Lattice calculation of GPDs and twist-3 PDFs of the proton

Aurora Scapellato

Adam Mickiewicz University in Poznań

Asia-Pacific Symposium for Lattice Field Theory (APLAT 2020)
August 5, 2020

Collaborators \& Projects
(1) Generalized parton distributions

Constantia Alexandrou ${ }^{1,2}$, Krzysztof Cichy ${ }^{3}$, Martha Constantinou ${ }^{4}$, Kyriakos Hadjiyiannakou ${ }^{1}$, Karl Jansen ${ }^{5}$, Fernanda Steffens ${ }^{6}$
(2) Twist-3 parton distributions

Shohini Bhattacharya ${ }^{4}$, Krzysztof Cichy ${ }^{3}$, Martha Constantinou ${ }^{4}$, Andreas Metz ${ }^{4}$, Fernanda Steffens ${ }^{6}$

University of Cyprus ${ }^{1}$, The Cyprus Institute ${ }^{2}$, Adam Mickiewicz University in Poznań ${ }^{3}$, Temple University ${ }^{4}$, DESY-Zeuthen ${ }^{5}$, University of Bonn ${ }^{6}$

Outline

(1) Generalized parton distributions
(2) Twist-3 parton distribution functions
(3) Conclusions

Outline

(1) Generalized parton distributions
(2) Twist-3 parton distribution functions
(3) Conclusions

Generalized parton distributions (GPDs)

D. Muller, A. Radyushkin, X. Ji (1994-1997)

- GPDs provide a unifying picture for a set of fundamental quantities of hadronic structure:
- form factors and PDFs
- longitudinal structure and transverse distribution of partons \Rightarrow What is the momentum and spatial distributions of quarks?

- angular momentum of quarks and gluons

Generalized parton distributions (GPDs)

D. Muller, A. Radyushkin, X. Ji (1994-1997)

- GPDs provide a unifying picture for a set of fundamental quantities of hadronic structure:
- form factors and PDFs
- longitudinal structure and transverse distribution of partons \Rightarrow What is the momentum and spatial distributions of quarks?

angular momentum of quarks and gluons
- GPDs experimentally accessed in exclusive processes, e.g. DVCS and DVMP, but:
[Belitskyand Radyushkin, 2005, Kumericki et al., 2016]
- not directly related to cross sections
- data are limited
\Rightarrow GPDs mostly unknown so far
- GPDs are part of the physics program of EIC, HERMES, COMPASS, Jlab

DVCS: $e p \rightarrow e p^{\prime} \gamma$

GPDs as light-cone correlation functions

- For a given quark q
(unpolarized hadron)

$$
\begin{aligned}
F^{q} & =\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle P_{f}\right| \bar{\psi}(0) \gamma^{+} e^{-i g \int_{0}^{z^{-}} d x^{\prime} A^{+}} \psi\left(z^{-}\right)\left|P_{i}\right\rangle \\
& =\frac{1}{2 P^{+}}[H^{q}(x, \xi, t) \bar{u}\left(P_{f}\right) \gamma^{+} u\left(P_{i}\right)+\underbrace{E^{q}(x, \xi, t)} \bar{u}\left(P_{f}\right) \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2 m} u\left(P_{i}\right)]
\end{aligned}
$$

Three-variables:
(1) x : quark momentum fraction
(2) $t=\Delta^{2}=\left(P_{f}-P_{i}\right)^{2}$: momentum transfer squared
(3) $\xi=-\frac{\Delta^{+}}{2 P^{+}}$: skewness

Properties:

- In the forward limit $\left(P_{i}=P_{f}\right)$, GPDs reduce to parton densities: $H^{q}(x, 0,0)=q(x)$
- Elastic form factors are moments of GPDs, e.g. $\int_{-1}^{+1} d x H^{q}(x, \xi, t)=F_{1}(t)$

GPDs as light-cone correlation functions

- For a given quark q
(unpolarized hadron)

$$
\begin{aligned}
F^{q} & =\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle P_{f}\right| \bar{\psi}(0) \gamma^{+} e^{-i g \int_{0}^{z^{-}} d x^{\prime} A^{+}} \psi\left(z^{-}\right)\left|P_{i}\right\rangle \\
& =\frac{1}{2 P^{+}}\left[H^{q}(x, \xi, t) \bar{u}\left(P_{f}\right) \gamma^{+} u\left(P_{i}\right)+E^{q}(x, \xi, t) \bar{u}\left(P_{f}\right) \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2 m} u\left(P_{i}\right)\right]
\end{aligned}
$$

Three-variables:
(1) x : quark momentum fraction
(2) $t=\Delta^{2}=\left(P_{f}-P_{i}\right)^{2}$: momentum transfer squared
(3) $\xi=-\frac{\Delta^{+}}{2 P^{+}}$: skewness

Light-cone dominance: need of sophisticated methods on the lattice!

Properties:

- In the forward limit $\left(P_{i}=P_{f}\right)$, GPDs reduce to parton densities: $H^{q}(x, 0,0)=q(x)$
- Elastic form factors are moments of GPDs, e.g. $\int_{-1}^{+1} d x H^{q}(x, \xi, t)=F_{1}(t)$
- GPDs computed through purely space-like correlation functions

$$
\begin{aligned}
& \tilde{F}^{q}\left(x, \tilde{\xi}, t, P_{3}\right)=\frac{1}{2} \int \frac{d z}{2 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\psi}(0) \gamma_{0} W(0, z) \psi(z)\left|N\left(P_{i}\right)\right\rangle=\frac{\bar{u}\left(P_{f}\right)}{2 P_{0}}\left[\tilde{H} \gamma_{0}+\tilde{E} \frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 m_{N}}\right] u\left(P_{i}\right) \\
& \text { Quasi-GPDs } \\
& \text { Fourier transform } \quad \begin{array}{c}
\text { matrix elements } \\
\text { of fast moving nucleons }
\end{array}
\end{aligned}
$$

- GPDs computed through purely space-like correlation functions
$\tilde{F}^{q}\left(x, \tilde{\xi}, t, P_{3}\right)=\frac{1}{2} \int \frac{d z}{2 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\psi}(0) \gamma_{0} W(0, z) \psi(z)\left|N\left(P_{i}\right)\right\rangle=\frac{\bar{u}\left(P_{f}\right)}{2 P_{0}}\left[\tilde{H} \gamma_{0}+\tilde{E} \frac{\tilde{\sigma^{0 \mu}} \Delta_{\mu}}{2 m_{N}}\right] u\left(P_{i}\right)$
Quasi-GPDs
Fourier transform
matrix elements of fast moving nucleons

Variables:

(1) $W(z)$: Wilson line of length z
(2) $P=\frac{P_{i}+P_{f}}{2}$: average momentum boost
(3) $t=\Delta^{2}=-Q^{2}$
(4) $\tilde{\xi}=-\frac{Q_{3}}{2 P_{3}}$: quasi-skewness $\tilde{\xi}=\xi+\mathcal{O}\left(1 / P_{3}^{2}\right)$

- GPDs computed through purely space-like correlation functions

$$
\tilde{F}^{q}\left(x, \tilde{\xi}, t, P_{3}\right)=\frac{1}{2} \int \frac{d z}{2 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\psi}(0) \gamma_{0} W(0, z) \psi(z)\left|N\left(P_{i}\right)\right\rangle=\frac{\bar{u}\left(P_{f}\right)}{2 P_{0}}\left[\tilde{H} \gamma_{0}+\tilde{E} \frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 m_{N}}\right] u\left(P_{i}\right)
$$

matrix elements of fast moving nucleons

Variables:

(1) $W(z)$: Wilson line of length z
(2) $P=\frac{P_{i}+P_{f}}{2}$: average momentum boost
(3) $t=\Delta^{2}=-Q^{2}$
(4) $\tilde{\xi}=-\frac{Q_{3}}{2 P_{3}}$: quasi-skewness $\tilde{\xi}=\xi+\mathcal{O}\left(1 / P_{3}^{2}\right)$

- For sufficiently large P_{3}, quasi-GPDs are matched onto GPDs within LaMET framework

$$
\tilde{F}^{q}=\int_{-1}^{1} \frac{d y}{|y|} \underset{\longrightarrow}{\mathcal{C}_{\Gamma}} F^{q}\left(x, \xi, t, P_{3}, \mu^{2}\right)+\mathcal{O}\left(\frac{\Lambda_{Q C D}^{2}}{P_{3}^{2}}, \frac{t}{P_{3}^{2}}, \frac{m_{N}^{2}}{P_{3}^{2}}\right)
$$

\mathcal{C}_{Γ} computed to 1-loop level in $\mathrm{RI} / \mathrm{MOM}$ scheme [Y -S. Liu et al., Phys.Rev. D100 (2019) no.3, 034006]

Lattice setup

Gauge ensemble

- Configurations of $N_{f}=2+1+1$ flavors \& clover term [ETMC collaboration]

Ensemble	N_{f}	$L^{3} \times T$	lattice spacing a	m_{π}	$m_{\pi} L$
$c A 211.32$	4	$32^{3} \times 64$	0.093 fm	270 MeV	4

Lattice setup

Gauge ensemble

- Configurations of $N_{f}=2+1+1$ flavors \& clover term [ETMC collaboration]

Ensemble	N_{f}	$L^{3} \times T$	lattice spacing a	m_{π}	$m_{\pi} L$
cA211.32	4	$32^{3} \times 64$	0.093 fm	270 MeV	4

Nucleon momenta

- Breit frame:
$\vec{P}_{i}=P_{3} \hat{z}-\vec{Q} / 2, \quad \overrightarrow{P_{f}}=P_{3} \hat{z}+\vec{Q} / 2$
(GPDs defined in the Breit frame)

$P_{3}[\mathrm{GeV}]$	$\vec{P}_{i} \times \frac{L}{2 \pi}$	$\overrightarrow{P_{f}} \times \frac{L}{2 \pi}$	$Q^{2}\left[\mathrm{GeV}^{2}\right]$	ξ	$N_{\text {meas }}$
0.83	$(0,-1,2)$	$(0,1,2)$	0.69	0	4152
1.25	$(0,-1,3)$	$(0,1,3)$	0.69	0	35136
1.67	$(0,-1,4)$	$(0,1,4)$	0.69	0	112192

Lattice setup

Gauge ensemble

- Configurations of $N_{f}=2+1+1$ flavors \& clover term [ETMC collaboration]

Ensemble	N_{f}	$L^{3} \times T$	lattice spacing a	m_{π}	$m_{\pi} L$
$c A 211.32$	4	$32^{3} \times 64$	0.093 fm	270 MeV	4

Nucleon momenta

- Breit frame:
$\vec{P}_{i}=P_{3} \hat{z}-\vec{Q} / 2, \quad \overrightarrow{P_{f}}=P_{3} \hat{z}+\vec{Q} / 2$
(GPDs defined in the Breit frame)

$P_{3}[\mathrm{GeV}]$	$\vec{P}_{i} \times \frac{L}{2 \pi}$	$\vec{P}_{f} \times \frac{L}{2 \pi}$	$Q^{2}\left[\mathrm{GeV}^{2}\right]$	ξ	$\overline{N_{\text {meas }}}$
0.83	$(0,-1,2)$	$(0,1,2)$	0.69	0	4152
1.25	$(0,-1,3)$	$(0,1,3)$	0.69	0	35136
1.67	$(0,-1,4)$	$(0,1,4)$	0.69	0	112192

Classes chosen such that:
(1) P_{3}-dependence can be investigated

Gauge ensemble

- Configurations of $N_{f}=2+1+1$ flavors \& clover term [ETMC collaboration]

Ensemble	N_{f}	$L^{3} \times T$	lattice spacing a	m_{π}	$m_{\pi} L$
cA211.32	4	$32^{3} \times 64$	0.093 fm	270 MeV	4

Nucleon momenta

- Breit frame:

$$
\vec{P}_{i}=P_{3} \hat{z}-\vec{Q} / 2, \quad \overrightarrow{P_{f}}=P_{3} \hat{z}+\vec{Q} / 2
$$

(GPDs defined in the Breit frame)

$P_{3}[\mathrm{GeV}]$	$\vec{P}_{i} \times \frac{L}{2 \pi}$	$\vec{P}_{f} \times \frac{L}{2 \pi}$	$Q^{2}\left[\mathrm{GeV}^{2}\right]$	ξ	
0.83	$(0,-1,2)$	$(0,1,2)$	0.69	0	4152
1.25	$(0,-1,3)$	$(0,1,3)$	0.69	0	35136
1.67	$(0,-1,4)$	$(0,1,4)$	0.69	0	112192

Classes chosen such that:
PRELIMINARY RESULTS: finalyze analysis at $\xi \neq 0$
(1) P_{3}-dependence can be investigated
(2) different GPDs can be disentangled $(H(x, t, \xi), E(x, t, \xi), \tilde{H}(x, \xi, t), \ldots)$

Lattice evaluation for the isovector combination $u-d$

- For different classes of momenta we compute

$$
\mathcal{M}\left(z, P_{3}, \vec{Q}, \xi, \mathcal{P}\right)=\left\langle N\left(P_{3} \hat{z}+\vec{Q} / 2\right)\right| \bar{\psi}(0) \tau_{3} \Gamma W(0, z) \psi(z)\left|N\left(P_{3} \hat{z}-\vec{Q} / 2\right)\right\rangle
$$

* $\Gamma=\gamma_{0}, \gamma_{5} \gamma_{j}, \ldots$ gives access to a specific GPD
$\star \mathcal{P}$ is a parity projector used in the three-point functions

Every matrix element, \mathcal{M}, extracted from the ratio

$$
R_{\mathcal{O}}\left(\mathcal{P}, \vec{P}_{f}, \vec{P}_{i} ; t, t_{\mathrm{ins}}\right)=\frac{C_{\mathcal{O}}^{3 p t}\left(\mathcal{P}, \overrightarrow{P_{f}}, \vec{P}_{i} ; t, t_{\mathrm{ins}}\right)}{C^{2 p t}\left(\overrightarrow{P_{f}} ; t\right)} \times \sqrt{\frac{C^{2 p t}\left(\vec{P}_{i} ; t-t_{\mathrm{ins}}\right) C^{2 p t}\left(\overrightarrow{P_{f}} ; t_{\mathrm{ins}}\right) C^{2 p t}\left(\overrightarrow{P_{f}} ; t\right)}{C^{2 p t}\left(\overrightarrow{P_{f}} ; t-t_{\mathrm{ins}}\right) C^{2 p t}\left(\vec{P}_{i} ; t_{\mathrm{ins}}\right) C^{2 p t}\left(\vec{P}_{i} ; t\right)}}
$$

Lattice methods:

- Sequential inversions through the sink $\left(t_{s}=12 a \simeq 1.13 \mathrm{fm}\right)$
- Momentum smearing [G . Bali et al., Phys.Rev.D 93 (2016) 9, 094515]

Lattice evaluation for the isovector combination $u-d$

- For different classes of momenta we compute

$$
\mathcal{M}\left(z, P_{3}, \vec{Q}, \xi, \mathcal{P}\right)=\left\langle N\left(P_{3} \hat{z}+\vec{Q} / 2\right)\right| \bar{\psi}(0) \tau_{3} \Gamma W(0, z) \psi(z)\left|N\left(P_{3} \hat{z}-\vec{Q} / 2\right)\right\rangle
$$

* $\Gamma=\gamma_{0}, \gamma_{5} \gamma_{j}, \ldots$ gives access to a specific GPD
$\star \mathcal{P}$ is a parity projector used in the three-point functions

Every matrix element, \mathcal{M}, extracted from the ratio

$$
R_{\mathcal{O}}\left(\mathcal{P}, \vec{P}_{f}, \vec{P}_{i} ; t, t_{\mathrm{ins}}\right)=\frac{C_{\mathcal{O}}^{3 p t}\left(\mathcal{P}, \vec{P}_{f}, \vec{P}_{i} ; t, t_{\mathrm{ins}}\right)}{C^{2 p t}\left(\vec{P}_{f} ; t\right)} \times \sqrt{\frac{C^{2 p t}\left(\vec{P}_{i} ; t-t_{\mathrm{ins}}\right) C^{2 p t}\left(\vec{P}_{f} ; t_{\mathrm{ins}}\right) C^{2 p t}\left(\overrightarrow{P_{f}} ; t\right)}{C^{2 p t}\left(\vec{P}_{f} ; t-t_{\mathrm{ins}}\right) C^{2 p t}\left(\vec{P}_{i} ; t_{\mathrm{ins}}\right) C^{2 p t}\left(\vec{P}_{i} ; t\right)}}
$$

Lattice methods:

- Sequential inversions through the sink $\left(t_{s}=12 a \simeq 1.13 \mathrm{fm}\right)$
- Momentum smearing [G . Bali et al., Phys.Rev.D 93 (2016) 9, 094515]

Multiple matrix elements needed to disentangle different GPDs

Bare matrix elements for unpolarized GPDs

- To disentangle $H(x, \xi, t)$ and $E(x, \xi, t)$ two matrix elements are needed

- Both matrix elements contribute (real parts have the same magnitude)

Disentangling F_{H} and F_{E}

- $F_{E}(z ; \xi ; t)$ and $F_{H}(z ; \xi ; t)$ extracted through a decomposition
$F_{H}(z, \xi, t)=\mathcal{K}_{H}\left(P_{i}, P_{f}, \Gamma_{0}\right) \mathcal{M}\left(\gamma_{0}, \bar{\Gamma}_{0}\right)+\mathcal{K}_{H}^{\prime}\left(P_{i}, P_{f}, \Gamma_{1}\right) \mathcal{M}\left(\gamma_{0}, \bar{\Gamma}_{1}\right)$
$\mathcal{K}, \mathcal{K}^{\prime}$: kinematic factors
$F_{E}(z, \xi, t)=\mathcal{K}_{E}^{\prime}\left(P_{i}, P_{f}, \Gamma_{0}\right) \mathcal{M}\left(\gamma_{0}, \bar{\Gamma}_{0}\right)+\mathcal{K}_{E}^{\prime}\left(P_{i}, P_{f}, \Gamma_{1}\right) \mathcal{M}\left(\gamma_{0}, \bar{\Gamma}_{1}\right)$

- F_{E} noisier than F_{H} (E-GPD subleading compared to H-GPD)

x-dependence of GPDs

x-dependence of GPDs

x-dependence of GPDs

x-dependence of GPDs

- H-GPDs compatible at the three nucleon momenta
- H-GPDs suppressed with respect to PDFs (as expected from usual form factors)

x-dependence of GPDs

- H-GPDs compatible at the three nucleon momenta
- H-GPDs suppressed with respect to PDFs (as expected from usual form factors)

- E-GPDs might be more affected by the value of the nucleon boost

x-dependence of GPDs

- H-GPDs compatible at the three nucleon momenta
- H-GPDs suppressed with respect to PDFs (as expected from usual form factors)

- E-GPDs might be more affected by the value of the nucleon boost

x-dependence of GPDs

- H-GPDs compatible at the three nucleon momenta
- H-GPDs suppressed with respect to PDFs (as expected from usual form factors)

- E-GPDs might be more affected by the value of the nucleon boost

x-dependence of GPDs

- H-GPDs compatible at the three nucleon momenta
- H-GPDs suppressed with respect to PDFs (as expected from usual form factors)

- E-GPDs might be more affected by the value of the nucleon boost

GPDs results will be compared with experimental data when they become available!

Outline

(1) Generalized parton distributions
(2) Twist-3 parton distribution functions
(3) Conclusions

Beyond twist-2 distributions: twist-3 PDFs

- Some properties of twist-3 PDFs:
- information about quark-gluon-quark correlations
- connections with TMDs
- suppressed as $1 / Q$ in relation to twist-2 PDFs in structure functions

Helicity g_{T} PDF

- x-dependence not known in phenomenology \Rightarrow Lattice QCD?
- can we test the Wandzura-Wilczek (WW) approximation?
[S. Wandzura and F. Wilczek, Phys. Lett.72B, 195, 1977]

$$
g_{T}(x) \text { may be obtained by: } g_{T}^{W W}(x)=\int_{x}^{1} \frac{d y}{y} g_{1}(y) \quad g_{1}: \text { helicity twist-2 }
$$

\Rightarrow the study of the WW approximation gives direct information about the importance of twist-3 operators

$g_{T}^{u-d}(x)$ from the quasi-PDF approach

$g_{T}^{u-d}(x)$ extracted from:

- Matrix element: $\mathcal{M}_{g_{T}}=\langle N(P)| \bar{\psi}(0) \gamma_{5} \gamma_{j} W(0, z) \psi(z)|N(P)\rangle_{\mu}$
$\gamma_{j}=\gamma_{x}, \gamma_{y}, \quad P=\left(i E, 0,0, P_{3}\right)$
- Fourier transform to momentum space (x)

$$
\text { Quasi- } g_{T}: \quad \widetilde{g}_{T}\left(x, \mu, P_{3}\right)=2 P_{3} \int_{-\infty}^{+\infty} \frac{d z}{4 \pi} e^{-i x P_{3} z} \mathcal{M}_{g_{T}}\left(P_{3}, z\right)
$$

Reconstruction through Backus-Gilbert method [J.Karpie et al, JHEP 04 (2019) 057]

- Matching procedure

$$
g_{T}(x, \mu)=\int_{-\infty}^{\infty} \frac{d \xi}{|\xi|} C\left(\xi, \frac{\mu}{x P_{3}}\right) \widetilde{g}_{T}\left(\frac{x}{\xi}, \mu, P_{3}\right)
$$

[S. Bhattacharya, K. Cichy, M. Constantinou, A. Metz, A. Scapellato, F. Steffens, (2020), arXiv:2005.10939, accepted in PRD]

Results for $g_{T}^{u-d}(x)$

Ensemble: $N_{f}=2+1+1$ twisted mass fermions \& clover term $a \simeq 0.093 \mathrm{fm}, \mathrm{V}=64 \times 32^{3}, m_{\pi}=270 \mathrm{MeV}$
[S. Bhattacharya, K. Cichy, M. Constantinou,
A. Metz, A. Scapellato, F. Steffens, (2020), arXiv:2004.04130]

- Helicity twist-3 is suppressed only for $0.3<x<0.5$
- g_{T} and $g_{T}^{W W}$ are consistent for a large x-range (but violations of WW approximation can still be at the level of 40% for $x \lesssim 0.4$)

Outline

(1) Generalized parton distributions
(2) Twist-3 parton distribution functions
(3) Conclusions

Summary

Using the quasi-distribution approach, first lattice evaluation of:

- Twist-2 $(u-d)$ GPDs
\rightarrow twisted mass fermions, $N_{f}=2+1+1$ at $M_{\pi} \simeq 270 \mathrm{MeV}$
\rightarrow laborious calculation (GPDs multi-dimensional quantities - P_{3}, ξ, t)
$\rightarrow x$-dependence of H and E extracted at $\xi=0$
\rightarrow statistical errors on $H(x)$ allow qualitative comparison with unpolarized PDFs
- Twist-3 $g_{T}^{u-d}(x)$ PDF
\rightarrow twisted mass fermions, $N_{f}=2+1+1$ at $M_{\pi} \simeq 270 \mathrm{MeV}$
\rightarrow matching kernel investigated within this work
\rightarrow first $a b$ initio check of the Wandura-Wilczek approximation

Summary

Using the quasi-distribution approach, first lattice evaluation of:

- Twist-2 $(u-d)$ GPDs
\rightarrow twisted mass fermions, $N_{f}=2+1+1$ at $M_{\pi} \simeq 270 \mathrm{MeV}$
\rightarrow laborious calculation (GPDs multi-dimensional quantities - P_{3}, ξ, t)
$\rightarrow x$-dependence of H and E extracted at $\xi=0$
\rightarrow statistical errors on $H(x)$ allow qualitative comparison with unpolarized PDFs
- Twist-3 $g_{T}^{u-d}(x)$ PDF
\rightarrow twisted mass fermions, $N_{f}=2+1+1$ at $M_{\pi} \simeq 270 \mathrm{MeV}$
\rightarrow matching kernel investigated within this work
\rightarrow first $a b$ initio check of the Wandura-Wilczek approximation

Various systematics need to be addressed:

cutoff effects, finite volume effects, truncation errors in the matching, etc.

Thank you wery muck far your attention

