Equivalence Principle, Decoupling Principle, And Information Loss Paradox

Pei-Ming Ho
National Taiwan University

classical black hole

Event horizon has no local meaning.

Collapsing matter feels nothing at horizon.

quantum black hole

information loss paradox

charge conservation

charge conservation of global symmetries (e.g. baryon number),

Consider particles with the *largest* q/m ratio.

Given N of these particles in gravitational collapse from large distances.

- \rightarrow radiation during collapse $\rightarrow M < Nm$
- \rightarrow Hawking radiation $M \rightarrow M \Delta M$
- \rightarrow total change < Nq
- → Charge not conserved!
- → low-energy effective theory breaks down.
- → There must be high-energy events.

[Banks-Seiberg 11], [Kawai-Matsuo-Yokokura 13]

uneventful horizon

spherically symmetric metric

$$ds^{2} = -C(u, v)dudv + r^{2}(u, v)(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

[Davies-Fulling-Unruh 76, Fulling 77, Christensen-Fulling 77]

$$\langle T_{uu} \rangle \sim \mathcal{O}(C^2/a^4), \qquad \langle T_{uv} \rangle \sim \mathcal{O}(C/a^4), \qquad \langle T_{vv} \rangle \sim \mathcal{O}(1/a^4).$$

$$C \sim 0 \quad \Rightarrow \quad \langle T_{uu} \rangle \sim 0, \quad \langle T_{uv} \rangle \sim 0, \quad \langle T_{vv} \rangle \sim -(HR) < 0.$$

ingoing negative energy flux around horizon

[Unruh vacuum vs Boulware vacuum vs Hartle-Hawking vacuum]

large negative energy

energy of collapsed matter cancelled by large negative ingoing energy

[Parentani-Piran 94, Ho-Matsuo 18]

remnant = "Wheeler's bag of gold", "baby universe"

information lost?

Remnant? Baby universe?

string theory or holographic principle:

[Strominger-Vafa 96, Maldacena 98, Witten 98, Gubser-Klebanov-Polyakov 98]

Information comes out as Hawking radiation. ['t Hooft, Susskind, ...]

Page curve for entanglement entropy [Page 93]

(island, quantum extremal surface, replica wormhole, ...)

[Penington 19, Alhmeiri-Mahajan-Maldacena-Zhao 19, Penington-Shenker-Stanford-Yang 19, Almheiri-Engelhardt-Marolf-Maxfield 19, Almheiri-Hartman-Maldacena-Shaghoulian-Tajdini 20]

Why do we care?

conflict between principles

equivalence principle:

uneventful horizon (?)

⇒ no high-energy events

decoupling principle:

Why is string theory relevant?

Need "drama" at horizon. [Mathur 09]

conventional model

Assumptions:

- 1. semi-classical Einstein equation
- 2. low-energy effective QFT
- 3. Semi-classical approximation
- 4. uneventful horizon condition

assumption about the theory

assumption about the state

→ Hawking radiation

[Unruh vacuum]

adiabatic process (consistency check)

2D black holes (CGHS model) 3D black holes (JT gravity) AdS/CFT duality

What could go wrong?

- 1. trans-Planckian problem of Hawking radiation.
- 2. vacuum energy-momentum tensor $\langle T_{\mu\nu} \rangle$.
- 3. stability

Hawking radiation

Hawking radiation does not need event horizon.

It needs the affine parameters on the past and future null infinities related via an exponential relation.

[Visser 01, Barcelo-Liberati-Sonego-Visser 06,06,10,10]

trans-Planckian problem

['t Hooft 85] [Jacobson 91, Unruh 95, Brout-Massar-Parentani-Spindel 95, Corley-Jacobson 96]

$$\omega_U = \left(\frac{dU}{du}\right)^{-1} \omega_u$$
 can be trans-Planckian since $\frac{dU}{du}$ can be arbitrarily small.

However, due to local Lorentz boosts,

$$u \to u' = \gamma u,$$
 $U \to U' = \gamma U,$ $V \to V' = \gamma^{-1} V$

The frequency can be arbitrarily large or small.

EFT breaks down if $\left| \left| \omega_u \, g^{uv} \, \omega_v \right| > M_p^2$ in the absence of selection rules.

large invariants

[PMH-Yokokura 20, PMH 20]

$$g^{\mu_{1}\nu_{1}}\cdots g^{\mu_{n}\nu_{n}} \left(\nabla_{\mu_{1}}\cdots\nabla_{\mu_{2n}}\phi\right) \left(\nabla_{\nu_{1}}\cdots\nabla_{\nu_{n-2}}\mathcal{R}_{\nu_{n-1}\nu_{n}}\right) \left(\nabla_{\nu_{n+1}}\cdots\nabla_{\nu_{2n-2}}\mathcal{R}_{\nu_{2n-1}\nu_{2n}}\right) \\ \longrightarrow \left(g^{uv}\right)^{2n} \left(\nabla_{u}^{2n}\phi\right) \left(\nabla_{v}^{2n}\phi\right) \left(\nabla_{v}^{n-2}\mathcal{R}_{vv}\right)^{2} \\ g^{\mu_{1}\nu_{1}}\cdots g^{\mu_{2n}\nu_{2n}} \left(\nabla_{\mu_{1}}\cdots\nabla_{\mu_{2n}}\phi_{1}\right) \left(\nabla_{\nu_{1}}\cdots\nabla_{\nu_{n}}\phi_{2}\right) \left(\nabla_{\nu_{n+1}}\cdots\nabla_{\nu_{2n}}\phi_{2}\right) \\ \longrightarrow \left(g^{uv}\right)^{2n} \left(\nabla_{u}^{2n}\phi_{1}\right) \left(\nabla_{v}^{n}\phi_{2}\right)^{2} \\ g^{-n} \left(\nabla^{m_{1}}\phi\right)\cdots \left(\nabla^{m_{s}}\phi\right) \left(\nabla^{p_{1}}\mathcal{R}\right)\cdots \left(\nabla^{p_{r}}\mathcal{R}\right)$$

Higher-derivative interactions violate equivalence principle.

What could go wrong?

- 1. trans-Planckian problem of Hawking radiation.
- 2. vacuum energy-momentum tensor $\langle T_{\mu\nu} \rangle$.
- 3. non-perturbative effect

non-conventional models: KMY model

KMY model [Kawai, Matsuo, Yokokura 2013, Kawai, Yokokura 14,15,17]

outgoing energy flux
$$\langle T_{uu} \rangle \sim \mathcal{O}(a^{-4})$$
 $\left(\text{or } \langle T_{UU} \rangle \sim \mathcal{O}(\mathcal{C}_p^{-2}a^{-2}) \right)$

apparent horizon never appears

even for matter collapsing at the speed of light

Einstein equivalence principle

Einstein Equivalence Principle:

The outcome of any local non-gravitational experiment in a freely falling laboratory is independent of the lab's velocity and location.

Apart from the energy of the particles, the vacuum EMT cannot be measured non-gravitationally.

The Einstein EP restricts particles' EMT, but not vacuum FMT.

What could go wrong?

- 1. trans-Planckian problem of Hawking radiation.
- 2. vacuum energy-momentum tensor $\langle T_{\mu\nu} \rangle$.
- 3. non-perturbative effect

non-conventional models: FuzzBall

fuzzball [Lunin-Mathur '01, '02]

Planckian scale structure around would-be horizon

supergravity solutions

tunneling probability $\sim e^{-S}e^{S} \sim \mathcal{O}(1)$

What do we need?

Reason to call UV theory for help. 🗸

Is it sufficient to induce strong UV effect?

Or it stops Hawking radiation?

Mechanism for info transfer & unique final state

final-state problem

$$\begin{split} |\phi\rangle \otimes |\Psi_0\rangle &\rightarrow |\phi'\rangle \otimes |\Psi\rangle \\ |\phi^{(n)}\rangle \otimes |\Psi_0\rangle &\rightarrow |\phi'^{(n)}\rangle \otimes |\Psi^{(n)}\rangle \\ \left(\sum_n c_n |\phi^{(n)}\rangle\right) \otimes |\Psi_0\rangle &\rightarrow \sum_n c_n |\phi'^{(n)}\rangle \otimes |\Psi^{(n)}\rangle \\ &\rightarrow \quad \text{entanglement} \end{split}$$

The black-hole final state must be unique:

$$|\phi^{(n)}\rangle \otimes |\Psi_0\rangle \rightarrow |\phi_0\rangle \otimes |\Psi^{(n)}\rangle$$

conclusion

challenge for conventional model (keeping equivalence principle)

How is decoupling principle broken?

How can we still trust Hawking radiation or Schwarzschild geometry? (nonlocal effect, microscopic wormholes?)

challenge for non-conventional models (keeping decoupling principle)

How is equivalence principle broken?

(Einstein's equivalence principle is not broken.)

Experience of freely falling observers may be very similar.

(quantum state is nonlocal, higher-derivative interactions, tunneling?)

[PMH-Yokokura 20, PMH 20]

