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Introduction

What is the mechanism of quark confinement?

A promising scenario is the dual superconductor picture of the QCD vacuum.
[Nambu,1974][’t Hooft,1975][Mandelstam,1976]

One of the remarkable facts on this picture found in the preceding studies is Infrared
Abelian dominance : The Abelian part (or diagonal component) of the gauge field
becomes dominant for quark confinement in the low-energy or long-distance region
[Ezawa & Iwazaki,1982].

This hypothesis was confrmed by:
Abelian dominance of the string tension:The string tension of the linear potential in
the static quark-antiquark potential can be reproduced by the Abelian part alone [Suzuki
& Yotsuyanagi,1990].
Dynamical generation of the off-diagonal gluon mass: The off-diagonal gluon
propagator exhibits the exponential fall-off in the distance [Amemiya & Suganuma,1999].

However, these results were obtained only in the specific gauge called the maximal
Abelian (MA) gauge based on the idea of Abelian projection method proposed by [’t
Hooft,1981].
The gauge invariance or independence was not clear in the Abelian projection method
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Introduction (cont’)

The decomposition method :

We have succeeded to demonstrate the Abelian dominance of the string tension in the
gauge-invariant way based on the novel reformulation of the Yang-Mills theory in terms
of the new field variables obtained from the gauge covariant decomposition method and
the non-Abelian Stokes theorem for the Wilson loop operator .

For more details, see the review: K.-I. Kondo, S. Kato, T. Shinohara and A. Shibata,
Phys. Rept 579, 1–226 (2015). arXiv:1409.1599 [hep-th]

In the decomposition method, the Lie algebra valued Yang-Mills filed is decomposed
into two parats in the gauge-independent way: Aµ(x) = Vµ(x) +Xµ(x) , where
Vµ, called the restricted filed, corresponds to the ”Abelian” or diagonal part in the
Abalian projection method, and
Xµ, called the remaining part, corresponds to the off-diagonal part.

How about the Abelian dominance of the diagonal propagator?

The propagator can be obtained only after the gauge fixing. Therefore, Abelian
dominance of the diagonal propagator cannot be extended in the gauge invariant way.

Instead, however, we can give a gauge-invariant definition for the off-diagonal gluon
mass.

Therefore, we can study the mass generation of the off-diagonal gluon mass in the
gauge-invariant way.
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Lattice result for pure Yang-Mills theory

The followings are the results by the decomposition method.

Abelian dominance of the string tension:
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Lattice result for pure Yang-Mills theory (cont’)

Dynamical generation of the off-diagonal gluon mass:
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Introduction (cont’)

The decomposition method is based on the gauge-independent description of the
Brout-Englert-Higgs (BEH) mechanism proposed recently by [Kondo, 2016, 2018],
which needs

neither the spontaneous breaking of gauge symmetry G → H,

nor the non-vanishing vacuum expectation value of the scalar field 〈0|φ(x)|0〉 := v 6= 0.

To explain it, we need to introduce a specific gauge-scalar model (complementary
gauge-scalar model) which reduces to the Yang-Mills theory with a gauge-invariant
gluon mass term (massive Yang-Mills theory) .

The gauge-invariant gluon mass term
simulates the dynamically generated mass to be extracted in the low-energy effective
theory of the Yang-Mills theory
and plays the role of a new probe to study confinement mechanism through the phase
structure (Confinement phase, Higgs phase, deconfinement phase) in the
gauge-invariant way.
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In this talk, we discuss how the numerical method for the proposed massive Yang-Mills
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BEH mechanism for the gauge-scalar model

We consider G = SU(2) gauge-scalar model with a single adjoint scalar field characterized
by the gauge-invariant Lagrangian (no potential term):

LGS = LYM +Lkin = −1

2
tr{F µν(x)Fµν(x)}+ tr{(Dµ[A ]φ(x))(Dµ[A ]φ(x))},

where the Lie algebra valued Yang-Mills field Aµ(x) = A A
µ (x)TA (A = 1, 2, 3) obey the

gauge transformation:

Aµ(x)→ U(x)Aµ(x)U
−1(x) + ig−1U(x)∂µU

−1(x), U(x) ∈ G = SU(2)

and the Lie algebra valued scalar field φ(x) = φA(x)TA (A = 1, 2, 3) has the fixed radial
length (modulus) v > 0:

φ(x) ·φ(x) ≡ 2tr{φ(x)φ(x)} = φA(x)φA(x) = v2.

and transforms according to the adjoint representation under the gauge transformation:

φ(x)→ U(x)φ(x)U−1(x), U(x) ∈ G = SU(2),

The covariant derivative Dµ[A ] := ∂µ − ig [Aµ, ·] transforms according to the adjoint

representation under the gauge transformation: Dµ[A ]→ U(x)Dµ[A ]U−1(x).
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Conventional description for the BEH mechanism

Suppose that the scalar field φ(x) acquires a non-vanishing vacuum expectation value
(VEV): 〈φ(x)〉 = 〈φ〉 = 〈φA〉TA. Then the covariant derivative of the scalar field is

Dµ[A ]φ(x) := ∂µφ(x)− ig [Aµ(x), φ(x)]→ −ig [Aµ(x), 〈φ〉] + ....

Consequently, the kinetic term of the scalar field is modified into

tr{(Dµ[A ]φ(x))(Dµ[A ]φ(x))} →− g2trG{[A µ(x), 〈φ〉][Aµ(x), 〈φ〉]}+ ...

=− g2trG{[TA, 〈φ〉][TB , 〈φ〉]}A µA(x)A B
µ (x) + ....

If the non-vanishing VEV 〈φ〉 = 〈φA〉TA of the scalar field φ is chosen to a specific
direction, e.g., 〈φ〉∞ = 〈φ3〉T3, [unitary gauge] uniformly over the spacetime, then the
original local continuous gauge symmetry G = SU(2) is spontaneously broken to a
subgroup H = U(1).

Thus the kinetic term of the scalar field generates the mass term of the gauge field:

− g2trG{[TA, vT3][TB , vT3]}A µAA B
µ =

1

2
(gv)2(A µ1A 1

µ +A µ2A 2
µ ), v := 〈φ3〉.

The off-diagonal gluons A 1
µ , A 2

µ acquire the same mass MW := gv = g〈φ〉∞,

The diagonal gluon A 3
µ remains massless.

This description of the BEH mechanism depends on the specific gauge and
is not gauge independent. Indeed, VEV 〈φ〉∞ is not a gauge invariant quantity.
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Gauge-independent description for the BEH mechanism

We explain a gauge-independent description for the BEH mechanism, which does not rely on
the SSB. [K.-I. Kondo, Phys. Lett. B762, 219–224 (2016). arXiv:1606.06194 [hep-th]].

We construct a composite vector field Wµ(x) which consists of Aµ(x) and φ(x):

Wµ(x) := −ig−1[φ̂(x), Dµ[A ]φ̂(x)], φ̂(x) := φ(x)/v .

We find that the kinetic term of the scalar field φ is identical to the “mass term” of the
vector field Wµ:

Lkin =
1

2
Dµ[A ]φ̂(x) ·Dµ[A ]φ̂(x) =

1

2
M2

WW µ(x) ·Wµ(x), MW := gv ,

as far as the constraint (φ̂(x) · φ̂(x) = 1) is satisfied.

This “mass term” of Wµ is gauge invariant, since Wµ obeys the adjoint gauge
transformation:

Wµ(x)→ U(x)Wµ(x)U
−1(x).

The Wµ gives a gauge-independent definition of the massive gluon mode in the operator
level. The massive mode Wµ can be described without breaking the original gauge
symmetry. (We do not need to choose a specific vacuum from all possible degenerate
ground states distinguished by the direction of φ.)
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Complementary gauge-scalar model for the Yang-Mills theory

In the gauge-scalar model, Aµ(x) and φ(x) are independent field variables.

However, the Yang-Mills theory should be described by the Yang-Mills field Aµ(x) alone
and hence φ must be supplied as a composite field made from the gauge field Aµ(x)
due to the strong interactions.
[the scalar field φ is to be given as a (complicated) functional of the gauge field Aµ(x).]

This is achieved by imposing the constraint which we call the reduction condition:

χ(x) := [φ̂(x), Dµ[A ]Dµ[A ]φ̂(x)] = 0

⇐⇒
Dµ[A ]Wµ(x) = Dµ[A ](−ig−1)[φ̂(x), Dµ[A ]φ̂(x)] = χ(x) = 0

This condition is gauge covariant, χ(x)→ U(x)χ(x)U−1(x).

The reduction condition plays the role of eliminating the extra degrees of freedom
introduced by the radially fixed adjoint scalar field into the Yang-Mills theory, since χ
represents two conditions due to

χ(x) · φ̂(x) = 0.
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Complementary gauge-scalar model for the Yang-Mills theory (2)

Therefore, the complementary gauge-scalar model (massive Yang-Mills theory) is
characterized by the gauge-invariant Lagrangian (no potential term):

LmYM = LYM +Lkin

= −1

2
tr{F µν(x)Fµν(x)}+ tr{(Dµ[A ]φ̂(x))(Dµ[A ]φ̂(x))}

where the scalar field φ̂ is to be given by solving the reduction condition:

χ(x) := [φ̂(x), Dµ[A ]Dµ[A ]φ̂(x)] = 0

Thus, the “complementary” gauge-scalar model is defined by taking into account the
Faddeev-Popov determinant ∆̃red associated with the reduction condition χ = 0 as

Z̃RF =
∫
DADφ̂ δ (χ)∆rede−SYM[A ]−Skin[A ,φ̂].
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Massive Yang-Mills theory on the lattice

Then, we discuss the numerical simulation for the proposed massive Yang-Mills theory on
the lattice.
By taking into account the reduction condition in the complementary gauge-scalar model,
the gauge-invariant mass term is introduced:

ZL =
∫
D[U ]D[φ]δ(φ− n̂)e−βSg−γSm

Sg [U ] := ∑
x

∑
µ>ν

2 Re tr
(

1− Ux ,µUx+µ,νU
†
x+ν,µU

†
x ,ν

)
Sm[U, φ] := ∑

x ,µ

tr
(
(Dε

µ[U ]φx )
†(Dε

µ[U ]φx )
)

, Dε
µ[U ]φx := Ux ,µφx+µ −φxUx ,µ

where Ux ,µ ∈ SU(2) is the link variable, φ = φAT
A ∈ su(2) is the color field (scalar field

φ) with φ ·φ = 1, and Dε
µ[U ]φx is the covariant derivative.

δ(φ− φ̂) represents the reduction condition in the complementary gauge-scalar model, and
φ̂ is the solution of the reduction condition for given gauge configuration, which is obtaine
by minimizing the functional:

Fred(φ;U) := ∑
x ,µ

tr
(
(Dε

µ[U ]φx )
†(Dε

µ[U ]φx )
)
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Nnmerical Simulation

Now, we perform the MC simuration to genarate the gauge configuration:

ρ[U, φ] :=
δ(φ− φ̂)e−βSg (U)−γSm(U,φ)

ZL
, φ̂ : the solution minimizing Fred(φ;U)

ZL =
∫
D[U ]D[φ]δ(φ− φ̂)e−βSg (U)−γSm(U,φ)

Without the reduction condition (or δ(φ− φ̂)) , this model is reduced into the usual
gauge-scalar model with a radially fixed scalar field.

If γ = 0, the model is reduced into the usual Yang-Mills theory with the standard
Wilson action.

In the massive Yang-Mills theory, Ux ,µ and φ are no more independent field variables.

Thus, the gauge configurations must be updated by solving the reduction condition
simultaneously.
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Reweighting method

For the region γ ∼ 0, we can use the rewaiting technique.

Thus, we generate configurations for the standard Willson action

ρ[U ] =
e−βSg (U)

ZL
, ZL =

∫
D[U ]e−βSg (U)

To obtain the color field (scalar field) configuration φ, we solve the reduction condition
for each gauge configuration by minimizing the fanctional:

Fred(φ;U) := ∑
x ,µ

tr
(
(Dε

µ[U ]φx )
†(Dε

µ[U ]φx )
)

.

The color field φ̂ is obtained as function of the gauge configuration. φ̂ = φ̂[U]

The observable O is measured by reweiting method.

〈O〉 := ∑O[U, φ̂]e−γSm(U,φ̂)

∑ e−γSm(U,φ̂)
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Results from the reweighting method

M := 1
Nsite

∑x ,µ tr((Dε
µ[U ]φx )

†(Dε
µ[U ]φx )) :
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histgram of the mass term: M. (Right) The mesurement of the 〈M〉 for various γ

In the last lattice conference, we give the first lattice calcuration of Yang-Mills theory
with “a gauge-invariant gluon mass term” for small mass parater γ by using the
reweithing technique.
It has been found that the reweighting method can be applied only to a region where γ
is very small.
Therefore, the full simulation with gluon mass term to investigate the whole parameter
space of the gauge coupling β and the mass term γ.
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HMC algorithm

We first look at the gauge-scalar model.

ρ[U, φ] :=
e−βSg (U)−γSm(U,φ)

ZL
, ZL =

∫
D[U ]D[φ]e−βSg (U)−γSm(U,φ)

When we introduce the cannonical momentums πl = πA
l T

A and ρl = ρAl T
A which

conjugate to X l = TAXA
l with Ul = exp(iX l ) and φx = φA

x T
A, respectively, we obtain

Hamitonian to evaluate the HMC method:

H =
1

2 ∑
l

πl ·πl +
1

2 ∑
x

ρx · ρx + βSg (U) + γSm(U, φ) + ∑
x

νx (φx ·φx − 1)

where the variables νx are Lagrange multipliers for the constraints.

Usual HMC algorithm can be applicable.

Ux ,µ and φ are independent, and the valiables can be updated separately.

As for the constraint φx ·φx = 1, it can be normalized for every step of solving the
differentail equation.
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HMC algorithm (2)

The massive Yang-Mills theory :

ρ[U, φ] :=
δ(φ− φ̂)e−βSg (U)−γSm(U,φ)

ZL
, φ̂ : the solution minimizing Fred(φ;U)

ZL =
∫
D[U ]D[φ]δ(φ− φ̂)e−βSg (U)−γSm(U,φ)

We have further constraints called ”reduction condition”, i.e., φ̂ is obtained by
minimizing the function Fred[φ;U ]. However, this is not suitable for HMC, so we set
other equavalent constraints, i.e., the stational condition for the finctional:

∂

∂φA
x

Fred(φ,U) = 0, for all sites and A=1,2,3,

Thus, we have the Hamiltonian with constraints for HMC:

HT =
1

2 ∑
l

πl ·πl +
1

2 ∑
x

ρx · ρx + βSg (U) + γSm(U, φ)

+ ∑
x

νx (φx ·φx − 1) + ∑
x ,A

λA
x

∂

∂φA
x

Fred(φ,U),

where we have additional are Lagrange multipliers λA
x for the constraints.
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HMC algorithm (3)

HT = 1
2 ∑l πl ·πl +

1
2 ∑x ρx · ρx

+βSg (U) + γSm(U, φ)

+∑x νx (φx ·φx − 1) + ∑x ,A λA
x

∂
∂φA

x
Fred(φ,U),

Ux ,µ and φ are no more independent field variables.

The gauge configurations must be updated by solving the reduction condition
simultaneously.

The intersection of the constraints defines the region that variable (φA
x ,Ux ,µ) can teke:

G := {φA
x ,Ux ,µ| ∂

∂φA
x
Fred(φ,U) = 0; φx ·φx = 1}

Updating the configuration is the same as solving the motion of a particle on the
constraining surface G under the potential V = βSg (U) + γSm(U, φ).
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Summary

In order to clarify the mechanism of quark confinement in the Yang-Mills theory with
the mass gap, we propose to investigate the massive Yang-Mills model, namely,
Yang-Mills theory with “a gauge-invariant gluon mass term” to be deduced from a
specific gauge-scalar model with a single radially-fixed scalar field under a suitable
constraint called the reduction condition.

We first explain why such a gauge-scalar model is constructed without breaking the
gauge symmetry through the gauge-independent description of the Brout-Englert-Higgs
mechanism which does not rely on the spontaneous breaking of gauge symmetry.

This gives the massive Yang-Mills theory with gauge invariant mass term as the
complementary gauge-scalar model for the Yang-Mills theory.

Then we discuss how the numerical simulations for the proposed massive Yang-Mills
theory can be performed by taking into account the reduction condition in the
complementary gauge-scalar model on a lattice.
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Outlook

We will develop HMC algorithms with reduction condition constraints to investigate the
whole parameter space of the gauge coupling β and the mass term γ.

The gluon mass term simulates the dynamically generated mass to be extracted in the
low-energy effective theory of the Yang-Mills theory and plays the role of a new probe to
study the phase structure and confinement mechanism.

The phase diagram in the β–γ plain.

THe gluon mass dependence of string tension.

We should take care of the fact that massive Yang-Mills models of distinct types are
obtained depending on representations of the scalar field.

For the fundamental representation,the massive Yang-Mills model is expected to have a
single confining phase with continuously connecting confining and Higgs regions as
suggested by the Fradkin-Shenker continuity.

For the adjoint representation,the two regions will be separated by the phase transition
and become two different phases showing confinement and deconfinement even at zero
temperature.
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