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Introductory remarks

Bosonization is a representation of a fermionic system by bosons.

It is often the case that only even operators are represented.

Here bosons = operators commuting on distinct lattice sites.

This talk: bosonization method introduced in [Wosiek ’82],

with an emphasis on recent progress in its understanding.
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Even fermionic operators

We consider one fermion per site, obeying standard relations:

φ(x)φ∗(y) + φ∗(y)φ(x) = δx ,y . (1)

The even subalgebra is generated by parity and hopping operators:

(−1)Nf (x) = 1− 2φ∗(x)φ(x), (2a)

s(l) = X (s(l))X (t(l)), (2b)

where s(l) and t(l) are the endpoints of the link l and X = φ+ φ∗.
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Even fermionic operators

As for relations between generators, there are simple formulas

for conjugation, inversion and braiding between generators.

Due to time constraints, they won’t be displayed.

There is only one more independent relation, the loop relation:

s(l1) . . . s(ln) = 1 (3)

whenever the links l1, . . . , ln form a closed path.
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Even fermionic operators

The Fock space F decomposes into the even and odd subspace

F = F0 ⊕F1. (4)

Fα are the only irreps of the algebra A0 of even operators.

Any other representation is a direct sum of these.



Even fermionic operators

In order to construct an exact bosonization map one has to

1 Construct a representation of A0,

2 Understand its decomposition into simple factors.

For the first step it suffices to build operators obeying all relations.



Construction of the Γ model

On each site x we put the Clifford algebra generated by {Γ(x , l)},

where the index l runs through all links incident to the site x .

Γ matrices placed on distinct lattice sites commute.

Bosonization map takes the form

(−1)Nf (x) 7→ Γ∗(x) = phase ·
∏
l

Γ(x , l), (5a)

s(l) 7→ S(l) = −iΓ(s(l), l)Γ(t(l), l). (5b)

We note that this maps local hamiltonians to local hamiltonians.
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Construction of the Γ model

We need Γ∗(x) to anti-commute with each Γ(x , l) in order

to have correct braiding between parity and hopping operators.

Thus the number of links incident to any site has to be even.

Then all relations of A0 except of the loop relation are satisfied.

We impose the loop relation as a constraint on physical states.
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Construction of the Γ model

Theorem (Szczerba ’85, Bochniak, Ruba ’20)

Γ model Hilbert space with loop constraints imposed is isomorphic

as a representation of A0 to one half Fα of the Fock space.

α depends on the lattice geometry and the way one resolves the

sign ambiguity in the definition of Γ∗(x) (independent for each x).



Constraints and gauge fields

Consider coupling fermions to an external Z2 gauge field A.

Minimal coupling: replace s(l) 7→ sA(l) = (−1)A(l)s(l).

For these generators, loop relations are modified:

sA(l1) . . . sA(ln) = (−1)A(l1)+...A(ln)︸ ︷︷ ︸
holonomy

. (6)

This provides an interpretation for subspaces of the Γ model

Hilbert space defined by modified constraints.
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Constraints and gauge fields

Theorem (Bochniak, Ruba ’20)

Γ model Hilbert space H decomposes as
⊕

[A]H[A], with the sum

running over all gauge orbits of Z2 gauge fields.

H[A] describes fermions in the field A: H[A]
∼= Fα+(A,ζ), where

(A, ζ) =
∑
l

A(l) mod 2. (7)

In words, only states of parity α + (A, ζ) are implemented.
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Constraints and gauge fields

Example

The quadratic fermionic hamiltonian

H =
∑
l

hl φ(s(l))φ(t(l))∗ +
∑
x

νx φ(x)∗φ(x)

is bosonized to the form

HΓ =
∑
l

hl
1 + Γ∗(s(l))

2
S(l)

1 + Γ∗(t(l))

2
+
∑
x

νx
1− Γ∗(x)

2
.

Modifying constraints is equivalent to replacing hl 7→ hl · (−1)A(l).



Constraints and gauge fields

Since the Γ model Hilbert space incorporates all possible A fields,

it is natural to ask whether the gauge field can be made dynamical.

For this one needs a momentum W conjugate to the A field.

In the standard gauge theory this is the electric field.

Existence of such W would contradict the relation Nf ≡ α+ (A, ζ).

Secondly, in the standard Z2 gauge theory one has

Gauss’ law =⇒ Nf ≡ 0. (8)
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Constraints and gauge fields

Presented arguments indicate that there is no correspondence

between the unconstrained Γ model and standard Z2 gauge theory.

It turns out that there exists a mapping of the Γ model to

a Z2 gauge theory with a modified Gauss’ law.

Modified Gauss’ law means that gauge transformations

Ai 7→ Ai + ∂iθ are implemented on the quantum level by

|Ai 〉 7→ e iI (A,θ)|Ai + ∂iθ〉 for some nontrivial functional I .

Such mechanism exists in models with Chern-Simons like terms.
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Constraints and gauge fields

The main properties of the claimed mapping are:

1 Γ model operators ↔ gauge invariant operators.

2 Even fermionic operators and Wilson lines are represented

locally. Electric fields are nonlocal on the Γ model side, while

the Γ field is nonlocal in the gauge theory.

3 The Gauss’ law constraint in gauge theory is an exact identity

in the Γ model. It implies the relation Nf ≡ α + (A, ζ)

between the gauge field and the number of fermions.
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Constraints and gauge fields

From the gauge theory point of view, our basic field Γ acts as a

composite of a single fermion and a lump of electromagnetic field:

Γ = fermion× flux. (9)

This is related to the so called flux attachment mechanism.

Braiding of charges and fluxes leads to Aharonov-Bohm phases,

which allow a fermion to become a boson. Constraints of the Γ

model define the subspace in which no fluxes are present.
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Constraints and gauge fields

Recently another exact bosonization has been developed

[Chen, Kapustin and Radicevic, ’18 and ’19]:

Fermions in spatial dimension d can be mapped to (d − 1)-form

Z2 gauge theory with a topological term in action which for flat

fields α reduces to the integral of the Steenrod square Sq2(α).



Constraints and gauge fields

Γ model (d − 1)-form gauge theory

degrees of freedom on sites on (d − 1)-cells

local constraints on plaquettes on (d − 2)-cells (Gauss’ law)

fermionic excitations on sites on d-cells (fluxes)

topological action not yet known Steenrod square

This table suggests that any direct relation between the two

formulations would have to involve the dual lattice construction.



Summary

1 Γ model → bosonization in any dimension.

2 A practical difficulty: one has to deal with constraints.

3 Omitting constraints introduces a Z2 gauge field.

4 The Z2 gauge field obeys a modified Gauss’ law,

which resembles Chern-Simons theories.

5 Bosonization may be understood as ”flux attachment”.

6 It would be interesting to find a path integral formulation.


