf{r}, t) \propto \frac{1}{r^{3}} Y_{1, m}(\Omega)
$$

sharp structure produces the spreading behavior!
(The same thing happens in I=1 P-wave $\pi \pi$ system)

One of the solutions to this problem: sink smearing

2nd step: $\mathrm{N} \pi$ interactions with Δ sources

Setup

- CP-PACS+JLQCD, (2+1)-flavor configurations (gauge fixed, 50 conf.)
- $a=0.12 \mathrm{fm}$ on $16^{3} \times 32$ lattices at $m_{\pi} \simeq 870 \mathrm{MeV}$
- smearing quarks at the source and the sink
- leading order analysis in the derivative expansion
- $m_{N} \simeq 1820 \mathrm{MeV}, m_{\Delta} \simeq 2030 \mathrm{MeV}$ from 2pt functions
$\rightarrow E_{b} \simeq 660 \mathrm{MeV}(?)$

2nd step: $N \pi$ interactions with Δ sources

Results: potentials

the spreading behavior disappears!
\rightarrow binding energy: $E_{b}=729 \pm 11 \mathrm{MeV}$
larger than 660 MeV due to the smallness of the volume

Conclusions

- We investigate meson-baryon interactions in the HAL QCD method with all-to-all propagators.
- We study S-wave NK interactions and see the effectiveness of the one-end trick for meson-baryon systems.
- We are analyzing $I=3 / 2$ P-wave $N \pi$ interactions with Δ sources at a heavy pion mass to see Δ as a bound state.

Future works

- $N \pi$ with Δ sources on a larger volume at a lighter pion mass
$\rightarrow \Delta$ as a bound state
- 3rd step: $\mathrm{N} \pi$ with Δ and $N \pi$ sources (NLO) near the physical point using the one-end trick $\rightarrow \Delta$ as a resonance
- 4th step: Other systems
\rightarrow other resonances, pentaquarks

Back up

Two main methods to analyze hadron scatterings

Finite volume method [M. Lüscher, 1991]
: extract phase shifts using boundary condition in the finite volume

- good at meson-meson systems
- difficult for systems including baryons
hard to extract the energy
in such systems

HAL QCD method

[N. Ishii, S. Aoki, T. Hatsuda, 2007] : derive interaction potentials from the NBS wave functions $\Psi^{W}(\mathbf{r})$

- very efficient for systems including baryons
no need to extract ground states
- very large computational cost
need for the dependences of the relative position between 2 hadrons

Detailed numerical setups

S-wave NK

- take summation of 4 timeslices t_{0} to increase statistics
- each component of 4-pt corr. is projected onto A_{1}^{+}irreps
- smear quark sources using smearing function $f_{A, B}(\mathbf{x})$ at $(A, B)=(1.2,0.19)$ for u quarks and $(A, B)=(1.2,0.25)$ for s quarks

P-wave $\mathrm{N} \pi$

$$
f_{A, B}(\mathbf{x})= \begin{cases}A e^{-B|\mathbf{x}|} & \left(|\mathbf{x}|<\frac{L-1}{2}\right) \\ 1 & (|\mathbf{x}|=0) \\ 0 & \left(|\mathbf{x}| \geq \frac{L-1}{2}\right)\end{cases}
$$

- take summation of 32 timeslices t_{0} to increase statistics
- 4-pt corr. is projected onto H_{g} irreps
- use smearing function $f_{A, B}(\mathbf{x})$ at $(A, B)=(1.0,0.38)$ for source quarks and $(A, B)=(1.0,1 / 0.7)$ for sink quarks

Detailed numerical setups

Others

$$
\eta^{\left(s_{d i l}(\mathbf{x})\right.}=\left\{\begin{array}{ll}
\eta(\mathbf{x}) & \left(x+y+z \equiv s_{d i l}(\bmod 2)\right) \\
0 & \left(x+y+z \equiv s_{d i l}+1(\bmod 2)\right),
\end{array} s_{d i l}=0,1,\right.
$$

- diluted indices in one-end trick: time, color, spinor, s2 (spatial)
- AMA: 8 spatial points (0,0,0),(0,0,L/2) \cdots (L/2,L/2,L/2), $\epsilon=10^{-4}$

About configurations

- CP-PACS/JLQCD, (2+1)-flavor confs.: [CP-PACS/JLQCD Collab., 2006] renormalization-group improved Iwasaki gauge action + nonperturbatively $\mathrm{O}(\mathrm{a})$ improved Wilson-clover quak action
- PACS-CS, (2+1)-flavor confs.: [PACs-cs Collab., 2009]
renormalization-group improved Iwasaki gauge action
+ nonperturbatively $\mathrm{O}(\mathrm{a})$ improved Wilson-clover quak action

All quark contraction diagrams in NK

$\mathrm{I}=1$

l=0

I=1 diagrams with different coefficients

NK potentials and their breakups

- $t=12$

$$
I=0
$$

Fitting results for NK interactions

- fitting function: 4 Gaussians

Sink smearing and the singular behavior

3pt function at $\mathrm{z}=0, \mathrm{t}=6$ and $\alpha=0$ (real part)
(normalized s.t. maximum value=1.0)

w/ point quark sinks

w/ smeard quark sinks

- the sharp structure is smeared by the smeard quark sinks

Phase shift results for $\mathrm{N} \pi$

 interactions with Δ sources

- sharp rise followed by gradual fall
- $\delta\left(E_{t h} \rightarrow \infty\right) \rightarrow-180^{\circ} \rightarrow 1$ bound state

stochastic estimation

$\eta(x){ }_{a}^{\alpha} \quad \cdots$ noise vector that satisfies

$$
\left\{\begin{array}{c}
\left\langle\left\langle\eta(x)_{a} \eta^{*}(y){ }_{\beta}\right\rangle\right\rangle=\delta_{x y} \delta_{a b} \delta_{\alpha \beta} \\
\left.\eta(x) \alpha{ }_{a}{ }^{\eta} *(x) \alpha=1 \text { (for all } x, a, \alpha\right)
\end{array}\right.
$$

Propagator D^{-1} can be written as

$$
\begin{aligned}
& \underset{a}{q(x)_{\alpha}^{\alpha} \longleftarrow \bar{q}(y)_{\beta}=D^{-1}(x, y)_{\alpha \beta}^{a b}}=\sum_{c, \gamma, z} D^{-1}(x, z)_{\alpha \gamma}^{a c} \delta_{z y} \delta_{c b} \delta_{\gamma \beta} \\
&=\sum_{c, \gamma, z} D^{-1}(x, z)_{\alpha \gamma}^{a c}\langle\langle\begin{array}{c}
\left.\left\langle\eta(z) \gamma \eta^{*}(y)_{\beta}\right\rangle\right\rangle \\
b \\
\\
\end{array}=\langle\langle(\underbrace{D^{-1} \eta}_{\equiv \psi})(x)_{a}^{\alpha} \eta^{*}(y)_{\beta}\rangle\rangle=\left\langle\left\langle\left(\psi(x)_{a} \eta_{b}^{*}(y)_{\beta}\right\rangle\right\rangle\right. \\
& b
\end{aligned}
$$

stochastic estimation

$$
\begin{gathered}
\Leftrightarrow D^{-1}(x, y)_{\alpha \beta}^{a b}=\lim _{N_{r} \rightarrow \infty} \frac{1}{N_{r}} \sum_{r=1}^{N_{r}} \psi_{[r]}(x)_{a}^{\alpha} \eta_{[r]}^{*}(y)_{\beta} \\
\left(\psi \cdots \text { solution } \sum_{b, \beta, y} D(x, y)_{\alpha \beta}^{a b} \psi(y)_{\beta}=\eta_{b}(x){ }_{a}^{\alpha}\right)
\end{gathered}
$$

Therefore, D^{-1} can be estimated by

$$
D^{-1}(x, y)_{\alpha \beta}^{a b} \approx \frac{1}{N_{r}} \sum_{r=1}^{N_{r}} \psi_{[r]}(x)_{a} \eta_{[r]}^{*}(y)_{\beta}
$$

 this noise can be reduced by using "dilution"

stochastic estimation (+ dilution)

ex) time dilution

decompose the noise vector

$$
\begin{gathered}
\eta(x)_{a}^{\alpha}=\sum_{j=0}^{N_{t}-1}{\underset{a}{(j)}(x) \alpha}_{\eta_{a}} \text { where } \eta_{a}^{(j)}(x)_{a}=\left\{\begin{array}{cc}
\eta(x)_{a} \\
0 & (\text { for } j=t) \\
(\text { for } j \neq t)
\end{array}\right. \\
{\left[\begin{array}{c}
\eta(t=0) \\
\eta(t=1) \\
\eta(t=2) \\
\vdots \\
\vdots
\end{array}\right]=\underbrace{\left[\begin{array}{c}
\eta(t=0) \\
0 \\
0 \\
0 \\
\vdots
\end{array}\right]}_{=\eta^{(0)}(t)}+\underbrace{\left[\begin{array}{c}
0 \\
\eta(t=1) \\
0 \\
0 \\
\vdots
\end{array}\right]}_{=\eta^{(1)}(t)}+\underbrace{\left[\begin{array}{c}
0 \\
0 \\
\eta(t=2) \\
0 \\
\vdots
\end{array}\right]}_{=\eta^{(2)}(t)}+\cdots}
\end{gathered}
$$

stochastic estimation (+ dilution)

ex) time dilution

$$
\begin{aligned}
D^{-1}(x, y)_{\alpha \beta}^{a b} & =\sum_{c, \gamma, z} D^{-1}(x, z)_{\alpha \gamma}^{a c}\left\langle\left\langle\underset{c}{a(z) r \eta *}(y)_{\beta}\right\rangle\right\rangle \\
& =\sum_{c, \gamma, z} D^{-1}(x, z)_{\alpha \gamma}^{a c} \sum_{j, k=0}^{N_{t}-1} \frac{\left\langle\left\langle\eta^{(j)}(z) \gamma \eta^{(k)}(y)_{\beta}\right\rangle\right\rangle}{b}
\end{aligned}
$$

$j \neq k$ terms are noisy parts, not signals

stochastic estimation (+ dilution)

 ex) time dilution$$
\left.\begin{array}{rl}
\rightarrow D^{-1}(x, y)_{\alpha \beta}^{a b}= & \sum_{j=0}^{N_{t}-1}\left\langle\left\langle\left(\psi^{(j)}(x)_{a}^{\alpha \eta^{(j)}}{ }^{(j)}(y)_{\beta}\right\rangle\right\rangle\right. \\
b
\end{array}\right)
$$

Therefore,

$$
D^{-1}(x, y)_{\alpha \beta}^{a b} \approx \frac{1}{N_{r}} \sum_{r=1}^{N_{r}} \sum_{j} \psi_{[r]}^{(j)}(x)_{a}^{\alpha} \eta_{[r]}^{(j) *}(y)_{\beta}
$$

one-end trick

[M. Foster, C. Michael, 1999]

$$
\begin{aligned}
& \left(\eta_{a, \alpha}^{[r]\left(t_{0}\right)}\left(\mathbf{x}, t_{x}\right)=\delta_{t_{x}, t_{0}} \Xi_{a, \alpha}^{[r]}(\mathbf{x})\right) \\
& \left(\left\langle\Xi_{a, \alpha}^{[r]}(\mathbf{x}) \Xi_{b, \beta}^{[r] \dagger}(\mathbf{y})\right\rangle=\delta_{a, b} \delta_{\alpha, \beta} \delta_{\mathbf{x}, \mathbf{y}}\right) \\
& \simeq \sum_{\mathbf{y}} \sum_{\mathbf{z}, t_{2}, t_{y}} D^{-1}\left(\mathbf{x}_{1}, t_{1} ; \mathbf{z}, t_{z}\right)\left(\frac{1}{N} \sum_{r=1}^{N} \eta^{[r]\left(t_{0}\right)}\left(\mathbf{z}, t_{z}\right) \otimes \eta^{[r]\left(t_{0}\right) \dagger}\left(\mathbf{y}, t_{y}\right)\right) \Gamma D^{-1}\left(\mathbf{y}, t_{y} ; \mathbf{x}_{2}, t_{2}\right)
\end{aligned}
$$

one-end trick

Using γ_{5} hermiticity,

$$
\begin{aligned}
& \frac{1}{N} \sum_{r=1}^{N}\left(\sum_{\mathbf{z}, t_{z}} D^{-1}\left(\mathbf{x}_{1}, t_{1} ; \mathbf{z}, t_{z}\right) \eta^{[r]\left(t_{0}\right)}\left(\mathbf{z}, t_{z}\right)\right) \otimes\left(\sum_{\mathbf{y}, t_{y}} \eta^{[r]\left(t_{0}\right) \dagger}\left(\mathbf{y}, t_{y}\right) \Gamma \gamma_{5} D^{-1 \dagger}\left(\mathbf{y}, t_{y} ; \mathbf{x}_{2}, t_{2}\right) \gamma_{5}\right) \\
= & \frac{1}{N} \sum_{r=1}^{N} \underline{\left(D^{-1} \eta^{[r]\left(t_{0}\right)}\right)\left(\mathbf{x}_{1}, t_{1}\right)} \otimes\left(\underline{\left(D^{-1} \gamma_{5} \Gamma^{\dagger} \eta^{[r]\left(t_{0}\right)}\right)^{\dagger}\left(\mathbf{x}_{2}, t_{2}\right)} \gamma_{5}\right)
\end{aligned}
$$

Therefore, solving 2N linear equations

$$
\begin{gathered}
\left\{\begin{array}{l}
\frac{D \psi^{[r]\left(t_{0}\right)}=\eta^{[r]\left(t_{0}\right)}}{\underline{D \xi^{[r]\left(t_{0}\right)}=\gamma_{5} \Gamma^{\dagger} \eta} \eta^{[r]\left(t_{0}\right)}}
\end{array}\right. \\
\sum_{\mathbf{y}} G\left(\mathbf{x}_{1}, t_{1} ; \mathbf{y}, t_{0}\right) \Gamma G\left(\mathbf{y}, t_{0} ; \mathbf{x}_{2}, t_{2}\right) \simeq \frac{1}{N} \sum_{r=1}^{N} \underline{\psi^{[r]\left(t_{0}\right)}\left(\mathbf{x}_{1}, t_{1}\right)} \otimes\left(\underline{\xi^{[r]\left(t_{0}\right) \dagger}\left(\mathbf{x}_{2}, t_{2}\right)} \gamma_{5}\right)
\end{gathered}
$$

All-mode averaging (AMA)

general idea: Covariant approximation averaging (CAA)
$O[U] \cdots$ observable that is covariant under symmetry G

$$
\begin{aligned}
\Leftrightarrow & O\left[U^{g}\right]=
\end{aligned} \begin{aligned}
& O^{g}[U] \text { for all } g \in G \\
& \\
& \\
& (\text { ex) } G \cdots \text { translation } x \rightarrow x+a)
\end{aligned}
$$

We define

$$
O_{G}[U]=\frac{1}{N_{G}} \sum_{g \in G} O\left[U^{g}\right]=\frac{1}{N_{G}} \sum_{g \in G} O^{g}[U]
$$

($N_{G} \cdots$ number of the element of G)
This variable satisfies

$$
\langle O[U]\rangle=\left\langle O_{G}[U]\right\rangle \quad\left(\because\left\langle O\left[U^{g}\right]\right\rangle=\langle O[U]\rangle\right)
$$

All-mode averaging (AMA)

general idea: Covariant approximation averaging (CAA)
$O^{(a p p x)}[U] \cdots$ approximation of G which reduces computational cost
and we introduce

$$
O_{G}^{(a p p x)}[U]=\frac{1}{N_{G}} \sum_{g \in G} O^{(a p p x)}\left[U^{g}\right]=\frac{1}{N_{G}} \sum_{g \in G} O^{(a p p x) g}[U]
$$

All-mode averaging (AMA)

general idea: Covariant approximation averaging (CAA)

Improved estimator is defined by

$$
O^{(i m p)}[U]=O[U]-O^{(a p p x)}[U]+O_{G}^{(a p p x)}[U]
$$

and this satisfies

$$
\begin{aligned}
\left\langle O^{(i m p)}[U]\right\rangle & \left.=\langle O[U]\rangle-\left\langle O^{(a p p x)}[U]\right\rangle+\frac{\left\langle O_{G}^{(a p p x)}[U]\right\rangle}{=\left\langle O^{(a p p x}\right)}[U]\right\rangle \\
& =\langle O[U]\rangle
\end{aligned}
$$

All-mode averaging (AMA)

All-mode averaging

$$
\left.\begin{array}{c}
O^{(A M A)}=O\left[S^{(a l l)}[U]\right] \\
O_{G}^{(A M A)}=\frac{1}{N_{G}} \sum_{g \in G} O\left[S^{(a l l) g}[U]\right] \\
\left(S^{(a l l)} b\right)_{i}=\sum_{k=1}^{N_{\lambda}} \frac{1}{\lambda_{k}}\left(\psi_{k}^{\dagger} b\right)\left(\psi_{k}\right)_{i}+\left(f_{\epsilon}(H) b\right)_{i} \\
\text { for low mode }
\end{array}\right] \begin{gathered}
\begin{array}{c}
\text { relaxed stopping criterion } \\
\text { in the CG method }
\end{array} \\
f_{\epsilon}(H) b=\sum_{i=1}^{N_{C G}}\left(H^{i}\right) c_{i}
\end{gathered}
$$

where

All-mode averaging (AMA)

strategy for all-mode averaging w/o low modes
$C\left(U ; \mathbf{z}_{0}\right)$: correlation function at gauge conf. U with the hadron source operator at \mathbf{z}_{0}
$C^{(a p p x)}\left(U ; \mathbf{z}_{i}\right)$: approximated correlation function at gauge conf. U with the hadron source opefator at \mathbf{z}_{i}
by relaxing stopping condition
$\|D \psi-s| | /\| s|\mid<\epsilon$ in BiCG solver

All-mode averaging (AMA)

 strategy for all-mode averaging w/o low modes1. For each gauge conf., we calculate $C\left(U ; \mathbf{z}_{0}\right)$ and $C^{(a p p x)}\left(U ; \mathbf{z}_{0}\right)$ for some \mathbf{z}_{0}.

All-mode averaging (AMA)

 strategy for all-mode averaging w/o low modes2. Tranlate \mathbf{z}_{0} and calculate $C^{(a p p x)}\left(U ; \mathbf{z}_{i}\right)$ at each source point.

All-mode averaging (AMA)

strategy for all-mode averaging w/o low modes

3. The improve estimator is constructed from $C\left(U ; \mathbf{z}_{0}\right)$

$$
\frac{\text { and }\left\{C^{(a p p x)}\left(U ; \mathbf{z}_{i}\right)\right\}_{i=0,1 \cdots N_{s}}}{C^{(i m p)}(U)=C\left(U ; \mathbf{z}_{0}\right)-C^{(a p p x)}\left(U ; \mathbf{z}_{0}\right)+\frac{1}{N_{s}} \sum_{i=1}^{N_{s}} C^{(a p p x)}\left(U ; \mathbf{z}_{i}\right)}
$$

this satisfies

$$
\begin{aligned}
\left\langle C^{(i m p)}(U)\right\rangle & =\left\langle C\left(U ; \mathbf{z}_{0}\right)\right\rangle-\left\langle C^{(a p p x)}\left(U ; \mathbf{z}_{0}\right)\right\rangle+\frac{\frac{1}{N_{s}} \sum_{i=1}^{N_{s}}\left\langle C^{(a p p x)}\left(U ; \mathbf{z}_{i}\right)\right\rangle}{=\left\langle C^{(a p p x)}\left(U ; \mathbf{z}_{0}\right)\right\rangle} \\
& =\left\langle C\left(U ; \mathbf{z}_{0}\right)\right\rangle
\end{aligned}
$$

Quark contractions in $\mathrm{I}=3 / 2 \mathrm{~N} \pi$

with $\mathrm{N} \pi$ sources

point-to-all + stochastic+ one-end trick

