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1. Introduction

Color confinement problem not yet solved.

Almost half a century history !!!

1. 1963: Quark model (Gell-Mann and Zweig): fractionally charged quarks are searched, but

not observed.

2. 1974-75: Idea of dual superconductor (electric ↔ magnetic) as the color-confinement

mechanism (’tHooft-Mandelstam): Something color magnetic must be condensed.

3. 1981: ’tHooft idea of monopole in QCD: A partial gauge-fixing SU(3) → U(1)× U(1)

and Abelian projection: Monopoles appear as a topological object. Numerical data

supporting this idea are shown especially on the basis of maximally Abelian gauge. But this

idea has a serious problem of gauge dependence.

The key point is to find a gauge-independent color magnetic
quantity, a magnetic monopole in QCD without any additional
assumption.
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2. A complete new idea of magnetic monopoles in QCD

Note the Jacobi identities:

ϵµνρσ[Dν, [Dρ, Dσ]] = 0,

where Dµ ≡ ∂µ − igAµ. Calculate explicitly:

[Dρ, Dσ] = [∂ρ − igAρ, ∂σ − igAσ]

= −ig(∂ρAσ − ∂σAρ − ig[Aρ, Aσ]) + [∂ρ, ∂σ]

= −igGρσ + [∂ρ, ∂σ]

[∂ρ, ∂σ] can not be neglected in general!!

DνG
∗
µν = 0 → Non-Abelian Bianchi identity (NABI):

fµν ≡ ∂µAν − ∂νAµ = (∂µA
a
ν − ∂νA

a
µ)σ

a/2

∂νf
∗
µν = 0 → Abelian-like Bianchi identity:
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Jacobi identity + [Dν, Gρσ] = DνGρσ

=⇒ DνG
∗
µν =

1

2
ϵµνρσDνGρσ

= −
i

2g
ϵµνρσ[Dν, [∂ρ, ∂σ]]

=
1

2
ϵµνρσ[∂ρ, ∂σ]Aν = ∂νf

∗
µν

Jµ =
1

2
J

a
µσ

a
= DνG

∗
µν = ∂νf

∗
µν =

1

2
k
a
µσ

a
= kµ

ka
µ ̸= 0 → color magnetic Abelian-like monopole: ∂µkµ = 0

Ja
µ ̸= 0 → Violation of NABI

Color magnetic monopoles= Violation of non-Abelian Bianchi
identity (VNABI) :Reference C. Bonati et al,, P.R.D81, 085022 (2010)

[∂ρ, ∂σ]Aν ̸= 0

⇓
Line singularities existing in gauge fields Aµ(x) themselves!!! are
the origin of the QCD monopoles andN2 − 1 monopoles exist in
SU(N).
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3. Lattice studies of the new QCD magnetic monopoles

Consider one-colored monopole k1(s, µ) among three ka(s, µ) (a = 1 ∼ 3 in SU(2)) or

eight (a = 1 ∼ 8 in SU(3)) monopoles defined following DeGrand-Toussait.

Lattice monopole is not gauge-invariant. But Elitzer’s theorem says that gauge-invariant

contents, if exist, can be extracted by Monte-Carlo average of gauge-variant quantities.

S. Elitzur, P.R. D12 (1975) 3978.

Lattice monopole after Abelian projection

Maximize R =
∑

s,µ ReTr eiθ1(s,µ)λ1U†(s, µ)

⇓

θ1(s, µ) = tan
−1Im(U12(s, µ) + U21(s, µ))

Re(U11(s, µ) + U22(s, µ))

θ1(s, µν) = ∂µθ1(s, ν) − ∂νθ1(s, µ)

= θ̄1(s, µν) + 2πn1(s, µν) (|θ̄1(s, µν)| < π)

k
1
(s, µ) =

1

2π
∂νθ̄1(s, µν)
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Pefect monopole dominance about the string tension

Evaluate

Vmon(R) = −
1

aNt

ln⟨Pmon(0)P
∗
mon(R)⟩ .

PA = exp[i

Nt−1∑
k=0

θ1(s + k4̂, 4)] = Pph · Pmon ,

Pph = exp{−i

Nt−1∑
k=0

∑
s′

D(s + k4̂ − s
′
)∂

′
νΘ̄1(s

′
, ν4)} ,

Pmon = exp{−2πi

Nt−1∑
k=0

∑
s′

D(s + k4̂ − s
′
)∂

′
νn1(s

′
, ν4)}
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Take average over 4000 ∼ 7000 (in SU(2)) and more than 60000 (in SU(3) thermalized

vacua and their random gauge-transformed vacua 4000 times for each one.

Table 1: Best fitted values of the string tension σa2, the Coulombic coefficient c, and the

constant µa for the potentials VNA, VA, Vmon and Vph.

SU(2) nconf=5000 ngf=1000 β = 2.53

363 × 6 σa2 c µa FR(R/a) χ2/Ndf

VNA 0.072(3) 0.48(9) 0.53(3) 4.6 - 12.1 1.03

VA 0.073(2) 0.47(6) 1.10(2) 4.3 - 11.2 1.03

Vmon 0.073(3) 0.46(7) 1.43(3) 4.0 - 11.8 1.01

Vph −1.0(1) × 10−4 0.0132(1) 0.4770(2) 6.4 - 11.5 1.03

SU(3) nconf=60000 ngf=4000 β = 5.6

243 × 4 σa2 c µa FR(R/a) χ2/Ndf

VNA 0.193(4) 0.422(3) 1.146(20) 1-7 0.992

VA 0.184(15) 0.458(97) 2.912(80) 1-8 1.10

Vmon 0.188(16) 0.453(99) 2.906(82) 1-8 0.967

Vph −0.0014(2) 0.073(5) 1.521(3) 1 - 11 0.997

Even when we are restricted to only one-color component, perfect Abelian and monopole

dominance are obtained.

In SU(2) case, the scaling and volume independence are also checked.

For details and other applications, listen to the next talks by my collaborators, Dr Ishiguro and

Mr. Hiraguchi.
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4. Existence of the continuum limit

Does the continuum limit of ka(s, µ) exist?

Study the monopole density in the continuum limit in pure SU2
QCD.

The lattice vacuum is contaminated with large amount of lattice artifact monopoles. To

reduce lattice artifacts, various techniques smoothing the vacuum are introduced.

1. Tadpole improved action:

484 at β = 3.0 ∼ 3.9 and 244 at β = 3.0 ∼ 3.7

2. Introduction of various smooth gauge-fixings

1) Maximal center gauge(MCG): Maximization of R =
∑

s,µ(TrU(s, µ))2 SU(2) → Z(2)

2) Direct Laplacian center gauge (DLCG)

3) Maximal Abelian Wilson loop gauge (AWL): Maximization of

R =
∑

s,µ̸=ν

∑
a(cos(θ

a
µν(s))

4) Maximal Abelian and U(1) Landau gauge (MAU1):
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3. The blockspin transformation of monopoles

the blockspin transformation of monopoles
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ex. n=3

2µ µ+ +3s

Figure 1: Blockspin definition of monopoles:
T.L. Ivanenko et al., Phys. Lett. B252, (1990) 631

Monopole is defined on a a3 cube and the n-blocked monopole is
defined on a cube with a lattice spacing b = na

k
(n)
µ (sn) =

n−1∑
i,j,l=0

kµ(nsn + (n − 1)µ̂ + iν̂ + jρ̂ + lσ̂)
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Evaluate a gauge-invariant density of the n-blocked monopole:

ρ =

∑
µ,sn

√∑
a(k

(n)a
µ (sn))2

4
√
3Vnb3

Figure 2: Comparison of the VNABI (Abelian-like monopoles) densities versus b = na(β)

in MCG, AWL, DLCG and MAU1 cases.
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Summary

1. Clear scaling behaviors are observed up to the 12-step blockspin

transformations for β = 3.0 ∼ 3.9. The density ρ(a(β), n) is a

function of b = na(β) alone, i.e. ρ(b). n → ∞ means

a(β) → 0 for fixed b = na. Existence of the continuum limit!

2. When the vacuum becomes smooth enough shown here in

MCG, DLCG, AWL, MAU1, the same ρ(b) is obtained. Gauge

independence!

This is naturally expected in the continuum limit.

3. The similar scaling and gauge-independence are observed also

with respect to the effective monopole actions under the

block-spin transformation. S(k) = S(a(β), n) = F (b = na(β))
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7. Future outlook

1. To check if VNABI could explain all mass generation in QCD

such as hadron masses is interesting.

2. To construct an effective Abelian dual Higgs model based on

VNABI is interesting.

3. Monopole dominance is proved using a huge amount of

vacuum configurations. But, to extract them efficiently, it is

important to adopt an additional gauge-fixing making the

vacuum as smooth as possible and then perform the block-spin

transformation in various future studies of monopole effects.

4. The Dirac’s monopole as violation of the Abelian Bianchi

identity in QED is not found experimentally. Is there any

singular effect in other gauge theories?

5. How to formulate a field theory containing line singularities

mathematically is not known yet.
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