Relativistic N particle energy shifts in finite volume

$$
\text { APLAT } 2020
$$

Nikolas M. Schlage
in cooperation with
Fernando Romero-López, Akaki Rusetsky, Carsten Urbach

August 06, 2020

State of the Art

- Lattice QCD
\star Multi hadron states
$\star 2$ and 3 particle scattering parameters
- N particles
\star Non-rel. threshold expansion
[Beane, Detmold, Savage, 2007]
\star Rel. threshold expansion
[Romero-López, Rusetsky, Schlage, Urbach, in preparation]
\hookrightarrow Tests in complex scalar φ^{4}-theory

Motivation - Finite Volume Quantities

1) Luischer threshold expansion [Huang, Yang, 1957, Lüscher, 1986]

- Two identical particles
- Relates ΔE_{2} due to two particle scatt. in finite volume L^{3} and a_{0}

$$
\begin{gathered}
\Delta E_{2}=-\frac{4 \pi a_{0}}{M L^{3}}\left[1+c_{1} \frac{a_{0}}{L}+c_{2} \frac{a_{0}^{2}}{L^{2}}\right] \\
a_{0} \hat{=} \text { low energy } S \text {-wave scattering length }
\end{gathered}
$$

Motivation - Finite Volume Quantities

1) Luischer threshold expansion [Huang, Yang, 1957, Lüscher, 1986]

- Two identical particles
- Relates ΔE_{2} due to two particle scatt. in finite volume L^{3} and a_{0}

$$
\begin{gathered}
\Delta E_{2}=-\frac{4 \pi a_{0}}{M L^{3}}\left[1+c_{1} \frac{a_{0}}{L}+c_{2} \frac{a_{0}^{2}}{L^{2}}\right] \\
a_{0} \hat{=} \text { low energy } S \text {-wave scattering length }
\end{gathered}
$$

2) Expansion in L to $\mathcal{O}\left(L^{-6}\right)$ [Beane, Detmold, Savage, 2007, Hansen, Sharpe, 2017, Pang et al., 2019]

Two-body sector effective range
Three-body sector effective range and three-body contact interaction

Motivation

- Previous studies (Romero-López, Rusetsky, Schlage, Urbach)

Motivation

- Previous studies (Romero-López, Rusetsky, Schlage, Urbach)
\star More ensembles \rightarrow more data points

Motivation

- Previous studies (Romero-López, Rusetsky, Schlage, Urbach)
\star More ensembles \rightarrow more data points
\star Increased number of field configurations

Motivation

- Previous studies (Romero-López, Rusetsky, Schlage, Urbach)
\star More ensembles \rightarrow more data points
\star Increased number of field configurations
\star Determine correlation functions for multiparticle states is possible
\rightarrow technical challenge: signal \leftrightarrow thermal pollution

Motivation

- Previous studies (Romero-López, Rusetsky, Schlage, Urbach)
\star More ensembles \rightarrow more data points
\star Increased number of field configurations
\star Determine correlation functions for multiparticle states is possible \rightarrow technical challenge: signal \leftrightarrow thermal pollution
$\star 2$ and 3 particle scattering parameters can be identified consistently

Motivation

- Previous studies (Romero-López, Rusetsky, Schlage, Urbach)
\star More ensembles \rightarrow more data points
\star Increased number of field configurations
\star Determine correlation functions for multiparticle states is possible \rightarrow technical challenge: signal \leftrightarrow thermal pollution
$\star 2$ and 3 particle scattering parameters can be identified consistently
\star Extracted three body coupling constant is significantly different from zero

Motivation

- Questions

Motivation

- Questions
\star Scattering parameters from multi particle energies including 4, 5 particles?
\rightarrow try different fit models, i.a. global fit respecting 2, 3, 4, 5 particles

Motivation

- Questions
\star Scattering parameters from multi particle energies including 4, 5 particles?
\rightarrow try different fit models, i.a. global fit respecting 2, 3, 4, 5 particles
\star Difference between relativistic and non-relativistic model?
\rightarrow Influence of corrections on extracted parameters

Motivation

- Questions
\star Scattering parameters from multi particle energies including 4, 5 particles?
\rightarrow try different fit models, i.a. global fit respecting 2, 3, 4, 5 particles
\star Difference between relativistic and non-relativistic model?
\rightarrow Influence of corrections on extracted parameters
\star Results in agreement with predictions from perturbation theory?

Motivation

- Questions
\star Scattering parameters from multi particle energies including 4, 5 particles?
\rightarrow try different fit models, i.a. global fit respecting 2, 3, 4, 5 particles
\star Difference between relativistic and non-relativistic model?
\rightarrow Influence of corrections on extracted parameters
\star Results in agreement with predictions from perturbation theory?
\star Impact of exponentially suppressed corrections on extracted scattering parameters?

Theoretical Foundations $-N$ Particle Energy Shift

$$
\Delta E_{N}(L) \rightarrow S \text {-wave scattering parameters }
$$

2007:

Non-relativistic threshold expansion, N particle ground state

[Beane, Detmold, Savage, 2007]

Theoretical Foundations $-N$ Particle Energy Shift

$$
\Delta E_{N}(L) \rightarrow S \text {-wave scattering parameters }
$$

2007:

Non-relativistic threshold expansion, N particle ground state [Beane, Detmold, Savage, 2007]

2020:

Relativistic threshold expansion, N particle ground state
[Romero-López, Rusetsky, Schlage, Urbach, in preparation]

Theoretical Foundations $-N$ Particle Energy Shift

Threshold expansion for N particle ground state

$$
\begin{aligned}
\Delta E_{N}(L)= & \binom{N}{2} \frac{4 \pi a_{0}}{M_{\varphi} L^{3}}\left[1+c_{1}\left(\frac{a_{0}}{\pi L}\right)+c_{2}(N)\left(\frac{a_{0}}{\pi L}\right)^{2}+c_{3}(N)\left(\frac{a_{0}}{\pi L}\right)^{3}\right. \\
& \left.+c_{4}(N) \frac{\pi a_{0}}{M_{\varphi}^{2} L^{3}}+c_{5}(N) \frac{\pi a_{0}^{2} r_{0}}{L^{3}}\right] \\
& +\binom{N}{3}\left[\frac{32 \pi a_{0}^{4}}{M_{\varphi} L^{6}}(3 \sqrt{3}-4 \pi)\left(\ln \left(M_{\varphi} L\right)^{2}-\Gamma^{\prime}(1)-\ln (4 \pi)\right)-\frac{\overline{\mathcal{T}}}{6 L^{6}}\right] \\
& +\mathcal{O}\left(L^{-7}\right)
\end{aligned}
$$

[Romero-López, Rusetsky, Schlage, Urbach, in preparation]

$$
\begin{array}{ll}
N \hat{=} \text { Number of particles } & a_{0} \hat{=} \text { Scattering length } \\
E_{N} \hat{=} \text { Interaction } N \text { particle energy } & r_{0} \hat{=} \text { Effective range } \\
M_{\varphi} \hat{=} \text { Large vol. particle mass } & \overline{\mathcal{T}} \hat{=} \text { Rel. threshold amplitude }
\end{array}
$$

Simulation - Parameter extraction

- Complex φ^{4}-Theory

$$
\begin{gathered}
\mathcal{S}[\varphi]=\int \mathrm{d}^{4} x\left[\partial_{\mu} \varphi^{*} \partial^{\mu} \varphi-m^{2}|\varphi|^{2}-\lambda|\varphi|^{4}\right] \\
\hookrightarrow \mathcal{S}=\sum_{x}\left[\left(-\kappa \sum_{\mu} \varphi_{x}^{*} \varphi_{x+\mu}+\text { c.c. }\right)+\lambda^{\prime}\left(\left|\varphi_{x}\right|^{2}-1\right)^{2}+\left|\varphi_{x}\right|^{2}\right]
\end{gathered}
$$

$a \hat{=}$ lattice spacing $\quad \kappa \hat{=}$ hopping parameter $\quad \lambda^{\prime} \equiv \kappa^{2} \lambda$

- Parameter choice:

$$
m^{2}=-4.9, \quad \lambda=10.0 \quad \Rightarrow \quad \lambda^{\prime}=0.253308, \quad \kappa=0.159156
$$

- Field configurations (Metropolis) $\rightarrow 1$ to 5 particle correlation function
\Rightarrow Extract $a_{0}, r_{0}, \overline{\mathcal{T}}$

Technical Details

- Periodic boundary conditions
- Interpolation operator for N-particle state

$$
\hat{\mathcal{O}}_{N \varphi}(x)=(\varphi(x))^{N}
$$

- Correlation functions

N-particle correlator

$$
C_{N}(t)=\left\langle\hat{\mathcal{O}}_{N \varphi}^{\prime}(t) \hat{\mathcal{O}}_{N \varphi}^{\dagger}(0)\right\rangle
$$

Technical Details

- Periodic boundary conditions
- Interpolation operator for N-particle state

$$
\hat{\mathcal{O}}_{N \varphi}(x)=(\varphi(x))^{N}
$$

- Correlation functions

N-particle correlator

$$
C_{N}(t)=\left\langle\hat{\mathcal{O}}_{N \varphi}^{\prime}(t) \hat{\mathcal{O}}_{N \varphi}^{\dagger}(0)\right\rangle
$$

Expand sum in limit $T \rightarrow \infty$

$$
C_{N}(t)=A_{N}^{2} \cdot \frac{1}{2}\left(e^{-E_{N} t}-e^{-E_{N}(T-t)}\right)
$$

\hookrightarrow pollution terms vanish in this limit

Technical Details - Thermal Pollution Terms

- In practice thermal pollution terms have to be taken into account!

Technical Details - Thermal Pollution Terms

- In practice thermal pollution terms have to be taken into account!
- Expansion of correlation functions in an infinite sum of eigenstates:
- $C_{1}(t): \quad$ Unpolluted signal
- $C_{2}(t): \quad$ Signal + constant pollution term
- $C_{3}(t)$:

$$
\begin{aligned}
& C_{3}(t)=\left|A_{3 \leftrightarrow 0}^{(3)}\right|^{2} \exp \left(-E_{3} \frac{T}{2}\right) \cosh \left(E_{3}\left(t-\frac{T}{2}\right)\right) \\
&+\left|A_{2 \leftrightarrow 1}^{(3)}\right|^{2} \exp \left(-\left(E_{2}+M_{\varphi}\right) \frac{T}{2}\right) \cosh \left(\left(E_{2}-M_{\varphi}\right)\left(t-\frac{T}{2}\right)\right)
\end{aligned}
$$

- $C_{4}(t), C_{5}(t)$:
t-dependent + const. pollution, t-dependent pollutions

Numerical Results - Correlator Example

One particle correlator
 $$
C_{1}(t) \text {-fit } \rightarrow M_{\varphi} \equiv E_{1}
$$

Numerical Results - Energy Shift Ratios

Threshold expansion:
expect for shift ratio

$$
\frac{\Delta E_{N}}{\Delta E_{2}}=\binom{N}{2}+\mathcal{O}\left(L^{-5}\right)
$$

\hookrightarrow Valid as a first test, not enough for parameter extraction

Numerical Results - M_{φ} at Infinite L

L dependence of single particle mass

$$
M_{\varphi}(L)=M_{\infty}+c_{M} \cdot \frac{K_{1}\left(M_{\infty} L\right)}{M_{\infty} L}
$$

$K_{\nu}(z) \hat{=}$ mod. Bessel func. of 2nd kind [Gasser, Leutwyler, 1987]

- Result from fit:

$$
M_{\infty}=0.2037(2)
$$

- Result from publication*:

$$
M_{\infty}=0.2027(2)
$$

*[Romero-López, Rusetsky, Urbach, 2018]

Numerical Results -2 Particle Sector: Phase Shift Fit

S-wave phase shift

[Lüscher, 1991]

$$
\begin{aligned}
& \cot \delta=\frac{Z_{00}\left(1, q^{2}\right)}{\pi^{3 / 2} q}, \quad q=\frac{L k}{2 \pi} \\
& \text { with } E_{2}=2 \sqrt{k^{2}+M(L)^{2}}
\end{aligned}
$$

Numerical Results -2 Particle Sector: Phase Shift Fit

S-wave phase shift
 [Lüscher, 1991]

$\cot \delta=\frac{Z_{00}\left(1, q^{2}\right)}{\pi^{3 / 2} q}, \quad q=\frac{L k}{2 \pi}$
with $E_{2}=2 \sqrt{k^{2}+M(L)^{2}}$

Effective range expansion

$[k \cot \delta]\left(k^{2}\right)=-\frac{1}{a_{0}}+\frac{r_{0} k^{2}}{2}+\mathcal{O}\left(k^{4}\right)$
Results (p-value $=0.62$):
$a_{0}=0.407(17), r_{0}=-274(23)$

Numerical Results - Global Energy Shift Fit

Global fit model

$$
\chi_{\text {global }}^{2}(\vec{p})=\sum_{N=2}^{5} \sum_{i \in D_{N}} \frac{\left[\Delta E_{N, \text { data }}\left(L_{i}\right)-\Delta E_{N}(L, \vec{p})\right]^{2}}{\left[\Delta\left(\Delta E_{N, \text { data }}\left(L_{i}\right)\right)\right]^{2}}
$$

$L \hat{=}$ independent variable
$\vec{p} \hat{=}$ vector containing the fit parameter

- Find set of parameters $\left\{a_{0}, r_{0}, \overline{\mathcal{T}}\right\}$ that minimizes $\chi_{\text {global }}^{2}(\vec{p})$

Numerical Results - Global Energy Shift Fit

Global $\Delta E_{N}(L)$-fit

$$
\text { with } N=2,3,4,5 \text { to } \mathcal{O}\left(L^{-6}\right)
$$

Numerical Results - Global Energy Shift Fit

Global $\Delta E_{N}(L)$-fit

$$
\text { with } N=2,3,4,5 \text { to } \mathcal{O}\left(L^{-6}\right)
$$

- Fit interval $\left[L_{\text {min }}, L_{\text {max }}\right]=[10,24]$
- Find best fit: Fix $L_{\text {max }}$, vary $L_{\text {min }}$

Numerical Results - Global Energy Shift Fit

Resulting parameters

$$
\text { from Global } \Delta E_{N}(L) \text {-fit to } \mathcal{O}\left(L^{-6}\right)
$$

exp. c.	rel. c.	a_{0}	r_{0}	\mathcal{T}	p-value
\times	\times	$0.438(15)$	$-320(21)$	$-362327(52137)$	0.63
\times	\checkmark	$0.438(15)$	$-292(21)$	$-265422(46637)$	0.63
\checkmark	\times	$0.439(15)$	$-255(22)$	$-286929(47814)$	0.65
\checkmark	\checkmark	$0.439(15)$	$-227(22)$	$-189799(42507)$	0.65

\hookrightarrow Reliable results? $\quad \Rightarrow$ compare with perturbation theory

Numerical Results - Comparison with Perturbation Theory

Perturbation theory:

One-loop values of the scattering length, threshold amplitude

$$
\begin{array}{ll}
r_{0}=-\frac{1}{M_{\varphi}^{2} a_{0}}+\frac{20}{3 \pi M_{\varphi}} & \Rightarrow r_{0} \approx-50 \\
\overline{\mathcal{T}}=\frac{288 \pi^{2} a_{0}^{2}}{M_{\varphi}^{3}} & \Rightarrow \overline{\mathcal{T}} \approx+57000
\end{array}
$$

\hookrightarrow This does not match the previous results!

Numerical Results - Comparison with Perturbation Theory

- Reduce \# of free fit param. in a rel. approach where r_{0} is fixed

Numerical Results - Comparison with Perturbation Theory

- Reduce \# of free fit param. in a rel. approach where r_{0} is fixed
- Perturbation theory:

$$
r_{0}=-\frac{1}{M_{\varphi}^{2} a_{0}}+\frac{20}{3 \pi M_{\varphi}}
$$

\hookrightarrow Substitute this into N-particle energy shift model

Numerical Results - Comparison with Perturbation Theory

- Reduce \# of free fit param. in a rel. approach where r_{0} is fixed
- Perturbation theory:

$$
r_{0}=-\frac{1}{M_{\varphi}^{2} a_{0}}+\frac{20}{3 \pi M_{\varphi}}
$$

\hookrightarrow Substitute this into N-particle energy shift model

- Fit to order L^{-6} within $\left[L_{\text {min }}, L_{\text {max }}\right]=[12,24]$

priors	a_{0}	$\overline{\mathcal{T}}$	p-value	r_{0}
-	$0.412(11)$	$42559(12695)$	0.46	$-48(2)$
a_{0}	$0.414(11)$	$40462(13274)$	0.34	$-48(2)$

Numerical Results - Comparison with Perturbation Theory

- Reduce \# of free fit param. in a rel. approach where r_{0} is fixed
- Perturbation theory:

$$
r_{0}=-\frac{1}{M_{\varphi}^{2} a_{0}}+\frac{20}{3 \pi M_{\varphi}}
$$

\hookrightarrow Substitute this into N-particle energy shift model

- Fit to order L^{-6} within $\left[L_{\text {min }}, L_{\text {max }}\right]=[12,24]$

priors	a_{0}	\mathcal{T}	p-value	r_{0}
-	$0.412(11)$	$42559(12695)$	0.46	$-48(2)$
a_{0}	$0.414(11)$	$40462(13274)$	0.34	$-48(2)$

\hookrightarrow Best agreement with perturbation theory predictions

$$
r_{0} \approx-50, \overline{\mathcal{T}} \approx 57000
$$

χ^{2} heat map for the global fit to order L^{-6} without priors

\hookrightarrow Discrepancy between global fit results and predictions from perturbation theory

Conclusion

- Results
* Important to take relativistic and exponentially suppressed corrections into account
$\star a_{0}$ reproducible in continuum perturbation theory
\star Significant discrepancy between global fit results and predictions from perturbation theory for r_{0} and $\overline{\mathcal{T}}$
$\star r_{0}$ and $\overline{\mathcal{T}}$ correlated \rightarrow if r_{0} is fixed properly then also $\overline{\mathcal{T}}$ is correct

Conclusion

- Results
\star Important to take relativistic and exponentially suppressed corrections into account
$\star a_{0}$ reproducible in continuum perturbation theory
\star Significant discrepancy between global fit results and predictions from perturbation theory for r_{0} and $\overline{\mathcal{T}}$
$\star r_{0}$ and $\overline{\mathcal{T}}$ correlated \rightarrow if r_{0} is fixed properly then also $\overline{\mathcal{T}}$ is correct
- Interpretation
\star Continuum perturbation theory does not describe lattice φ^{4}-theory well
\star Large discretization effects must be expected

What else?

- Investigate excited states
- Investigate moving frames
- Lattice QCD

What else?

- Investigate excited states
- Investigate moving frames
- Lattice QCD

Thanks for your attention.

Appendix - Number of Field Configurations with $T=48$

Finite hyper-cubic lattice

$$
V=48 \times L^{3}
$$

L	$n_{\text {conf }}$	L	$n_{\text {conf }}$
6	100,000	16	100,000
7	100,000	17	100,000
8	100,000	18	100,000
9	100,000	19	100,000
10	100,000	20	80,000
11	100,000	21	70,000
12	100,000	22	50,000
13	100,000	23	50,000
14	100,000	24	30,000
15	100,000		

K. Huang, C. N. Yang, Phys. Rev 105, 767 (1957)
M. Lüscher, Commun. Math. Phys. 105, 153-188 (1986)
S. R. Beane, W. Detmold, M. J. Savage, https://arxiv.org/pdf/0707.1670.pdf (2007)
M. T. Hansen, S. R. Sharpe, https://arxiv.org/pdf/1602.00324.pdf (2017)

Pang et al., https://arxiv.org/pdf/1902.01111.pdf (2019)
F. Romero-López, A. Rusetsky, C. Urbach, https://arxiv.org/pdf/1806.02367.pdf (2018)

F. Romero-López, A. Rusetsky, N. Schlage, C. Urbach, Publication in preparation
J. Gasser, H. Leutwyler, Phys. Lett. B 184, 83-88 (1987)
G. Colangelo and S. Durr, Eur. Phys. J. C 33 (2004) 543; G. Colangelo, S. Durr and C. Haefeli, Nucl. Phys. B 721, 136 (2005)
0 M. Lüscher, Nucl. Phys. B 354, 531 (1991)

