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I. The problem: describe fermions without Grassmann variables

Pauli principle — antisymmetry — anticommutation rules

Example - simple fermionic Hamiltonian

H=i) ¢(n)fop(n+1)—on+1)on), {op(m)',d(n)}=2dmnn (1)

Equivalent Hamiltonian in terms of spin variables/operators
(one space-dimension only (d=1))

H = %Z o'(n)o?(n + 1) + o*(n)o'(n + 1) (2)

Proof: Jordan-Wigner transformation.
J-W transforms local fermionic ”bilinears” into local spin ones.
In higher dimensions J-W introduces non-local interactions.



Avoiding J-W transformation [Nambu (1950) |

Link operators

X(n) =¢(n)' +é(n),  Y(n)=i(p(n)! - ¢(n))
S(n) =1X(n)X(n+1), S(n) =1Y(n)Y(n+1)

The algebra of link operators

[g(m),g(n)]:(), m#n—1,n+1,
{S(m),S(n)} =0, m=n—1,n+1,

[S(m), S(n)] =0
The same algebra is obeyed by the following link operators
S(n) = a'(n)o?(n+1), S(n)=—o*(n)o'(n+1),
Which gives (2)



II. Two space dimensions

Two dimensional lattice hamiltonian is given by analogous links in two
dimensions.

The algebra: links in fermionic representation anticommute only if they
have one site in common.

How to find their spin representation ?

HINT: Four links meet at one point —> we need four anticommuting
matrices [Wosiek (1982)].

S(i1, &) = TY(A)T3(A + &), SX(#,&,) = 2(#A)T* (7 + &,)
(7, &) = THR)T(7i + &), S(#, &) = D*(@)(7 + &) (3)
% = 411, 4, I

Expect: The two hamiltonians are equivalent, i.e. they have the same
spectrum.






II1. Constraints

For d=1 and with L sites : dim(H; = 21)
For d=2 and with L? sites : dim(Hy = 2L%)
However : dim(H, = 4%°%)

Suspect: in higher dimensions spin systems must be constrained.

—> Plaquette operators P(L,I,N,K) = S(L)S(I)S(N)S(K).
[Itzykson (1980)]

P=1 in fermionic representation, P? = 1 in spin representation.
— L2 constraints P = 1 — 2L” dimensions remain - OK.

We therefore impose L? constraints in the spin representation



IV. An explicit implementation

The Hilbert space for L, X L, lattice has qN dimensions, N = L,L,,.

States:

{1,820 esin}, tn=1,...,4, nmn=1,...,N.

Operators: N -fold tensor products of I'’s (and unity)
Sparse matrices - O(4") memory size.

Aviable sizes N ~ 16 — 20.



IV.1 Constraints

Projectors

1

1
ZDm,n = _(]— + Pm,n)7 Z:Z — 5(]— + EZ)? Z = LylY,

2
Number of fermions and fermionic density

N=YN@m =Y 0-n*m), n==L

n

Reduction Hspins —> H fermions done at fixed N or even N(n).

Constraints between constraints

H Pm,n — ]-7 L:w(y + 1) — H P’T‘O’wﬁﬂ?(y)

adjacent row

6/ L, e/ Ly
(_1)N = plely (——m) . , €, € = +1.
€ €y

Reduction schemes: (I) at fixed N=p, (II) at fixed {N(n)}

2N<J;/)—><JX), oN 1.

8

(10)



Scheme (I) - at fixed p

p=1 0 | 1 2 3 4 5 6 7 8 | 9

Tr 211 | 256 | 2304 | 9216 | 21504 | 32256 | 32256 | 21504 | 9216 | 2304 | 256

Tr 211312 | 128 | 1152 | 4608 | 10752 | 16128 | 16128 | 10752 | 4608 | 1152 | 128

Tr 211512513 | 64 | 576 | 2304 | 5376 | 8064 | 8064 | 5376 | 2304 | 576 | 64
Tr Z11%512.. 221 | 32 | 288 | 1152 | 2688 | 4032 | 4032 | 2688 | 1152 | 288 | 32
Tr 211512222 | 16 | 144 | 576 | 1344 | 2016 | 2016 | 1344 | 576 | 144 | 16
Tr 21110223 | 8 | 72 | 288 | 672 | 1008 | 1008 | 672 | 288 | 72 | 8
Tr 211012231 | 4 | 36 | 144 | 336 | 504 | 504 | 336 | 144 | 36 | 4
Tr 2112232 | 2 | 18 | 72 | 168 | 252 | 252 | 168 | 72 | 18 | 2
Tr 2112233 | 2 | 18 | 72 | 168 | 252 | 252 | 168 | 72 | 18 | 2
TrEnieSs | 1 | 9 | 36 | 84 | 126 | 126 | 84 | 36 | 9 | 1
Tr 2113128, | 0 | 9O 0 84 0 126 0 36 | 0 | 1

Table 1: Reduction of the spin Hilbert space for 3 X 3 lattice in p-particle sectors. Periodic boundary conditions are
assumed.



Scheme (II) - at fixed positions (of p excitations)

Sector (p) even, 0 < p <16 \ odd, 0 < p < 16
Occupied sites from # 1 to # p
Tr 211 32768

Tr 211221 16384
Tr ¥qq1...331 8192
Tr ¥11...34 4096
Tr ¥q1...2012 2048
Tr 211...222 1024
Tr 211...232 512
Tr 3q1...2042 256
o [ Tr 231305 128
2 Tr B11...303 64
é Tr 211...233 32
8 Tr 211...243 16
% Tr ¥q1...2094 8
A Tr 211304 4
£ | Tr ¥q7...2, 2
§ Tr 211...Ey 1
E Tr 211...234 1 0
Tr 3q1...2049 1 0

Table 2: Reduction of the spin Hilbert space for subsectors 0 < p < 16, and fixed coordinates, on a 4 X 4 lattice. Sites
of the lattice are ordered lexicographically, thus e.g. sites from #1 to #5 means sites (1,1), (2,1), (3,1), (4,1) and (1,2).
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IV.2 The spectrum

Reduction (I) — N, = (JX) , 1 - eigenvectors, v;, of all constraints.

They span the Hilbert space of p free, indistinguishable fermions.

The reduced spin Hamiltonian H;; = (v;|H |v;) is equivalent to the fermionic
Hamiltonian (1) in a p-fermion sector.

Closing the circle:

The eigenvalues of H;; agree with the energies of p identical, free fermions.
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V. The whole family of constraints - emergent Wegner gauge field

What about all other constraints (2 — 1 of them)?
P, = +1, 1<n<N. (11)
Couple fermions (1) to an external Z, gauge field U (1)

Hy = i) (U@, 7+ &)$()'¢(7i + &) — U7, i + &) (7 + &) (1)) (12)
= 2> (vwsw +vwEY), 13
l

In the spin representation this goes into

H, = %Z (U(l)S(l) + U(l)S(l)) : (14)

l
with the same variables U(l), and S(I) given by (3).

H, describes corresponding spins in an external Z, field.
As in the free case H; and projected H; should be equivalent.
—— Generalizing the fermion-spin equivalence to systems in external fields

[Szczerba (1984)].

12



Now watch this: one can absorb the U(l) factors into new link operators
S =UuWmSsW); SO =UDSW), (15)

commutation rules of S”’s are unchanged [Bochniak, Ruba (2019)].

The new spin hamiltonian does not depend on the external field
1 ~
H)=_> (S0 +50) 16
i=5 Z M +5W), (16)

but the constraints on the new spin variables do.

P =1]U®. (17)

—> Two ways of introducing minimal interaction with an external field:

1) the standard one by putting explicitly link variables into the hamil-
tonian and imposing ”free” form of the constraints (4), and

2) use the free spin hamiltonian (16), but impose the ”interacting” con-
straints (17).

Conclusion: the whole family of possible constraints can be parametrized
by an external gauge Z field .
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An example

There exists a particular configuration of Wegner variables, namely

Up(z,y) = (—1)Y, Uy(z,y) =1, (18)
for which the fermionic problem can be solved analytically.
The spectrum of the fermionic hamiltonian (13) reads

27k, \ 27k, \?
Egignetic(kfca ky) - :I:Z\/sm ( L. ) + sin ( Lyy> 1<k, <L; 1K< ky < Ly/Za
(19)
to be contrasted with the free case
Erce(kzy ky) = 2sin 7 + 2 sin 7 , 1<k,<L, z=ux,vy.
x Y
(20)

Configuration (18) can be realized only for an even L, and results in all
plaquettes being equal

P,=—-1, 1<n<WN, (21)

hence it is a Wegner version of a constant magnetic field.

A punchline: Mathematica exercise for 3 X 4 lattce (p = 1 sector)
1. Upon reduction correct size of H was obtained
2. Fermionic spectrum (19) was reproduced
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V1. Dynamical gauge field - the spectrum of dualities

Each set of constraints { P, = +1 } <> gauge invariant configuration (an
orbit) of a Z, gauge field.

Complete Hilbert space of {Z,} splits into above classes.

—> The dynamical Wegner field <+ the unconstraint I'-spins.
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Dualities in 241 dimensions (70’s — now)

M.Peskin (1978), A.M.Polyakov (1987, 1988), ...,
T. Jaroszewicz (1991),... ,
D. Tong (2016), E. Witten (2016), D. T. Son (2018)...

e Kramers-Wannier duality: ising spins <> kinks (1+41)

e particle-vortex duality (2+1):

XY spins <> vortices of the phase (4 a gauge field (!) )

e fermion-fermion duality:

free Dirac field <+ fermions coupled to an emergent gauge field

e fermion-boson dualities < flux attachmet: flux+4charged boson <>
fermion

An emergent gauge field is always a Chern-Simons field
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Our system ( I'-spins = pairs of Ising spins ) :

free lattice fermions <> I'-spins with ”pure-gauge” constraints
with an external Z, field <+ I'-spins with Zs-driven constraints
with a dynamical Z, field <+ unconstraint I'-spins

e Our Z, field might resemble a CS field (see Blazej’s talk).

ee Another duality in 241 (and higher) dimensons ?
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VII. Summary

e Fermions can be equivalently represented by ”spins” i.e. discrete bosonic
degrees of freedom.

e In higher dimensions above spin systems are subject to constraints.

e Spin hamiltonian in the constraint space is fully equivalent to the original
fermionic hamiltonian (it has the same spectrum).

e An interesting, physical interpretation of the complete family of all con-
straints in terms of the external Z, field has been also found.

e An explicit realization (and check): constant, magnatic Wegner field.

@ o ... The intriguing possibility of a new, unknown yet duality.
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