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Gross-Neveu model cRc’-rm

> Phase diagram of QCD poses an interesting problem with a lot of
open questions

> Particular focus on inhomogeneous order parameters & chiral
symmetry breaking = Investigate phase structure of simpler models

> The Gross-Neveu model serves as a toy model with crude similarity to
QCD.

m Interaction realized by a 4-point fermion interaction.
m Action is invariant under a discrete chiral symmetry.
m This symmetry can be spontaneously broken.
> An inhomogeneous phase exists in 1 4+ 1-dimensions in the limit of
infinite fermion flavors

v

Euclidean action of the Gross-Neveu model in 2 + 1 dimensions:

A

Sp = Jdgw (%Z_)f (wdv 30 1) Vs = 55 (¥r ¢f)2)-
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Gross-Neveu action cRc’-rm

» Euclidean action of the Gross-Neveu model in 2 + 1 dimensions:

) A
Sg = Jd% (Q/Jf (V0u + Yo p) by — 2N, (Vf 1/’f)2)'
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Gross-Neveu action cRc’-rm

» Euclidean action of the Gross-Neveu model in 2 + 1 dimensions:

A

Sp = sz”x (d_)f Cudv 30 1) Vs = 55 (¥ 1/’f)2)'

» Hubbard-Stratonovich transformation

2)

7 = NJDJWD& exp [ _ fd%(ﬁa? + 1y (yyay A0+ 0> ¢f>].
- |

» (p(x)(z)) = ——=L{o(x)) = refer to o as chiral condensate.
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The effective action in the large-INs limit cRc’-rm

> After integrating out fermion fields

Z = NJDJ exp (—Nf [% fd?’w? — In det (Q)D

» det(Q) € R required = restrict o(z) = o(x, x2)*

» Limit Ny — o0 supresses bosonic fluctuations in Z
= the global minimum of Sef[o] dominates the path integral!

! Alternatively, one could use a reducible fermion representation.
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The effective action in the large-INs limit cRc’-rm

> After integrating out fermion fields

Z = NJDJ exp (—Nf [% fd?’w? — In det (Q)D

» det(Q) € R required = restrict o(z) = o(x, x2)*

» Limit Ny — o0 supresses bosonic fluctuations in Z
= the global minimum of Sef[o] dominates the path integral!

= (0) = £ {DoO(c)e= 5ol

! Alternatively, one could use a reducible fermion representation.
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The effective action in the large-INs limit cRc’-rm

> After integrating out fermion fields

Z = NJDJ exp (—Nf [% fd?’w? — In det (Q)D

» det(Q) € R required = restrict o(z) = o(x, x2)*

» Limit Ny — o0 supresses bosonic fluctuations in Z
= the global minimum of Sef[o] dominates the path integral!

- (0) = % SD%e—Sefr[U]

! Alternatively, one could use a reducible fermion representation.
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The effective action in the large-INs limit cRc’-rm

> After integrating out fermion fields

Z = NJDJ exp (—Nf [% fd?’w? — In det (Q)D

» det(Q) € R required = restrict o(z) = o(x, x2)*

» Limit Ny — o0 supresses bosonic fluctuations in Z
= the global minimum of Sef[o] dominates the path integral!

= (0) = % S'D%e—sefr[ﬂ = O(0min(7))

! Alternatively, one could use a reducible fermion representation.
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Chiral symmetry and order parameter cRc’-rm

> Action of Gross-Neveu model invariant under discrete chiral symmetry
transformation (only possible if 5 exists)

Y = Y50, b — —y5, 0 — —0.

» Characterize phases with ¢ as order parameter
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Chiral symmetry and order parameter cRc’-rm

> Action of Gross-Neveu model invariant under discrete chiral symmetry
transformation (only possible if 5 exists)

Y = Y50, b — —y5, 0 — —0.

» Characterize phases with ¢ as order parameter
> Inhomogeneous phase occurs in 1 + 1 dimensions in the limit Ny — oo
[M. Thies and K. Urlichs, Phys. Rev. D 67, 125015 (2003) [hep-th/0302092]]

The chiral condensate for T = 0: Revised phase diagram:
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Discretization cRc’-rm

1
Sef[o] = Ny [ﬁ fd?’xaQ — Indet (’yl,(?y + % + a)]
—_—
Q

> Global minimization of Sef(c(z1,22)) is a challenging task

> Efficient computation of det Q

> Restriction o(x1,x2) = o(x1)

> Finite mode approach in temporal direction & naive discretization in
spatial directions, o = o(z1)

» Easy analytic simplifications in xg-, xa-direction, y can be introduced
in the continuum
(lower discretization errors [Lenz et al. (2020) arXiv:2007.08382 [hep-lat]])
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Discretization of the effective action cRc’-rm

» Discretized interaction term ~ @(ml)Zm Wi(x1 —y1)o(y1)w(x1) compared
to point interaction in the continuum ) (x;)o (21 (x1)

» Wi(z1 —y1) = 04,4, as in the continuum leads to incorrect interaction
terms, e.g. coupling of different fermion flavors, ~ ¥ygo)

> Observed by analysis of continuum limit [Lenz et al. (2020) Phys. Rev. D 101, no.9, 094512]

» W) needs to suppress momentum of & near "doubler poles”

1 W,
Wy
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W! = (1 + cos(k1a))/2 " soft momentum cutoff’, W/ # 0 only for
neighbored lattice points, and W} = ©(r/2a — |k1|) " hard momentum
cutoff”, W/’ distributes over the whole lattice
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Detection of phase boundaries cRc’-rm

» Global minimization of Sef with respect to o(x;) to obtain physical
configuration
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Detection of phase boundaries cRc’-rm

» Global minimization of Sef with respect to o(x;) to obtain physical
configuration = Computationally extremely difficult!
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Detection of phase boundaries cRc’-rm

» Global minimization of Sef with respect to o(x;) to obtain physical
configuration = Computationally extremely difficult!

> Instead: Stability analysis of o(z1) =0 = (H),, = ﬁsefdgzo
1 1

m H indefinit = broken chiral symmetry
m Eigenvectors corresponding to negative eigenvalues indicate directions
in o-space that lower the effective action
(+) Boundary between restored and inhomogeneous phase
(—) Does not detect hom. broken to inhom. phase boundary
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Detection of phase boundaries cRc’-rm

» Global minimization of Sef with respect to o(x;) to obtain physical
configuration = Computationally extremely difficult!
» Instead: Stability analysis of o(z1) =0 = (H)xy = %Sefdg:o
m H indefinit = broken chiral symmetry
m Eigenvectors corresponding to negative eigenvalues indicate directions
in o-space that lower the effective action
(+) Boundary between restored and inhomogeneous phase
(—) Does not detect hom. broken to inhom. phase boundary
» Local minimization in o for given (i, T') via conjugate gradient
algorithm
(+) Could possibly compute missing boundary
(=) Insecurity about global minimization
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Inhomogeneous phases
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» Two different lattice spacings aoy = 0.379,
> Analytical 2nd order boundary for ¢ = const. [K. Kiimenko (1988) . Phys. C 37, 457]
» W, = W{: No inhomogeneous phase, stability analysis leads to same
boundary as computation with ¢ = const.
» Wy = W/ Inhomogeneous phase at finite a?, starting from Lifshitzpoint
(LP), shrinks with decreasing a [R. Narayanan (2020) Phys. Rev. D 101, no.9, 096001]

0.4 0.6 0.8 1 1.2 1.4

» Continuum stability analysis: Inhomogeneous phase at finite cutoff, vanishes

when removing the cutoff

2M. Winstel (2019) [arXiv:1909.00064 [hep-lat]]
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Shape of eigenvectors CRC-TR2n

» Shape of eigenvector that leads to a lower action than ¢ =0
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Seff in the inhomogeneous phase

» The effective action for o(z1) = a cos(67z1/L)
» Within the inhomogeneous region (u/o¢ = 1.035, T'/og = 0.11)
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> The actions approach each other in the limit a — 0
> Supports shrinking of the inhomogeneous phase
» Qualitatively similar to [R. Narayanan (2020) Phys. Rev. D 101, no.9, 096001]
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Minimization of the effective action cRc’-rm

> Does not change the phase diagram and its continuum limit
> Inhomogeneous modulations as local minima within the hom. broken phase

> T'— 0 Differences to global minimum decrease (supports [K. Urlichs (2007) Doctoral

thesis]) .
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» Global minima found for W{" at finite a behave analogous to 1 + 1 dimensions

(T/oo = 0.132)  p/oo = 0.97 /oo =1.11
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Conclusion & Outlook cRc’-rm

> We developed methods to search for inhomogeneous phases without
an specific ansatz
> Inhomogeneous phase in the 241-dim. Gross-Neveu model in the
large-Ny limit found only for finite lattice spacing
> In the continuum limit inhomogeneous region vanishes
m Cutoff dependence of inhomogeneous phase to be explored
» Maybe a spatial modulation o(x1, z9) is favored?
m Efficient algorithms to evaluate Seff, minimization
> Extend models towards QCD-like scenarios

m Isospin chemical potential
m Continuous chiral symmetry
m Finite N; simulations
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Appendix



Chirality operator cRc’-rm

> Calculation performed with irreducible representation of fermions
Dirac matrices as Pauli matrices

0 1 2
v =01, 7Y =02,7 =03

0 1 2
Y =-017 = —02,7 = —03

= Non-trivial 75 not available

> Which symmetry is spontaneously broken by the condensate ?
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Parity in 2+1 dimensions cRc’-rm

> Parity as inversion of all spatial coordinates equivalent to rotation

(x0, 21, 22)

» Obtain o £ —0

> Non-vanishing ¢ indicates spontaneous breaking of parity
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How to obtain a chiral symmetry? cRc’-rm

v

Use four component spinors via combination of two inequivalent
irreducible spinors (7; = Pauli matrices in isospin space )

M=o+, =111
V5= -—T2®1L, 745 = 17475

v

Parity to be defined in isospin space via tensor product with 7

v

Mass term 11/ now invariant under parity

v

Obtain the same lagrangian as before, but now with fermion doubling
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Chiral transformations cRc’-rm

> Symmetries of free massless fermions in 2+1 dimensions (U(2Ny))

P — e I'e {1,745,74, 75}

v

For the Gross-Neveu model only a subgroup is realized
= Y, b — =5
> Together with this " GN-typical” term we have a continuous symmetry

¥ — eicﬁ’msw, TZ N Tze—z‘ms

v

Found a GN-type model that is invariant under a chiral symmetry
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Fermion representation and symmetries cRc’-rm

» Use four component spinors via combination of two inequivalent
irreducible spinors

> Chiral symmetry transformation recovered
> Interpretation of ¢ as chiral order parameter
> Obtain the same action as before, but now with fermion doubling

> Additionally, one can show the Gross-Neveu model with the
assumption o(z) = o (1, z2) using properties of the Dirac operator @

det(Q4-comp.) = det(Q}comp.)2 = Seff,4—comp.[g] = 2Seff,2—comp.[0:|-

> For the GN model we can use the irreducible representation and
obtain the same physics

» Be careful about other 2 + 1 dimensional field theories
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Discretization of the effective action cRc’-rm

1
Sef[o] = Ng [ﬁ fd3x02 —Indet (7,0, +~°u + o)]
| S —
Q

> Easy analytic simplifications in x¢-, xo-direction, u can be introduced
in the continuum

el : A
QWO’"%"&"& (x1;27) = 6”0y”65“2,”/2 <’YO(lan0 + /‘)6@1,1'1 + 'Ylazl;zi

+ 0gy o, Yoisin(kn, ) + (59617%2 Wi(xy — yl)o(yl))

Y1
Settlo Nf[g)\ ZO’ x1) — —ZZlndet ( no’nzmo,m(m;xﬁ))] .
nog n2
> 6z1+1,zll _61171,111
Naive, symmetric lattice derivative 6301 Bl —
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Comparison with analytical stability analysis cRc’-rm

0.8
analytical 2nd order boundary, ¢ = const.
07— stability analysis, ¢ = 6(x)
. — Lp
0.6 T~
™\
0.5 N
3 0.4 - \\
B R -
0.3 5 #0 Y o-0
¥
0.2 fa
0.1 Lo
6 =0(x)
0
0 0.2 0.4 0.6 0.8 1 1.2 1.4
/oy

Comparison with continuum results of M. Buballa, L. Kurth
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2d-structures? cRc‘-rm

» Phase boundary only for o(z1)

» Inhomogeneous structures with o = o (21, 25) for small volume and
larger spacing
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