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I. The problem: describe fermions without Grassmann variables

Pauli principle −→ antisymmetry −→ anticommutation rules

Example - simple fermionic Hamiltonian

H = i
∑
n

φ(n)†φ(n+ 1)− φ(n+ 1)†φ(n), {φ(m)†, φ(n)} = δmn, (1)

Equivalent Hamiltonian in terms of spin variables/operators

(one space-dimension only (d=1))

H =
1

2

∑
n

σ1(n)σ2(n+ 1) + σ2(n)σ1(n+ 1) (2)

Proof: Jordan-Wigner transformation.

J-W transforms local fermionic ”bilinears” into local spin ones.

In higher dimensions J-W introduces non-local interactions.
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Avoiding J-W transformation [Nambu (1950) ]

Link operators

X(n) = φ(n)† + φ(n), Y (n) = i(φ(n)† − φ(n))

S(n) = iX(n)X(n+ 1), S̃(n) = iY (n)Y (n+ 1)

The algebra of link operators

[S̄(m), S̄(n)] = 0, m 6= n− 1, n+ 1,

{S̄(m), S̄(n)} = 0, m = n− 1, n+ 1,

[S(m), S̄(n)] = 0

The same algebra is obeyed by the following link operators

S(n) = σ1(n)σ2(n+ 1), S̃(n) = −σ2(n)σ1(n+ 1),

Which gives (2)
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II. Two space dimensions

Two dimensional lattice hamiltonian is given by analogous links in two

dimensions.

The algebra: links in fermionic representation anticommute only if they

have one site in common.

How to find their spin representation ?

HINT: Four links meet at one point −→ we need four anticommuting

matrices [Wosiek (1982)].

S(~n, ~ex) = Γ1(~n)Γ3(~n+ ~ex), SX(~n, ~ey) = Γ2(~n)Γ4(~n+ ~ey)

S̃(~n, ~ex) = Γ̃1(~n)Γ̃3(~n+ ~ex), S̃(~n, ~ey) = Γ̃2(~n)Γ̃4(~n+ ~ey) (3)

Γ̃k = iΠj 6=kΓ
j

Expect: The two hamiltonians are equivalent, i.e. they have the same

spectrum.
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III. Constraints

For d=1 and with L sites : dim(Hf = 2L)

For d=2 and with L2 sites : dim(Hf = 2L
2
)

However : dim(Hs = 4L
2
)

Suspect: in higher dimensions spin systems must be constrained.

=⇒ Plaquette operators P (L, I,N,K) = S(L)S(I)S(N)S(K).

[Itzykson (1980)]

P=1 in fermionic representation, P 2 = 1 in spin representation.

=⇒ L2 constraints P = 1 =⇒ 2L
2

dimensions remain - OK.

We therefore impose L2 constraints in the spin representation

P~n = 1, (4)
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IV. An explicit implementation

The Hilbert space for Lx × Ly lattice has 4N dimensions, N = LxLy.

States:

{i1, i2, . . . , iN}, in = 1, . . . , 4, n = 1, . . . ,N . (5)

Operators: N -fold tensor products of Γ’s (and unity)

Sparse matrices - O(4N ) memory size.

Aviable sizes N ∼ 16− 20.
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IV.1 Constraints

Projectors

Σm,n =
1

2
(1 + Pm,n), ΣZ =

1

2
(1 + LZ), Z = x, y, (6)

Number of fermions and fermionic density

N =
∑
n

N(n) =
∑
n

1

2
(1− ηΓ5(n)), η = ±1. (7)

Reduction Hspins −→ Hfermions done at fixed N or even N(n).

Constraints between constraints∏
m,n

Pm,n = 1, Lx(y + 1) =
∏

adjacent row

ProwLx(y) (8)

(−1)N = ηLxLy
(
−
ε′x
εx

)Lx (
−
ε′y

εy

)Ly
, ε, ε′ = ±1. (9)

Reduction schemes: (I) at fixed N=p, (II) at fixed {N(n)}

2N
(
N
p

)
−→

(
N
p

)
, 2N −→ 1. (10)
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Scheme (I) - at fixed p

p= 0 1 2 3 4 5 6 7 8 9
Tr Σ11 256 2304 9216 21504 32256 32256 21504 9216 2304 256

Tr Σ11Σ12 128 1152 4608 10752 16128 16128 10752 4608 1152 128
Tr Σ11Σ12Σ13 64 576 2304 5376 8064 8064 5376 2304 576 64

Tr Σ11Σ12...Σ21 32 288 1152 2688 4032 4032 2688 1152 288 32
Tr Σ11Σ12...Σ22 16 144 576 1344 2016 2016 1344 576 144 16
Tr Σ11Σ12...Σ23 8 72 288 672 1008 1008 672 288 72 8
Tr Σ11Σ12...Σ31 4 36 144 336 504 504 336 144 36 4
Tr Σ11Σ12...Σ32 2 18 72 168 252 252 168 72 18 2
Tr Σ11Σ12...Σ33 2 18 72 168 252 252 168 72 18 2
Tr Σ11Σ12...Σx 1 9 36 84 126 126 84 36 9 1
Tr Σ11Σ12...Σy 0 9 0 84 0 126 0 36 0 1

Table 1: Reduction of the spin Hilbert space for 3 × 3 lattice in p-particle sectors. Periodic boundary conditions are
assumed.
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Scheme (II) - at fixed positions (of p excitations)

Sector (p) even, 0 ≤ p ≤ 16 odd, 0 < p < 16
Occupied sites from # 1 to # p

H
il
b

er
t

sp
ac

e
re

d
u
ct

io
n

Tr Σ11 32768
Tr Σ11Σ21 16384

Tr Σ11...Σ31 8192
Tr Σ11...Σ41 4096
Tr Σ11...Σ12 2048
Tr Σ11...Σ22 1024
Tr Σ11...Σ32 512
Tr Σ11...Σ42 256
Tr Σ11...Σ13 128
Tr Σ11...Σ23 64
Tr Σ11...Σ33 32
Tr Σ11...Σ43 16
Tr Σ11...Σ14 8
Tr Σ11...Σ24 4
Tr Σ11...Σx 2
Tr Σ11...Σy 1
Tr Σ11...Σ34 1 0
Tr Σ11...Σ44 1 0

Table 2: Reduction of the spin Hilbert space for subsectors 0 ≤ p ≤ 16, and fixed coordinates, on a 4× 4 lattice. Sites
of the lattice are ordered lexicographically, thus e.g. sites from #1 to #5 means sites (1,1), (2,1), (3,1), (4,1) and (1,2).
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IV.2 The spectrum

Reduction (I) −→ Np =

(
N
p

)
, 1 - eigenvectors, vi, of all constraints.

They span the Hilbert space of p free, indistinguishable fermions.

The reduced spin HamiltonianHij = 〈vi|H|vj〉 is equivalent to the fermionic

Hamiltonian (1) in a p-fermion sector.

Closing the circle:

The eigenvalues of Hij agree with the energies of p identical, free fermions.
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V. The whole family of constraints - emergent Wegner gauge field

What about all other constraints (2N − 1 of them)?

Pn = ±1, 1 6 n 6 N . (11)

Couple fermions (1) to an external Z2 gauge field U(l)

Hf = i
∑
~n,~e

(
U(~n, ~n+ ~e)φ(~n)†φ(~n+ ~e)− U(~n, ~n+ ~e)φ(~n+ ~e)†φ(~n)

)
(12)

=
1

2

∑
l

(
U(l)S(l) + U(l)S̃(l)

)
, (13)

In the spin representation this goes into

Hs =
1

2

∑
l

(
U(l)S(l) + U(l)S̃(l)

)
. (14)

with the same variables U(l), and S(l) given by (3).

Hs describes corresponding spins in an external Z2 field.

As in the free case Hf and projected Hs should be equivalent.

−→ Generalizing the fermion-spin equivalence to systems in external fields

[Szczerba (1984)].
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Now watch this: one can absorb the U(l) factors into new link operators

S′(l) = U(l)S(l); S̃′(l) = U(l)S̃(l), (15)

commutation rules of S′’s are unchanged [Bochniak, Ruba (2019)].

The new spin hamiltonian does not depend on the external field

H ′s =
1

2

∑
l

(
S′(l) + S̃′(l)

)
, (16)

but the constraints on the new spin variables do.

P ′n =
∏
l∈Cn

U(l). (17)

=⇒ Two ways of introducing minimal interaction with an external field:

1) the standard one by putting explicitly link variables into the hamil-

tonian and imposing ”free” form of the constraints (4), and

2) use the free spin hamiltonian (16), but impose the ”interacting” con-

straints (17).

Conclusion: the whole family of possible constraints can be parametrized

by an external gauge Z2 field .
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An example

There exists a particular configuration of Wegner variables, namely

Ux(x, y) = (−1)y, Uy(x, y) = 1, (18)

for which the fermionic problem can be solved analytically.

The spectrum of the fermionic hamiltonian (13) reads

E
(1)
magnetic(kx, ky) = ±2

√
sin

(
2πkx

Lx

)2

+ sin

(
2πky

Ly

)2

1 6 kx 6 Lx, 1 6 ky 6 Ly/2,

(19)

to be contrasted with the free case

E
(1)
free(kx, ky) = 2 sin

(
2πkx

Lx

)
+ 2 sin

(
2πky

Ly

)
, 1 6 kz 6 Lz, z = x, y.

(20)

Configuration (18) can be realized only for an even Ly and results in all

plaquettes being equal

Pn = −1, 1 6 n 6 N , (21)

hence it is a Wegner version of a constant magnetic field.

A punchline: Mathematica exercise for 3× 4 lattce (p = 1 sector)

1. Upon reduction correct size of H was obtained

2. Fermionic spectrum (19) was reproduced
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VI. Dynamical gauge field - the spectrum of dualities

Each set of constraints { Pn = ±1 } ↔ gauge invariant configuration (an

orbit) of a Z2 gauge field.

Complete Hilbert space of {Z2} splits into above classes.

=⇒ The dynamical Wegner field ↔ the unconstraint Γ-spins.
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Dualities in 2+1 dimensions (70’s – now)

M.Peskin (1978), A.M.Polyakov (1987, 1988), ...,

T. Jaroszewicz (1991),... ,

D. Tong (2016), E. Witten (2016), D. T. Son (2018)...

• Kramers-Wannier duality: ising spins ↔ kinks (1+1)

• particle-vortex duality (2+1):

XY spins ↔ vortices of the phase (+ a gauge field (!) )

• fermion-fermion duality:

free Dirac field ↔ fermions coupled to an emergent gauge field

• fermion-boson dualities ← flux attachmet: flux+charged boson ↔
fermion

An emergent gauge field is always a Chern-Simons field
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Our system ( Γ-spins ≡ pairs of Ising spins ) :

free lattice fermions ↔ Γ-spins with ”pure-gauge” constraints

with an external Z2 field ↔ Γ-spins with Z2-driven constraints

with a dynamical Z2 field ↔ unconstraint Γ-spins

• Our Z2 field might resemble a CS field (see B lażej’s talk).

•• Another duality in 2+1 (and higher) dimensons ?
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VII. Summary

• Fermions can be equivalently represented by ”spins” i.e. discrete bosonic

degrees of freedom.

• In higher dimensions above spin systems are subject to constraints.

• Spin hamiltonian in the constraint space is fully equivalent to the original

fermionic hamiltonian (it has the same spectrum).

• An interesting, physical interpretation of the complete family of all con-

straints in terms of the external Z2 field has been also found.

• An explicit realization (and check): constant, magnatic Wegner field.

• • ... The intriguing possibility of a new, unknown yet duality.
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